ON A SUBCLASS OF MEROMORPHIC FUNCTION WITH FIXED SECOND COEFFICIENT

T. Rosy and S. Sunil Varma

Abstract. In this paper we introduce a new subclass of meromorphic function with fixed second coefficient defined by Fox-Wright's generalized hypergeometric function. We obtain coefficient estimates, extreme points, growth and distortion theorems, radii of meromorphically starlikeness and convexity for this new subclass.

2000 Mathematics Subject Classification: 30C45.
Keywords: meromorphic functions, Hadamard product, fixed second coefficient, coefficient inequalities, radii of meromorphically starlikeness and convexity.

1. Introduction

We denote by Σ the class of functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{n=1}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the punctured unit disk

$$
\Delta^{*}:=\{z \in \mathbb{C} / 0<|z|<1\} .
$$

Let Σ_{P} denote the class of functions of the form (1) with $a_{n} \geq 0$ i.e.

$$
\begin{equation*}
f(z)=\frac{1}{z}+\Sigma_{n=1}^{\infty} a_{n} z^{n}, a_{n} \geq 0 . \tag{2}
\end{equation*}
$$

A function $f \in \Sigma$ is said to be meromorphically starlike of order α if

$$
-\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha
$$

and meromorphically convex of order α if

$$
-\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha .
$$

We denote the class of meromorphically starlike functions and the class of meromorphically convex functions by $\Sigma^{*}(\alpha)$ and $\Sigma_{K}(\alpha)$ respectively. Various subclasses of Σ have been defined and studied by various authors (see $[1,2,3,5,6,7,8,9,10$, $11,12,13,17]$).

The Hadamard product between $f \in \Sigma$ given by (1.1) and $g(z)=\frac{1}{z}+\Sigma_{n=1}^{\infty} b_{n} z^{n} \in$ Σ is defined as

$$
(f * g)(z)=\frac{1}{z}+\Sigma_{n=1}^{\infty} a_{n} b_{n} z^{n}=(g * f)(z) .
$$

For positive real parameters $\alpha_{1}, A_{1}, \ldots, \alpha_{l}, A_{l}, \beta_{1}, B_{1}, \ldots, \beta_{m}, B_{m}(l, m \in \mathbb{N}=$ $\{1,2,3, \ldots\})$ such that $1+\Sigma_{k=1}^{m} B_{k}-\Sigma_{k=1}^{l} A_{k} \geq 0, z \in\{z \in \mathbb{C} / 0<|z|<1\}$ the Wright's generalized hypergeometric function

$$
{ }_{l} \Psi_{m}\left[\left(\alpha_{1}, A_{1}\right), \ldots,\left(\alpha_{l}, A_{l}\right) ;\left(\beta_{1}, B_{1}\right), \ldots,\left(\beta_{m}, B_{m}\right) ; z\right]={ }_{l} \Psi_{m}\left[\left(\alpha_{t}, A_{t}\right)_{1, l}\left(\beta_{t}, B_{t}\right)_{1, m} ; z\right]
$$

is defined by

$$
{ }_{l} \Psi_{m}\left[\left(\alpha_{t}, A_{t}\right)_{1, l}\left(\beta_{t}, B_{t}\right)_{1, m} ; z\right]=\Sigma_{k=0}^{\infty}\left\{\prod_{t=0}^{l} \Gamma\left(\alpha_{t}+k A_{t}\right)\right\}\left\{\prod_{t=0}^{m} \Gamma\left(\beta_{t}+k B_{t}\right)\right\}^{-1} \frac{z^{k}}{k!} .
$$

If $A_{t}=1(t=1,2, \ldots, l)$ and $B_{t}=1(t=1,2, \ldots, m)$ we have the relationship

$$
\begin{aligned}
\Omega_{l} \Psi_{m}\left[\left(\alpha_{t}, A_{t}\right)_{1, l}\left(\beta_{t}, B_{t}\right)_{1, m} ; z\right] & \equiv{ }_{l} F_{m}\left(\alpha_{1}, \ldots, \alpha_{l} ; \beta_{1}, \ldots, \beta_{m} ; z\right) \\
& =\Sigma_{k=0}^{\infty} \frac{\left(\alpha_{1}\right)_{k} \ldots\left(\alpha_{l}\right)_{k}}{\left(\beta_{1}\right)_{k} \ldots\left(\beta_{m}\right)_{k}} \frac{z^{k}}{k!} \\
\left(l \leq m+1 ; l, m \in \mathbb{N}_{0}\right. & =\mathbb{N}=\{0,1,2, \ldots,\} ; z \in \Delta) .
\end{aligned}
$$

This is the generalized hypergeometric function (see [7]). Here $\left(\alpha_{n}\right)$ is the Pochammer symbol and $\Omega=\left(\prod_{t=0}^{l} \Gamma\left(\alpha_{t}\right)\right)^{-1}\left(\prod_{t=0}^{m} \Gamma\left(\beta_{t}\right)\right)$.

