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ON A SUBCLASS OF MEROMORPHIC FUNCTION WITH FIXED
SECOND COEFFICIENT
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Abstract. In this paper we introduce a new subclass of meromorphic function
with fixed second coefficient defined by Fox-Wright’s generalized hypergeometric
function. We obtain coefficient estimates, extreme points, growth and distortion
theorems, radii of meromorphically starlikeness and convexity for this new subclass.
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1. Introduction

We denote by Σ the class of functions of the form

f(z) =
1

z
+ Σ∞n=1anz

n (1)

which are analytic in the punctured unit disk

∆∗ := {z ∈ C/ 0 < |z| < 1}.

Let ΣP denote the class of functions of the form (1) with an ≥ 0 i.e.

f(z) =
1

z
+ Σ∞n=1anz

n, an ≥ 0. (2)

A function f ∈ Σ is said to be meromorphically starlike of order α if

−Re
(
zf ′(z)

f(z)

)
> α

and meromorphically convex of order α if

−Re
(

1 +
zf”(z)

f ′(z)

)
> α.
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We denote the class of meromorphically starlike functions and the class of mero-
morphically convex functions by Σ∗(α) and ΣK(α) respectively. Various subclasses
of Σ have been defined and studied by various authors (see [1, 2, 3, 5, 6, 7, 8, 9, 10,
11, 12, 13, 17]).

The Hadamard product between f ∈ Σ given by (1.1) and g(z) = 1
z+Σ∞n=1bnz

n ∈
Σ is defined as

(f ∗ g)(z) =
1

z
+ Σ∞n=1anbnz

n = (g ∗ f)(z).

For positive real parameters α1, A1, . . . , αl, Al, β1, B1, . . . , βm, Bm (l,m ∈ N =
{1, 2, 3, . . . }) such that 1 + Σm

k=1Bk − Σl
k=1Ak ≥ 0, z ∈ {z ∈ C/0 < |z| < 1} the

Wright’s generalized hypergeometric function

lΨm[(α1, A1), . . . , (αl, Al); (β1, B1), . . . , (βm, Bm); z] =l Ψm[(αt, At)1,l(βt, Bt)1,m; z]

is defined by

lΨm[(αt, At)1,l(βt, Bt)1,m; z] = Σ∞k=0{
l∏

t=0

Γ(αt + kAt)}{
m∏
t=0

Γ(βt + kBt)}−1 z
k

k!
.

If At = 1 (t = 1, 2, . . . , l) and Bt = 1 (t = 1, 2, . . . ,m) we have the relationship

ΩlΨm[(αt, At)1,l(βt, Bt)1,m; z] ≡l Fm(α1, . . . , αl;β1, . . . , βm; z)

= Σ∞k=0

(α1)k . . . (αl)k
(β1)k . . . (βm)k

zk

k!

(l ≤ m+ 1; l,m ∈ N0 = N = {0, 1, 2, . . . , }; z ∈ ∆).

This is the generalized hypergeometric function (see [7]). Here (αn) is the

Pochammer symbol and Ω =

(∏l
t=0 Γ(αt)

)−1(∏m
t=0 Γ(βt)

)
.

Using the generalized hypergeometric function,we define a linear operator

V [(αt, At)1,l; (βt, Bt)1,m] : ΣP → ΣP

by

V [(αt, At)1,l; (βt, Bt)1,m]f(z) = z−1ΩlΨm[(αt, At)1,l(βt, Bt)1,m; z] ∗ f(z). (3)

For convenience, we denote V [(αt, At)1,l; (βt, Bt)1,m] by V [α1]. If f has the form
(1), then

V [α1]f(z) =
1

z
+ Σ∞n=1σn(α1)anz

n, (4)
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where

σn(α1) =
ΩΓ(α1 +A1(n+ 1)) . . .Γ(αl +Al(n+ 1))

(k + 1)!Γ(β1 +B1(n+ 1)) . . .Γ(βl +Bl(n+ 1))
.

