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Abstract. In this paper, we introduce a conformal Sasakian manifold and ob-
tain some results on slant submanifolds of a conformal Sasakian manifold. In partic-
ular, we characterize three-dimensional slant submanifolds of a conformal Sasakian
manifold via covariant derivative of T 2 , T and N where T is the tangent projec-
tion and N is the normal projection over the submanifold of a conformal Sasakian
manifold.
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1. Introduction

I. Vaisman in [6], introduced the conformal changes of almost metric structures as
follows. If M is a (2n + 1)-dimensional differentiable manifold endowed with an
almost contact metric structure (ϕ, ξ, η, g), a conformal change of the metric g leads
to a metric which is no more compatible with the almost contact structure (ϕ, ξ, η).
This can be corrected by a convenient change of ξ and η which implies rather strong
restrictions. Using this definition, we introduce a new type of almost contact metric
structure (ϕ, ξ, η, g) on a (2n + 1)-dimensional manifold M which is said to be a
conformal Sasakian structure if the structure (ϕ, ξ, η, g) is conformal related to a
Sasakian structure (ϕ̃, ξ̃, η̃, g̃).

In 1990, B.Y.Chen generalized the concepts of holomorphic and totally real im-
mersions into the slant immersions in contact geometry [3]. Afterwards, slant sub-
manifolds have been studied by many geometers. In particular, In 1996, A. Lotta,
extended the concept of slant immersions of a Riemannian manifold into an almost
contact metric manifold as follows[4]. Let M be an almost contact metric manifold
with structure (ϕ, ξ, η, g) and let M be an immersed submanifold of M . For any
p ∈ M and X ∈ TpM , if the vectors X and ξ are linearly independent, the angle
θ(X) ∈ [0, π2 ] between ϕX and TpM is well-defined. If θ(X) is constant and does
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not depend on the choice of p ∈M and X ∈ TpM , we say that M is slant in M and
the constant angle θ(X) is called the slant angle of M in M .

Latter, J.L.Cabrerizo, A.Carriazo, L.M.Fernandez and M.Fernandez, studied and
characterized slant submanifolds of a K-contact and a Sasakian manifold [2]. Our
aim in the present note is to study the slant submanifolds of a conformal Sasakian
manifold.

The paper is organized as follows. In section 2, we review some basic definitions,
formulaes and results on submanifolds’ theory and almost contact metric manifolds.
We also recall some results on slant submanifolds of an almost contact metric man-
ifold which are useful for further study . In section 3, we introduce a conformal
Sasakian manifold and give an example and some properties of submanifols of it.
Section 4 is devoted to study and characterize of three-dimensional slant submani-
folds of a conformal Sasakian manifold via covariant derivative of T 2 , T and N where
T is the tangent projection and N is the normal projection over the submanifold of
a conormal Sasakian manifold.

2. Preliminaries

2.1. Submanifolds

Let (M, g) be a submanifold of a Riemannian manifold (M̃, g̃) where g is the induced
metric on M . Then, the Gauss and Weingarten formulas are given respectively by

∇̃XY = ∇XY + h(X,Y ) and ∇̃XV = −AVX +∇⊥
XV, (1)

for any X,Y ∈ TM and V ∈ T⊥M , where ∇̃, ∇ and ∇⊥ are the Riemannian,
induced Riemannian and induced normal connections in M̃ , M and the normal
bundle T⊥M of M , respectively, and h is the second fundamental form of M related
to the shape operator A by

g(AVX,Y ) = g(h(X,Y ), V ). (2)

The equation of Gauss is given by

R(X,Y, Z,W ) = R̃(X,Y, Z,W ) + g̃(h(X,W ), h(Y,Z))

−g̃(h(X,Z), h(Y,W )), (3)

for all X,Y, Z,W ∈ TM , where R̃ and R are the curvature tensors of M̃ and M ,
respectively.