Using the generalized hypergeometric function, we define a linear operator

$$
V\left[\left(\alpha_{t}, A_{t}\right)_{1, l} ;\left(\beta_{t}, B_{t}\right)_{1, m}\right]: \Sigma_{P} \rightarrow \Sigma_{P}
$$

by

$$
\begin{equation*}
V\left[\left(\alpha_{t}, A_{t}\right)_{1, l} ;\left(\beta_{t}, B_{t}\right)_{1, m}\right] f(z)=z^{-1} \Omega_{l} \Psi_{m}\left[\left(\alpha_{t}, A_{t}\right)_{1, l}\left(\beta_{t}, B_{t}\right)_{1, m} ; z\right] * f(z) . \tag{3}
\end{equation*}
$$

For convenience, we denote $V\left[\left(\alpha_{t}, A_{t}\right)_{1, l} ;\left(\beta_{t}, B_{t}\right)_{1, m}\right]$ by $V\left[\alpha_{1}\right]$. If f has the form (1), then

$$
\begin{equation*}
V\left[\alpha_{1}\right] f(z)=\frac{1}{z}+\Sigma_{n=1}^{\infty} \sigma_{n}\left(\alpha_{1}\right) a_{n} z^{n}, \tag{4}
\end{equation*}
$$

where

$$
\sigma_{n}\left(\alpha_{1}\right)=\frac{\Omega \Gamma\left(\alpha_{1}+A_{1}(n+1)\right) \ldots \Gamma\left(\alpha_{l}+A_{l}(n+1)\right)}{(k+1)!\Gamma\left(\beta_{1}+B_{1}(n+1)\right) \ldots \Gamma\left(\beta_{l}+B_{l}(n+1)\right)}
$$

We now define a new subclass of Σ_{P} using the linear operator $V\left[\alpha_{1}\right]$.
Definition 1. For $0 \leq \eta<1,0 \leq \lambda<\frac{1}{2}$, $z \in\{z \in \mathbb{C} / 0<|z|<1\}$ we say $f \in \Sigma_{P}$ is in $N_{m}^{l}(\lambda, \eta)$ if

$$
-\operatorname{Re}\left(\frac{z\left(V\left[\alpha_{1}\right] f(z)\right)^{\prime}+\lambda z^{2}\left(V\left[\alpha_{1}\right] f(z)\right)^{\prime \prime}}{(1-\lambda)\left(V\left[\alpha_{1}\right] f(z)\right)+\lambda z\left(V\left[\alpha_{1}\right] f(z)\right)^{\prime}}\right)>\eta .
$$

Note that when $A_{t}=1$ for all $t=1,2, \ldots, l$ and $B_{t}=1$ for all $t=1,2, \ldots, m$, we get the class considered by Dziok et al. [5].

We now prove the coefficient inequality for $f \in N_{m}^{l}(\lambda, \eta)$.
Theorem 1. Let $f \in \Sigma_{P}$ be given by (2). Then $f \in N_{m}^{l}(\lambda, \eta)$ if and only if

$$
\begin{equation*}
\Sigma_{n=1}^{\infty}[(n+\eta)(n \lambda-\lambda+1)] \sigma_{n}\left(\alpha_{1}\right) a_{n} \leq(1-\eta)(1-2 \lambda) \tag{5}
\end{equation*}
$$

Proof. Since $f \in \Sigma_{P}$ given by (2) is in the class $N_{m}^{l}(\lambda, \eta)$,

$$
-\operatorname{Re}\left(\frac{z\left(V\left[\alpha_{1}\right] f(z)\right)^{\prime}+\lambda z^{2}\left(V\left[\alpha_{1}\right] f(z)\right)^{\prime \prime}}{(1-\lambda)\left(V\left[\alpha_{1}\right] f(z)\right)+\lambda z\left(V\left[\alpha_{1}\right] f(z)\right)^{\prime}}\right)>\eta .
$$