We now define a new subclass of ΣP using the linear operator V [α1].

Definition 1. For 0 ≤ η < 1, 0 ≤ λ < 1
2 , z ∈ {z ∈ C/0 < |z| < 1} we say f ∈ ΣP

is in N l
m(λ, η) if

−Re
(

z(V [α1]f(z))′ + λz2(V [α1]f(z))′′

(1− λ)(V [α1]f(z)) + λz(V [α1]f(z))′

)
> η.

Note that when At = 1 for all t = 1, 2, . . . , l and Bt = 1 for all t = 1, 2, . . . ,m,
we get the class considered by Dziok et al. [5].

We now prove the coefficient inequality for f ∈ N l
m(λ, η).

Theorem 1. Let f ∈ ΣP be given by (2). Then f ∈ N l
m(λ, η) if and only if

Σ∞n=1[(n+ η)(nλ− λ+ 1)]σn(α1)an ≤ (1− η)(1− 2λ). (5)

Proof. Since f ∈ ΣP given by (2) is in the class N l
m(λ, η),

−Re
(

z(V [α1]f(z))′ + λz2(V [α1]f(z))”

(1− λ)(V [α1]f(z)) + λz(V [α1]f(z))′

)
> η.

Substituting the series expansion for f we have

Re

( −1
z + Σ∞n=1nσn(α1)anz

n + 2λ
z + Σ∞n=1λn(n− 1)σn(α1)anz

n

(1− λ)(1
z + Σ∞n=1σn(α1)anzn) + λ(−1

z + Σ∞n=1nσn(α1)anzn)

)
≥ η.

That is,

Re

(
1− Σ∞n=1nσn(α1)anz

n+1 − 2λ− Σ∞n=1λn(n− 1)σn(α1)anz
n+1

(1− λ)(1 + Σ∞n=1σn(α1)anzn+1) + λ(−1 + Σ∞n=1nσn(α1)anzn+1)

)
≥ η.

Allowing z to take only real values and as z → 1, we get (5). Conversely, let
f ∈ ΣP be given by (2) such that (5) holds. Let

w =
−(z(V [α1]f(z))′ + λz2(V [α1]f(z))”)

(1− λ)(V [α1]f(z)) + λz(V [α1]f(z))′
.
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We have to prove that Rew > η. It is enough to prove that

|w − 1| < |w + 1− 2η|∣∣∣∣ w − 1

w + 1− 2η

∣∣∣∣ =
∣∣∣ −z(V [α1](f(z)))′−λz2(V [α1)f(z))”−(1−λ)(V [α1)f(z))−λz(V [α]f(z))′

−z(V [α1]f(z))′−λz2(V [α1]f(z))”+(1−2η)(1−λ)(V [α1]f(z)+λ(1−2η)z(V [α]f(z))′

∣∣∣
=
∣∣∣ −Σ∞

n=1[n+λn(n−1)+λn]σn(α1)anzn+1

2(1−η)(1−2λ)−Σ∞
n=1[n+λn2−λn−1+λ+2η−2ηλ]σn(α1)anzn+1

∣∣∣
<

Σ∞
n=1[λn2+n+1−λ]σn(α1)anrn+1

2(1−η)(1−2λ)−Σ∞
n=1[λn2−2λn+n−1+λ+2η−2ηλ+2ηλn]σn(α1)anrn+1

< 1,

since the difference between denominator and numerator of the last expression equals
2[(1 − η)(1 − 2λ) − Σ∞n=1[λn2 + n − λn + η − ηλ + nηλ]] which is non-negative, by
(5).
This completes the proof.

From (5) we have

(1 + η)σ1a1 ≤
(1− η)(1− 2λ)

1 + η
. (6)

Hence we may take

(1 + η)σ1a1 =
(1− η)(1− 2λ)c

1 + η
, 0 < c < 1. (7)

Following the works of Aouf and Darwish [1], Ghanim and Darus [7, 8], Magesh
et al. [11] and Sivasubramanian et al. [13], we now introduce a class of functions
and obtain the results analogous to the above mentioned works.