For any X ∈ TM , we write

ϕX = TX +NX, (4)

36



E. Abedi, R. Bahrami Ziabari – Slant submanifolds . . .

where TX (resp. NX) is the tangential (resp. normal) component of ϕX. Similarly,
for any V ∈ T⊥M , we have

ϕV = tV + nV, (5)

where tV (resp. nV) is the tangential (resp. normal) component of ϕV . Moreover,
we have the following relations

g(X, tV ) = −g(NX,V ),

g(nV,W ) = −g(V, nW ),

g(tnV,X) = −g(V,NTX), (6)

for any X ∈ TM and V ∈ TM⊥.
The submanifold M is said to be invariant (anti-invariant) if ϕX ∈ TM( ϕX ∈

T⊥M ), for any X ∈ TM .

2.2. Almost contact metric manifold

Let (M̃, g) be an odd-dimensional Riemannian manifold. Then M̃ is said to be an

almost contact metric manifold [1] if there exist on M̃ a tensor ϕ of type (1, 1), a
vector field ξ (structure vector field), and a 1-form η satisfying

ϕ2X = −X + η(X)ξ, g(X, ξ) = η(X), (7)

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ),

for any X,Y ∈ TM̃ . The 2-form Φ is called the fundamental 2-form in M̃ and the
manifold is said to be a contact metric manifold if Φ = dη.

The almost contact structure of M̃ is said to be normal if [ϕ,ϕ] + 2dη ⊗ ξ = 0,
where [ϕ,ϕ] is the Nijenhuis torsion of ϕ. A Sasakian manifold is a normal contact
metric manifold. It is easy to show that an almost contact metric manifold is a
Sasakian manifold if and only if

(∇Xϕ)Y = g(X,Y )ξ − η(Y )X,

for any X,Y ∈ TM̃ , where ∇ is the Riemannian connection in M̃ .

2.3. Slant submanifold of a almost contact metric manifold

Let M is an almost contact metric manifold of dimension 2n + 1 with structure
(ϕ, g, ξ, η). We say that an immersed submanifold M of an almost contact metric
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manifold M is slant in M if for any p ∈ M and any X ∈ TpM such that X, ξ are
linearly independent, the angle θ(X) ∈ [0, π2 ] between φX and TpM is a constant
θ, that is θ does not depend on the choice of X and p ∈ M . θ is called the slant
angle of M in M . Invariant and anti-invariant submanifolds are slant submanifolds
with slant angle θ = 0 and θ = π

2 , respectively [4]. A slant submanifold which is not
invariant nor anti-invariant is called a proper slant submanifold.

By Q, we mean T 2 and we define the covariant derivative of Q,T and N as

(∇XQ)Y = ∇X(QY )−Q(∇XY ),

(∇XT )Y = ∇X(TY )− T (∇XY ),

(∇XN)Y = ∇⊥
X(NY )−N(∇XY ), (8)

for any X,Y ∈ TM , where ∇ and ∇⊥ are the induced Riemannian and induced
normal connections in M and the normal bundle T⊥M of M , respectively.

We have the following theorem which characterize slant submanifolds of an al-
most contact metric manifold.

Theorem 1. [2] Let M be a submanifold of an almost contact metric manifold M
such that ξ ∈ TM . Then, M is slant if and only if there exists a constant λ ∈ [0, 1]
such that

T 2 = −λ(I − η ⊗ ξ). (9)

Furthermore, in such case, if θ is the slant angle of M , it satisfies that λ = cos2 θ.

Corollary 2. [2] Let M be a submanifold of an almost contact metric manifold
M ,with slant angle θ. Then,for any X,Y ∈ TM , we have

g(TX, TY ) = cos2 θ(g(X,Y )− η(X)η(Y )), (10)

g(NX,NY ) = sin2 θ(g(X,Y )− η(X)η(Y )). (11)

We recall the following results for latter use.