Substituting the series expansion for f we have

$$
\operatorname{Re}\left(\frac{\frac{-1}{z}+\Sigma_{n=1}^{\infty} n \sigma_{n}\left(\alpha_{1}\right) a_{n} z^{n}+\frac{2 \lambda}{z}+\Sigma_{n=1}^{\infty} \lambda n(n-1) \sigma_{n}\left(\alpha_{1}\right) a_{n} z^{n}}{(1-\lambda)\left(\frac{1}{z}+\sum_{n=1}^{\infty} \sigma_{n}\left(\alpha_{1}\right) a_{n} z^{n}\right)+\lambda\left(\frac{-1}{z}+\Sigma_{n=1}^{\infty} n \sigma_{n}\left(\alpha_{1}\right) a_{n} z^{n}\right)}\right) \geq \eta
$$

That is,

$$
\operatorname{Re}\left(\frac{1-\Sigma_{n=1}^{\infty} n \sigma_{n}\left(\alpha_{1}\right) a_{n} z^{n+1}-2 \lambda-\Sigma_{n=1}^{\infty} \lambda n(n-1) \sigma_{n}\left(\alpha_{1}\right) a_{n} z^{n+1}}{(1-\lambda)\left(1+\Sigma_{n=1}^{\infty} \sigma_{n}\left(\alpha_{1}\right) a_{n} z^{n+1}\right)+\lambda\left(-1+\Sigma_{n=1}^{\infty} n \sigma_{n}\left(\alpha_{1}\right) a_{n} z^{n+1}\right)}\right) \geq \eta
$$

Allowing z to take only real values and as $z \rightarrow 1$, we get (5). Conversely, let $f \in \Sigma_{P}$ be given by (2) such that (5) holds. Let

$$
w=\frac{-\left(z\left(V\left[\alpha_{1}\right] f(z)\right)^{\prime}+\lambda z^{2}\left(V\left[\alpha_{1}\right] f(z)\right)^{\prime \prime}\right)}{(1-\lambda)\left(V\left[\alpha_{1}\right] f(z)\right)+\lambda z\left(V\left[\alpha_{1}\right] f(z)\right)^{\prime}}
$$

We have to prove that Rew $>\eta$. It is enough to prove that

$$
\begin{aligned}
|w-1| & <|w+1-2 \eta| \\
\left|\frac{w-1}{w+1-2 \eta}\right| & =\left|\frac{-z\left(V\left[\alpha_{1}\right](f(z))\right)^{\prime}-\lambda z^{2}\left(V\left[\alpha_{1}\right) f(z)\right) "-(1-\lambda)\left(V\left[\alpha_{1}\right) f(z)\right)-\lambda z(V[\alpha] f(z))^{\prime}}{-z\left(V\left[\alpha_{1}\right] f(z)\right)^{\prime}-\lambda z^{2}\left(V\left[\alpha_{1}\right] f(z)\right)^{\prime \prime}+(1-2 \eta)(1-\lambda)\left(V\left[\alpha_{1}\right] f(z)+\lambda(1-2 \eta) z(V[\alpha] f(z))^{\prime}\right.}\right| \\
& =\left|\frac{-\sum_{n=1}^{\infty}[n+\lambda n(n-1)+\lambda n] \sigma_{n}\left(\alpha_{1}\right) a_{n} z^{n+1}}{2(1-\eta)(1-2 \lambda)-\Sigma_{n=1}^{\infty}\left[n+\lambda n^{2}-\lambda n-1+\lambda+2 \eta-2 \eta \lambda\right] \sigma_{n}\left(\alpha_{1}\right) a_{n} z^{n+1}}\right| \\
& <\frac{\sum_{n=1}^{\infty}\left[\lambda n^{2}+n+1-\lambda\right] \sigma_{n}\left(\alpha_{1}\right) a_{n} r^{n+1}}{2(1-\eta)(1-2 \lambda)-\Sigma_{n=1}^{\infty}\left[\lambda n^{2}-2 \lambda n+n-1+\lambda+2 \eta-2 \eta \lambda+2 \eta \lambda n\right] \sigma_{n}\left(\alpha_{1}\right) a_{n} r^{n+1}} \\
& <1,
\end{aligned}
$$

since the difference between denominator and numerator of the last expression equals $2\left[(1-\eta)(1-2 \lambda)-\Sigma_{n=1}^{\infty}\left[\lambda n^{2}+n-\lambda n+\eta-\eta \lambda+n \eta \lambda\right]\right]$ which is non-negative, by (5).