Definition 2. The subclass N l
m(λ, η, c) of N l

m(λ, η) consists of all functions of the
form

f(z) =
1

z
+

(1− η)(1− 2λ)c

1 + η
z + Σ∞n=2σn(α1)anz

n, 0 < c < 1. (8)

We now obtain the coefficient estimates, growth and distortion bounds, extreme
points,radii of meromorphically starlikenss and convexity for the class N l

m(λ, η) by
fixing the second coefficient.
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2. Coefficient Inequality

We now prove the coefficient inequality.

Theorem 2. Let f be defined by (8). Then f ∈ N l
m(λ, η, c) if and only if

Σ∞n=2[(n+ η)(nλ− λ+ 1)]σn(α1)an ≤ (1− η)(1− 2λ)(1− c). (9)

The result is sharp.

Proof. f ∈ N l
m(λ, η, c) implies f ∈ N l

m(λ, η). Therefore by (5)

(1 + η)σ1(α1)a1 + Σ∞n=2[(n+ η)(nλ− λ+ 1)]σn(α1)an ≤ (1− η)(1− 2λ).

Using (7)

(1− η)(1− 2λ)c+ Σ∞n=2[(n+ η)(nλ− λ+ 1)]σn(α1)an ≤ (1− η)(1− 2λ)

from which we obtain (9). The result is sharp for the function

f(z) =
1

z
+

(1− η)(1− 2λ)c

1 + η
z +

(1− η)(1− 2λ)(1− c)
(n+ η)(nλ)− λ+ 1)σn(α1)

zn, n ≥ 2. (10)

Corollary 3. If f defined by (8) is in the class N l
m(λ, η, c) then

an ≤
(1− η)(1− 2λ)(1− c)

(n+ η)(nλ− λ+ 1)σn(α1)
, n ≥ 2. (11)

The result is sharp for the function given by (10).

3. Growth and Distortion Theorems

We next prove the growth theorem for the class N l
m(λ, η, c).

Theorem 4. If f given by (8) is in the class N l
m(λ, η, c) then for

0 < |z| = r < 1

|f(z)| ≥ 1

r
− (1− η)(1− 2λ)c

1 + η
r − (1− η)(1− 2λ)(1− c)

(1 + λ)(2 + η)
r2 (12)

and

|f(z)| ≤ 1

r
+

(1− η)(1− 2λ)c

1 + η
r +

(1− η)(1− 2λ)(1− c)
(1 + λ)(2 + η)

r2. (13)

The result is sharp for f(z) = 1
z + (1−η)(1−2λ)c

1+η z + (1−η)(1−2λ)(1−c)
(1+λ)(2+η) z2.
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Proof. Since f ∈ N l
m(λ, η, c) by Theorem 2

σn(α1)an ≤
(1− η)(1− 2λ)(1− c)
(1 + η)(nλ− λ+ 1)

. (14)

For 0 < |z| = r < 1,

|f(z)| ≤ 1

|z|
+

(1− η)(1− 2λ)c

1 + η
|z|+ Σ∞n=1σn(α1)an|z|n

≤ 1

r
+

(1− η)(1− 2λ)c

1 + η
r + r2Σ∞n=1σn(α1)an

≤ 1

r
+

(1− η)(1− 2λ)c

1 + η
r +

(1− η)(1− 2λ)(1− c)
(1 + λ)(2 + η)

r2.

Similarly,

|f(z)| ≥ 1

|z|
− (1− η)(1− 2λ)c

1 + η
|z| − Σ∞n=1σn(α1)an|z|n

≥ 1

r
− (1− η)(1− 2λ)c

1 + η
r − r2Σ∞n=1σn(α1)an

≥ 1

r
− (1− η)(1− 2λ)c

1 + η
r − (1− η)(1− 2λ)(1− c)

(1 + λ)(2 + η)
r2.