Lemma 3. [4] Let M be a slant submanifold of an almost contact metric manifold
M . Denote by θ the slant angle of M . Then, at each point p of M , Q|D has only
one eigenvalue λ1 = −cos2θ.

Lemma 4. [5] Let M be a 3-dimensional slant submanifold of an almost contact
metric manifold M . Suppose that M is not anti invariant. If p ∈ M , then in a
neighborhood of p there exist vector fields e1, e2 tangent to M , such that {ξ, e1, e2}
is a local orthonormal frame satisfying

Te1 = (cos θ)e2, T e2 = −(cos θ)e1. (12)
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3. Conformal Sasakian manifolds

A (2n + 1)-dimensional Riemannian manifold M endowed with the almost contact
metric structure (ϕ, η, ξ, g) is called a conformal Sasakian manifold if for a C∞

function f : M → R, there are

g̃ = exp(f)g, ξ̃ = (exp(−f))
1
2 ξ, η̃ = (exp(f))

1
2 η, ϕ̃ = ϕ,

such that (M, ϕ̃, η̃, ξ̃, g̃) is a Sasakian manifold

Example 1. Let R2n+1 be the (2n+1)-dimensional Euclidean space endowed with
the almost contact metric structure (ϕ, ξ, η, g) defined by

ϕ
( n∑
i=1

(Xi
∂

∂xi
+ Yi

∂

∂yi
) + Z

∂

∂z

)
=

n∑
i=1

(
Yi

∂

∂xi
−Xi

∂

∂yi
)

+

n∑
i=1

Yiy
i ∂

∂z
,

g = exp(−f){η ⊗ η +
1

4

n∑
i=1

{(dxi)2 + (dyi)2},

η = (exp(−f))
1
2 {1

2
(dz −

n∑
i=1

yidxi)},

ξ = (exp(f))
1
2 {2 ∂

∂z
},

where f =
∑n

i=1(x
i)2 + (yi)2 + z2.

It is easy to show that (R2n+1, ϕ, ξ, η, g) is not a Sasakian manifold, but R2n+1

with the structure (ϕ̃, ξ̃, η̃, g̃) given by

ϕ̃ = ϕ,

g̃ = η ⊗ η +
1

4

n∑
i=1

{(dxi)2 + (dyi)2},

η̃ =
1

2
(dz −

n∑
i=1

yidxi),

ξ̃ = 2
∂

∂z
,

is a Sasakian space form with the ϕ̃-sectional curvature equal to −3.

Let ∇̃ and ∇ are the Riemannian connections on M with respect to the metrics g̃
and g, respectively. Using Koszul formula, we derive the following relation between
the connections ∇̃ and ∇

∇̃XY = ∇XY +
1

2
{ω(X)Y + ω(Y )X − g(X,Y )ω]}, (13)

39



E. Abedi, R. Bahrami Ziabari – Slant submanifolds . . .

for any X,Y ∈ TM , where ω(X) = X(f) and g(ω], X) = ω(X).

By using (13), we get the relation between the curvature tensors of (M,ϕ, η, ξ, g)
and (M, ϕ̃, η̃, ξ̃, g̃) as follow

exp(−f)R̃(X,Y, Z,W ) = R(X,Y, Z,W ) +
1

2
{B(X,Z)g(Y,W )

−B(Y,Z)g(X,W ) +B(Y,W )g(X,Z)

−B(X,W )g(Y, Z)}

+
1

4
‖ω]‖2{g(X,Z)g(Y,W )

−g(Y,Z)g(X,W )}, (14)

for any X,Y, Z,W ∈ TM , such that B = ∇ω − 1

2
ω ⊗ ω and R and R̃ are the

curvature tensors of (M,ϕ, η, ξ, g) and (M, ϕ̃, η̃, ξ̃, g̃), respectively.
From (13) it follows that

∇Xξ = −(exp(f))
1
2ϕX +

1

2
{η(X)ω] − ω(ξ)X}, (15)