This completes the proof.
From (5) we have

$$
\begin{equation*}
(1+\eta) \sigma_{1} a_{1} \leq \frac{(1-\eta)(1-2 \lambda)}{1+\eta} . \tag{6}
\end{equation*}
$$

Hence we may take

$$
\begin{equation*}
(1+\eta) \sigma_{1} a_{1}=\frac{(1-\eta)(1-2 \lambda) c}{1+\eta}, \quad 0<c<1 \tag{7}
\end{equation*}
$$

Following the works of Aouf and Darwish [1], Ghanim and Darus [7, 8], Magesh et al. [11] and Sivasubramanian et al. [13], we now introduce a class of functions and obtain the results analogous to the above mentioned works.

Definition 2. The subclass $N_{m}^{l}(\lambda, \eta, c)$ of $N_{m}^{l}(\lambda, \eta)$ consists of all functions of the form

$$
\begin{equation*}
f(z)=\frac{1}{z}+\frac{(1-\eta)(1-2 \lambda) c}{1+\eta} z+\Sigma_{n=2}^{\infty} \sigma_{n}\left(\alpha_{1}\right) a_{n} z^{n}, \quad 0<c<1 . \tag{8}
\end{equation*}
$$

We now obtain the coefficient estimates, growth and distortion bounds, extreme points,radii of meromorphically starlikenss and convexity for the class $N_{m}^{l}(\lambda, \eta)$ by fixing the second coefficient.

2. Coefficient Inequality

We now prove the coefficient inequality.
Theorem 2. Let f be defined by (8). Then $f \in N_{m}^{l}(\lambda, \eta, c)$ if and only if

$$
\begin{equation*}
\Sigma_{n=2}^{\infty}[(n+\eta)(n \lambda-\lambda+1)] \sigma_{n}\left(\alpha_{1}\right) a_{n} \leq(1-\eta)(1-2 \lambda)(1-c) . \tag{9}
\end{equation*}
$$

The result is sharp.
Proof. $f \in N_{m}^{l}(\lambda, \eta, c)$ implies $f \in N_{m}^{l}(\lambda, \eta)$. Therefore by (5)

$$
(1+\eta) \sigma_{1}\left(\alpha_{1}\right) a_{1}+\Sigma_{n=2}^{\infty}[(n+\eta)(n \lambda-\lambda+1)] \sigma_{n}\left(\alpha_{1}\right) a_{n} \leq(1-\eta)(1-2 \lambda) .
$$

Using (7)

$$
(1-\eta)(1-2 \lambda) c+\Sigma_{n=2}^{\infty}[(n+\eta)(n \lambda-\lambda+1)] \sigma_{n}\left(\alpha_{1}\right) a_{n} \leq(1-\eta)(1-2 \lambda)
$$

from which we obtain (9). The result is sharp for the function

$$
\begin{equation*}
f(z)=\frac{1}{z}+\frac{(1-\eta)(1-2 \lambda) c}{1+\eta} z+\frac{(1-\eta)(1-2 \lambda)(1-c)}{(n+\eta)(n \lambda)-\lambda+1) \sigma_{n}\left(\alpha_{1}\right)} z^{n}, \quad n \geq 2 . \tag{10}
\end{equation*}
$$

Corollary 3. If f defined by (8) is in the class $N_{m}^{l}(\lambda, \eta, c)$ then

$$
\begin{equation*}
a_{n} \leq \frac{(1-\eta)(1-2 \lambda)(1-c)}{(n+\eta)(n \lambda-\lambda+1) \sigma_{n}\left(\alpha_{1}\right)}, n \geq 2 . \tag{11}
\end{equation*}
$$

The result is sharp for the function given by (10).