The distortion theorem for the class N l
m(λ, η, c) is as follows:

Theorem 5. If f given by (8) is in the class N l
m(λ, η, c) then for 0 < |z| = r < 1

|f ′(z)| ≥ 1

r2
− (1− η)(1− 2λ)c

1 + η
− (1− η)(1− 2λ)(1− c)

(1 + λ)(2 + η)
r (15)

and

|f ′(z)| ≤ 1

r2
+

(1− η)(1− 2λ)c

1 + η
+

(1− η)(1− 2λ)(1− c)
(1 + λ)(2 + η)

r. (16)

The result is sharp for f(z) = 1
z + (1−η)(1−2λ)c

1+η z + (1−η)(1−2λ)(1−c)
(1+λ)(2+η) z2.

4. Extreme Points

Theorem 6. Let f1(z) = 1
z + (1−η)(1−2λ)c

1+η z and for n ≥ 2,

fn(z) =
1

z
+

(1− η)(1− 2λ)c

1 + η
z + Σ∞n=2

(1− η)(1− 2λ)(1− c)
(n+ η)(nλ− λ+ 1)σn(α1)

zn.
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Then f ∈ N l
m(λ, η, c) if and only if it can be expressed as

f(z) = Σ∞n=1µnfn(z), µn ≥ 0, Σ∞n=1µn = 1.

Proof. Suppose f(z) = Σ∞n=1µnfn(z) , µn ≥ 0 , Σ∞n=1µn = 1. Then

f(z) =
1

z
+

(1− η)(1− 2λ)c

1 + η
z + Σ∞n=2

(1− η)(1− 2λ)(1− c)
(n+ η)(nλ− λ+ 1)σn(α1)

µnz
n.

Now

Σ∞n=2

(1− η)(1− 2λ)(1− c)µn
(n+ η)(nλ− λ+ 1)σn(α1)

(n+ η)(nλ− λ+ 1)σn(α1)

(1− η)(1− 2λ)(1− c)
= Σ∞n=2µn = 1−µ1 ≤ 1.

This implies f ∈ N l
m(λ, η, c). Conversely, let f ∈ N l

m(λ, η, c). Then

an ≤
(1− η)(1− 2λ)(1− c)

(n+ η)(nλ− λ+ 1)σn(α1)
, n ≥ 2.

Set µn = (n+η)(nλ−λ+1)σn(α1)
(1−η)(1−2λ)(1−c) an, n ≥ 2 and µ1 = 1 − Σ∞n=2µn. Then f(z) =

Σ∞n=1µnfn(z).

Theorem 7. The class N l
m(λ, η, c) is closed under convex combination.

Proof. Let f, g ∈ N l
m(λ, η, c) such that

f(z) =
1

z
+

(1− η)(1− 2λ)c

1 + η
z + Σ∞n=2anz

n

and

g(z) =
1

z
+

(1− η)(1− 2λ)c

1 + η
z + Σ∞n=2bnz

n.

For 0 ≤ µ ≤ 1, let

h(z) = µf(z) + (1− µ)g(z).

Then

h(z) =
1

z
+

(1− η)(1− 2λ)c

1 + η
z + Σ∞n=2[anµ+ (1− µ)bn]zn.

Therefore

Σ∞n=2[(n+ η)(nλ− λ+ 1)]σn(α1)[anµ+ (1− µ)bn] ≤ (1− η)(1− 2λ)(1− c).