(∇Xϕ)Y = (exp(f))
1
2 {g(X,Y )ξ − η(Y )X}

− 1

2
{ω(ϕY )X − ω(Y )ϕX + g(X,Y )ϕω]

−g(X,ϕY )ω]}. (16)

From (16), we get

(∇XT )Y = (exp(f))
1
2 {g(X,Y )ξ − η(Y )X}

+ANYX + th(X,Y )− 1

2
{ω(TY )X − ω(Y )TX

+g(X,Y )Tω] − g(X,TY )ω]}, (17)

and

(∇XN)Y = nh(X,Y )− h(X,TY )

+
1

2
{ω(Y )NX − g(X,Y )Nω] + g(X,TY )ω]

⊥}, (18)

where, g = g|M , ξ = ξ|M , η = η|M and ϕ = ϕ|M .
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4. Slant submanifolds of conformal Sasakian manifolds

By the following proposition, we characterize slant submanifolds of a conformal
Sasakian manifold with ∇Q = 0.

Proposition 1. Let M be a slant submanifold of a conformal Sasakian manifold
M such that ω] ∈ TM⊥ and ξ ∈ TM . Then, Q is parallel if and only if M is an
anti-invariant submanifold.

Proof. From (9), we have

Q∇XY = −(cos2 θ)∇XY + (cos2)θη(∇XY )ξ, (19)

where X,Y ∈ TM and θ is the slant angle of M . By taking the covariant derivative
of (9), we get

∇XQY = −(cos2 θ)∇XY + (cos2)θη∇XY ξ
+(cos2 θ)g(Y,∇Xξ)ξ + (cos2 θ)η(Y )∇Xξ. (20)

Therefore, ∇Q = 0 if and only if ∇Xξ = 0 for any X ∈ TM . Now, we get the
result from (15).

Theorem 5. Let M be a submanifold of a conformal Sasakian manifold M such
that ξ ∈ TM and the tangent bundle decomposes as TM = D⊕ < ξ >. Then, M is
slant if and only if

1. The endomorphism Q|D has only one eigenvalue at each point of M .

2. There exists a function λ : M 7→ [0, 1] such that

(∇XQ)Y = λ
{

(exp(f))
1
2 {g(X,TY )ξ − η(Y )TX}

−1

2
{ω(ξ)g(X,Y )ξ − η(X)ω(Y )ξ

+ω(ξ)η(Y )X − η(X)η(Y )ω]
T }
}

(21)

for any X,Y ∈ TM .
Moreover, in this case, if θ is the slant angle of M , we have λ = cos2 θ.

Proof. Statement 1 gets from Lemma 3. Now, we prove the statement 2. Let M is
a slant submanifold, then by using (19) and (20) we have
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(∇XQ)Y = (cos2 θ)(g(Y,∇Xξ)ξ + η(Y )∇Xξ). (22)

By putting (15) in (22) we find (21).
Conversely, let λ1(p) is the only eigenvalue of Q|D for any point p ∈ M and

Y ∈ D is the eigenvector associated to λ1, then we have

QY = λ1Y. (23)

By taking covariant derivative of (23) and using (21), we get

X(λ1) + λ1∇XY = Q(∇XY ) + λ{(exp(f))
1
2 g(X,TY )ξ

−1

2

(
ω(ξ)g(X,Y )ξ − η(X)ω(Y )ξ

)
}, (24)

for any X ∈ TM . Now, we conclude that X(λ1) = 0 and then λ1 is contact, since
ξ,∇XY and Q∇XY is perpendicular to Y . For proving that M is slant we refer to
Theorem 4.3 in [2].