3. Growth and Distortion Theorems

We next prove the growth theorem for the class $N_{m}^{l}(\lambda, \eta, c)$.
Theorem 4. If f given by (8) is in the class $N_{m}^{l}(\lambda, \eta, c)$ then for $0<|z|=r<1$

$$
\begin{equation*}
|f(z)| \geq \frac{1}{r}-\frac{(1-\eta)(1-2 \lambda) c}{1+\eta} r-\frac{(1-\eta)(1-2 \lambda)(1-c)}{(1+\lambda)(2+\eta)} r^{2} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
|f(z)| \leq \frac{1}{r}+\frac{(1-\eta)(1-2 \lambda) c}{1+\eta} r+\frac{(1-\eta)(1-2 \lambda)(1-c)}{(1+\lambda)(2+\eta)} r^{2} . \tag{13}
\end{equation*}
$$

The result is sharp for $f(z)=\frac{1}{z}+\frac{(1-\eta)(1-2 \lambda) c}{1+\eta} z+\frac{(1-\eta)(1-2 \lambda)(1-c)}{(1+\lambda)(2+\eta)} z^{2}$.

Proof. Since $f \in N_{m}^{l}(\lambda, \eta, c)$ by Theorem 2

$$
\begin{equation*}
\sigma_{n}\left(\alpha_{1}\right) a_{n} \leq \frac{(1-\eta)(1-2 \lambda)(1-c)}{(1+\eta)(n \lambda-\lambda+1)} . \tag{14}
\end{equation*}
$$

For $0<|z|=r<1$,

$$
\begin{aligned}
|f(z)| & \leq \frac{1}{|z|}+\frac{(1-\eta)(1-2 \lambda) c}{1+\eta}|z|+\Sigma_{n=1}^{\infty} \sigma_{n}\left(\alpha_{1}\right) a_{n}|z|^{n} \\
& \leq \frac{1}{r}+\frac{(1-\eta)(1-2 \lambda) c}{1+\eta} r+r^{2} \Sigma_{n=1}^{\infty} \sigma_{n}\left(\alpha_{1}\right) a_{n} \\
& \leq \frac{1}{r}+\frac{(1-\eta)(1-2 \lambda) c}{1+\eta} r+\frac{(1-\eta)(1-2 \lambda)(1-c)}{(1+\lambda)(2+\eta)} r^{2} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
|f(z)| & \geq \frac{1}{|z|}-\frac{(1-\eta)(1-2 \lambda) c}{1+\eta}|z|-\Sigma_{n=1}^{\infty} \sigma_{n}\left(\alpha_{1}\right) a_{n}|z|^{n} \\
& \geq \frac{1}{r}-\frac{(1-\eta)(1-2 \lambda) c}{1+\eta} r-r^{2} \Sigma_{n=1}^{\infty} \sigma_{n}\left(\alpha_{1}\right) a_{n} \\
& \geq \frac{1}{r}-\frac{(1-\eta)(1-2 \lambda) c}{1+\eta} r-\frac{(1-\eta)(1-2 \lambda)(1-c)}{(1+\lambda)(2+\eta)} r^{2} .
\end{aligned}
$$

The distortion theorem for the class $N_{m}^{l}(\lambda, \eta, c)$ is as follows:
Theorem 5. If f given by (8) is in the class $N_{m}^{l}(\lambda, \eta, c)$ then for $0<|z|=r<1$

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \geq \frac{1}{r^{2}}-\frac{(1-\eta)(1-2 \lambda) c}{1+\eta}-\frac{(1-\eta)(1-2 \lambda)(1-c)}{(1+\lambda)(2+\eta)} r \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f^{\prime}(z)\right| \leq \frac{1}{r^{2}}+\frac{(1-\eta)(1-2 \lambda) c}{1+\eta}+\frac{(1-\eta)(1-2 \lambda)(1-c)}{(1+\lambda)(2+\eta)} r . \tag{16}
\end{equation*}
$$

The result is sharp for $f(z)=\frac{1}{z}+\frac{(1-\eta)(1-2 \lambda) c}{1+\eta} z+\frac{(1-\eta)(1-2 \lambda)(1-c)}{(1+\lambda)(2+\eta)} z^{2}$.