This implies h(z) = µf(z)+(1−µ)g(z) ∈ N l
m(λ, η, c). Hence N l

m(λ, η, c) is closed
under convex combination.
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5. Radii of Meromorphically starlikeness and convexity

Theorem 8. Let f ∈ N l
m(λ, η, c). Then f is meromorphically starlike of order

δ (0 ≤ δ < 1) in the disk |z| < r1(λ, η, c, δ), where r1(λ, η, c, δ) is the largest value
for which(

(3−δ)(1−η)(1−2λ)c
1+η

)
r2 +

(
(n+2−δ)(1−η)(1−2λ)(1−c)

(n+η)(nλ−λ+1)

)
rn+1 ≤ 1− δ, n ≥ 2. (17)

Proof. It is enough to show that∣∣∣∣zf ′(z)f(z)
+ 1

∣∣∣∣ ≤ 1− δ (18)

∣∣∣∣zf ′(z)f(z)
+ 1

∣∣∣∣ =

∣∣∣∣zf ′(z) + f(z)

f(z)

∣∣∣∣ =

∣∣∣∣ 2(1−η)(1−2λ)cz2

1+η + Σ∞n=2(n+ 1)σn(α1)anz
n+1

1 + (1−η)(1−2λ)c
1+η z + Σ∞n=2σn(α1)anzn+1

∣∣∣∣
(18) is true if∣∣∣∣2(1−η)(1−2λ)c

1+η z2+Σ∞n=2(n+1)σn(α1)anz
n+1

∣∣∣∣ ≤ (1−δ)
∣∣∣∣1+ (1−η)(1−2λ)c

1+η z2+Σ∞n=2σn(α1)anz
n+1

∣∣∣∣.
That is

(3− δ)(1− η)(1− 2λ)c

1 + η
r2 + Σ∞n=2(n+ 2− δ)anrn+1 ≤ 1− δ.

From Theorem 1 we may take

an =
(1− η)(1− 2λ)(1− c)

(n+ η)(nλ− λ+ 1)σn(α1)
µn, n ≥ 2, µn ≥ 0, Σ∞n=2µn = 1.

For each fixed r, we choose the positive integer n0 = n0(r) for which (n+2−δ)σn(α1)
(n+η)(nλ−λ+1)r

n+1

is maximal. This implies

Σ∞n=2(n+ 2− δ)σn(α1)anr
n+1 ≤ (n0 + 2− δ)(1− η)(1− 2λ)(1− c)

(n0 + η)(n0λ− λ+ 1)
rn0+1.

Then f is starlike of order δ in 0 < |z| < r1(λ, η, c, δ) if

(3− δ)(1− η)(1− 2λ)c

1 + η
r2 +

(n0 + 2− δ)(1− η)(1− 2λ)(1− c)
(n0 + η)(n0λ− λ+ 1)

rn0+1 ≤ 1− δ.

We have to find the value of r0 = r0(λ, η, c, δ) and the corresponding integer n0(r0)
so that

(3−δ)(1−η)(1−2λ)c
1+η r2 + (n0+2−δ)(1−η)(1−2λ)(1−c)

(n0+η)(n0λ−λ+1) rn0+1 = 1− δ. (19)

It is the value for which f(z) is starlike of order δ in 0 < |z| < r0.
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We now state a result for radius of meromorphic convexity for the classN l
m(λ, η, c)

for which the proof is similar to above.

Theorem 9. Let f ∈ N l
m(λ, η, c).Then f is meromorphically convex of order δ (0 ≤

δ < 1) in the disk |z| < r2(λ, η, c, δ) where r2(λ, η, c, δ) is the largest value for n ≥ 2,(
(3−δ)(1−η)(1−2λ)c

1+η

)
r2 +

(
n(n+2−δ)(1−η)(1−2λ)(1−c)

(n+η)(nλ−λ+1)

)
rn+1 ≤ 1− δ. (20)

Remark 1. By specializing the parameters in the Fox-Wright’s generalized hyper-
geometric functions we obtain the class of Dziok et al. [5]. The corresponding class
of fixed second coefficient can be defined and results analogue to the above can be
obtained.

Acknowledgements. The authors would like thank the referee for his/her insight-
ful suggestions.
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