4. Extreme Points

Theorem 6. Let $f_{1}(z)=\frac{1}{z}+\frac{(1-\eta)(1-2 \lambda) c}{1+\eta} z$ and for $n \geq 2$,

$$
f_{n}(z)=\frac{1}{z}+\frac{(1-\eta)(1-2 \lambda) c}{1+\eta} z+\Sigma_{n=2}^{\infty} \frac{(1-\eta)(1-2 \lambda)(1-c)}{(n+\eta)(n \lambda-\lambda+1) \sigma_{n}\left(\alpha_{1}\right)} z^{n} .
$$

Then $f \in N_{m}^{l}(\lambda, \eta, c)$ if and only if it can be expressed as

$$
f(z)=\Sigma_{n=1}^{\infty} \mu_{n} f_{n}(z), \mu_{n} \geq 0, \Sigma_{n=1}^{\infty} \mu_{n}=1
$$

Proof. Suppose $f(z)=\Sigma_{n=1}^{\infty} \mu_{n} f_{n}(z), \mu_{n} \geq 0, \Sigma_{n=1}^{\infty} \mu_{n}=1$. Then

$$
f(z)=\frac{1}{z}+\frac{(1-\eta)(1-2 \lambda) c}{1+\eta} z+\Sigma_{n=2}^{\infty} \frac{(1-\eta)(1-2 \lambda)(1-c)}{(n+\eta)(n \lambda-\lambda+1) \sigma_{n}\left(\alpha_{1}\right)} \mu_{n} z^{n}
$$

Now
$\Sigma_{n=2}^{\infty} \frac{(1-\eta)(1-2 \lambda)(1-c) \mu_{n}}{(n+\eta)(n \lambda-\lambda+1) \sigma_{n}\left(\alpha_{1}\right)} \frac{(n+\eta)(n \lambda-\lambda+1) \sigma_{n}\left(\alpha_{1}\right)}{(1-\eta)(1-2 \lambda)(1-c)}=\Sigma_{n=2}^{\infty} \mu_{n}=1-\mu_{1} \leq 1$.
This implies $f \in N_{m}^{l}(\lambda, \eta, c)$. Conversely, let $f \in N_{m}^{l}(\lambda, \eta, c)$. Then

$$
a_{n} \leq \frac{(1-\eta)(1-2 \lambda)(1-c)}{(n+\eta)(n \lambda-\lambda+1) \sigma_{n}\left(\alpha_{1}\right)}, \quad n \geq 2
$$

Set $\mu_{n}=\frac{(n+\eta)(n \lambda-\lambda+1) \sigma_{n}\left(\alpha_{1}\right)}{(1-\eta)(1-2 \lambda)(1-c)} a_{n}, n \geq 2$ and $\mu_{1}=1-\Sigma_{n=2}^{\infty} \mu_{n}$. Then $f(z)=$ $\Sigma_{n=1}^{\infty} \mu_{n} f_{n}(z)$.

Theorem 7. The class $N_{m}^{l}(\lambda, \eta, c)$ is closed under convex combination.
Proof. Let $f, g \in N_{m}^{l}(\lambda, \eta, c)$ such that

$$
f(z)=\frac{1}{z}+\frac{(1-\eta)(1-2 \lambda) c}{1+\eta} z+\Sigma_{n=2}^{\infty} a_{n} z^{n}
$$

and

$$
g(z)=\frac{1}{z}+\frac{(1-\eta)(1-2 \lambda) c}{1+\eta} z+\Sigma_{n=2}^{\infty} b_{n} z^{n}
$$

For $0 \leq \mu \leq 1$, let

$$
h(z)=\mu f(z)+(1-\mu) g(z) .
$$

Then

$$
h(z)=\frac{1}{z}+\frac{(1-\eta)(1-2 \lambda) c}{1+\eta} z+\Sigma_{n=2}^{\infty}\left[a_{n} \mu+(1-\mu) b_{n}\right] z^{n} .
$$

Therefore

$$
\Sigma_{n=2}^{\infty}[(n+\eta)(n \lambda-\lambda+1)] \sigma_{n}\left(\alpha_{1}\right)\left[a_{n} \mu+(1-\mu) b_{n}\right] \leq(1-\eta)(1-2 \lambda)(1-c)
$$

This implies $h(z)=\mu f(z)+(1-\mu) g(z) \in N_{m}^{l}(\lambda, \eta, c)$. Hence $N_{m}^{l}(\lambda, \eta, c)$ is closed under convex combination.

5. Radii of Meromorphically starlikeness and convexity

Theorem 8. Let $f \in N_{m}^{l}(\lambda, \eta, c)$. Then f is meromorphically starlike of order $\delta(0 \leq \delta<1)$ in the disk $|z|<r_{1}(\lambda, \eta, c, \delta)$, where $r_{1}(\lambda, \eta, c, \delta)$ is the largest value for which

$$
\begin{equation*}
\left(\frac{(3-\delta)(1-\eta)(1-2 \lambda) c}{1+\eta}\right) r^{2}+\left(\frac{(n+2-\delta)(1-\eta)(1-2 \lambda)(1-c)}{(n+\eta)(n \lambda-\lambda+1)}\right) r^{n+1} \leq 1-\delta, \quad n \geq 2 \tag{17}
\end{equation*}
$$

Proof. It is enough to show that

$$
\begin{gather*}
\left|\frac{z f^{\prime}(z)}{f(z)}+1\right| \leq 1-\delta \tag{18}\\
\left|\frac{z f^{\prime}(z)}{f(z)}+1\right|=\left|\frac{z f^{\prime}(z)+f(z)}{f(z)}\right|=\left|\frac{\frac{2(1-\eta)(1-2 \lambda) c z^{2}}{1+\eta}+\Sigma_{n=2}^{\infty}(n+1) \sigma_{n}\left(\alpha_{1}\right) a_{n} z^{n+1}}{1+\frac{(1-\eta)(1-2 \lambda) c}{1+\eta} z+\Sigma_{n=2}^{\infty} \sigma_{n}\left(\alpha_{1}\right) a_{n} z^{n+1}}\right|
\end{gather*}
$$

(18) is true if

$$
\left|\frac{2(1-\eta)(1-2 \lambda) c}{1+\eta} z^{2}+\Sigma_{n=2}^{\infty}(n+1) \sigma_{n}\left(\alpha_{1}\right) a_{n} z^{n+1}\right| \leq(1-\delta)\left|1+\frac{(1-\eta)(1-2 \lambda) c}{1+\eta} z^{2}+\sum_{n=2}^{\infty} \sigma_{n}\left(\alpha_{1}\right) a_{n} z^{n+1}\right| .
$$

That is

$$
\frac{(3-\delta)(1-\eta)(1-2 \lambda) c}{1+\eta} r^{2}+\Sigma_{n=2}^{\infty}(n+2-\delta) a_{n} r^{n+1} \leq 1-\delta
$$

From Theorem 1 we may take

$$
a_{n}=\frac{(1-\eta)(1-2 \lambda)(1-c)}{(n+\eta)(n \lambda-\lambda+1) \sigma_{n}\left(\alpha_{1}\right)} \mu_{n}, n \geq 2, \mu_{n} \geq 0, \Sigma_{n=2}^{\infty} \mu_{n}=1
$$

For each fixed r, we choose the positive integer $n_{0}=n_{0}(r)$ for which $\frac{(n+2-\delta) \sigma_{n}\left(\alpha_{1}\right)}{(n+\eta)(n \lambda-\lambda+1)} r^{n+1}$ is maximal. This implies

$$
\Sigma_{n=2}^{\infty}(n+2-\delta) \sigma_{n}\left(\alpha_{1}\right) a_{n} r^{n+1} \leq \frac{\left(n_{0}+2-\delta\right)(1-\eta)(1-2 \lambda)(1-c)}{\left(n_{0}+\eta\right)\left(n_{0} \lambda-\lambda+1\right)} r^{n_{0}+1}
$$

Then f is starlike of order δ in $0<|z|<r_{1}(\lambda, \eta, c, \delta)$ if

$$
\frac{(3-\delta)(1-\eta)(1-2 \lambda) c}{1+\eta} r^{2}+\frac{\left(n_{0}+2-\delta\right)(1-\eta)(1-2 \lambda)(1-c)}{\left(n_{0}+\eta\right)\left(n_{0} \lambda-\lambda+1\right)} r^{n_{0}+1} \leq 1-\delta
$$

We have to find the value of $r_{0}=r_{0}(\lambda, \eta, c, \delta)$ and the corresponding integer $n_{0}\left(r_{0}\right)$ so that

$$
\begin{equation*}
\frac{(3-\delta)(1-\eta)(1-2 \lambda) c}{1+\eta} r^{2}+\frac{\left(n_{0}+2-\delta\right)(1-\eta)(1-2 \lambda)(1-c)}{\left(n_{0}+\eta\right)\left(n_{0} \lambda-\lambda+1\right)} r^{n_{0}+1}=1-\delta . \tag{19}
\end{equation*}
$$

It is the value for which $f(z)$ is starlike of order δ in $0<|z|<r_{0}$.

We now state a result for radius of meromorphic convexity for the class $N_{m}^{l}(\lambda, \eta, c)$ for which the proof is similar to above.

Theorem 9. Let $f \in N_{m}^{l}(\lambda, \eta, c)$. Then f is meromorphically convex of order $\delta(0 \leq$ $\delta<1)$ in the disk $|z|<r_{2}(\lambda, \eta, c, \delta)$ where $r_{2}(\lambda, \eta, c, \delta)$ is the largest value for $n \geq 2$,

$$
\begin{equation*}
\left(\frac{(3-\delta)(1-\eta)(1-2 \lambda) c}{1+\eta}\right) r^{2}+\left(\frac{n(n+2-\delta)(1-\eta)(1-2 \lambda)(1-c)}{(n+\eta)(n \lambda-\lambda+1)}\right) r^{n+1} \leq 1-\delta . \tag{20}
\end{equation*}
$$

Remark 1. By specializing the parameters in the Fox-Wright's generalized hypergeometric functions we obtain the class of Dziok et al. [5]. The corresponding class of fixed second coefficient can be defined and results analogue to the above can be obtained.

Acknowledgements. The authors would like thank the referee for his/her insightful suggestions.

References

[1] M. K. Aouf and H. E. Darwish, Certain meromorphically starlike functions with positive and fixed second coefficients, Turkish J. Math. 21 (1997), no. 3, 311-316.
[2] N. E. Cho, S. H. Lee and S. Owa, A class of meromorphic univalent functions with positive coefficients, Kobe J. Math. 4 (1987), no. 1, 43-50.
[3] J. Clunie, On meromorphic schlicht functions, J. London Math. Soc. 34 (1959), 215-216.
[4] P. L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, New York, 1983.
[5] J. Dziok, G. Murugusundaramoorthy and J. Sokół, On certain class of meromorphic functions with positive coefficients, Acta Math. Sci. Ser. B Engl. Ed. 32 (2012), no. 4, 1376-1390.
[6] F. Ghanim and M. Darus, On certain subclass of meromorphic univalent functions with fixed residue α, Far East J. Math. Sci. (FJMS), 26 (2007), no. 1, 195-207.
[7] F. Ghanim and M. Darus, On class of hypergeometric meromorphic functions with fixed second positive coefficients, Gen. Math. 17 (2009), no. 4, 13-28.
[8] F. Ghanim and M. Darus, On a certain subclass of meromorphic univalent functions with fixed second positive coefficients, Surv. Math. Appl. 5 (2010), 49-60.
[9] S. Kavitha, S. Sivasubramanian and K. Muthunagai, A new subclass of meromorphic function with positive coefficients, Bull. Math. Anal. Appl. 2 (2010), no. 3, 109-121.
[10] J. Ma, Extreme points and minimal outer area problem for meromorphic univalent functions, J. Math. Anal. Appl. 220 (1998), no. 2, 769-773.
[11] N. Magesh, N. B. Gatti and S. Mayilvaganan, On certain subclasses of meromorphic functions with positive and fixed second coefficients involving the Liu-Srivastava linear operator, ISRN Math. Anal. 2012, Art. ID 698307, 11 pp.
[12] S. Owa and N. N. Pascu, Coefficient inequalities for certain classes of meromorphically starlike and meromorphically convex functions, JIPAM. J. Inequal. Pure Appl. Math. 4 (2003), no. 1, Article 17, 6 pp.
[13] S. Sivasubramanian, N. Magesh and M. Darus, A new subclass of meromorphic functions with positive and fixed second coefficients, Tamkang J. Math. 44 (2013), no. 3, 271-278.
[14] G. Schober, Univalent functions-selected topics, Lecture Notes in Mathematics, Vol. 478, Springer, Berlin, 1975.
[15] H. Silverman and E. M. Silvia, Fixed coefficients for subclasses of starlike functions, Houston J. Math. 7 (1981), no. 1, 129-136.
[16] H. M. Srivastava and S. Owa, Current topics in analytic function theory, World Sci. Publishing, River Edge, NJ, 1992.
[17] B. A. Uralegaddi, Meromorphically starlike functions with positive and fixed second coefficients, Kyungpook Math. J. 29, (1989), no. 1, 64-68.

Thomas Rosy and S. Sunil Varma
Department of Mathematics
Madras Christian College
Tambaram, Chennai
Tamil Nadu - 600059.
email: thomas.rosy@gmail.com, sunu_79@yahoo.com