Corollary 6. Let M be a three-dimensional submanifold of a conformal Sasakian
manifold M such that ξ ∈ TM . Then, M is slant if and only if there exists a
function λ : M 7→ [0, 1] such that

(∇XQ)Y = λ
{

(exp(f))
1
2 {g(X,TY )ξ − η(Y )TX}

−1

2
{ω(ξ)g(X,Y )ξ − η(X)ω(Y )ξ

+ω(ξ)η(Y )X − η(X)η(Y )ω]
T }
}
, (25)

for any X,Y ∈ TM . Moreover, in this case, if θ is the slant angle of M , we have
λ = cos2 θ.

Proof. If dimM = 3, then Q|D has only one eigenvalue at each point of M . There-
fore, the result follows by Theorem 5.

Theorem 7. Let M be a three-dimensional proper slant submanifold of a conformal
Sasakian manifold M such that ξ ∈ TM , then

(∇XT )Y = (cos2 θ)(exp(f))
1
2 {g(X,Y )ξ − η(Y )X}

+
1

2
{ω(ξ)g(X,TY )ξ − η(X)ω(TY )ξ

+ω(ξ)η(Y )TX − η(X)η(Y )Tω]
T }, (26)

for any X,Y ∈ TM , where θ is the slant angle of M .
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Proof. Let X,Y ∈ TM and p ∈ M . Let {ξ, e1, e2} is the orthonormal frame in a
neighborhood U of p given by Lemma 4. Put ξ|U = e0 and let αji be the structural
1−forms defined by

∇Xei =
2∑
j=0

αji (X)ej . (27)

In view of orthonormal frame {ξ, e1, e2}, we have

Y = η(Y )e0 + g(Y, e1)e1 + g(Y, e2)e2, (28)

thus, we get

(∇XT )Y = η(Y )(∇XT )e0 + g(Y, e1)(∇XT )e1

+g(Y, e2)(∇XT )e2. (29)

Therefore, for obtaining (∇XT )Y , we have to get (∇XT )e0, (∇XT )e1 and (∇XT )e2.
By applying (15), we get

(∇XT )e0 = ∇XTe0 − T∇Xe0

= (exp(f))
1
2T 2X +

1

2
{ω(ξ)TX − η(X)Tω]

T }. (30)

Moreover, by using (12) we obtain

(∇XT )e1 = ∇XTe1 − T∇Xe1
= ∇X((cos θ)e2)− T (α0

1(X)e0 + α1
1(X)e1

+α2
1(X)e2)

= (cos θ)α0
2(X)e0, (31)

and analogously

(∇XT )e2 = −(cos θ)α0
1(X)e0. (32)

By substituting (30), (31) and (32) into (29),we have

(∇XT )Y = (exp(f))
1
2 η(Y )T 2X +

1

2

{
η(Y )ω(ξ)TX

−η(X)η(Y )Tω]
T}

+ (cos θ)
{
g(Y, e1)α

0
2(X)

−g(Y, e2)α
0
1(X)

}
e0. (33)

43



E. Abedi, R. Bahrami Ziabari – Slant submanifolds . . .

Now, we obtain α0
1(X) and α0

2(X) as follow

α0
1(X) = g(∇Xe1, e0)

= Xg(e1, e0)− g(e1,∇Xe0)

= −(exp(f))
1
2 (cos θ)g(e2, X) +

1

2

{
ω(ξ)g(e1, X)

−η(X)ω(e1)
}
, (34)

and analogously we get

α0
2(X) = (exp(f))

1
2 (cos θ)g(e1, X)

+
1

2

{
ω(ξ)g(e2, X)− η(X)ω(e2)

}
. (35)

By using (34) and (35) in (33) we have

(∇XT )Y = (cos2 θ)
{

(exp(f))
1
2 (−Xη(Y ) + η(X)η(Y )ξ)

+g(e1, X)g(e1, Y )ξ + g(e2, X)g(e2, Y )ξ
}

+
1

2

{
η(Y )ω(ξ)TX − η(X)η(Y )Tω]

T

+(cos θ)
(
g(e2, X)g(e1, Y )ω(ξ)ξ

−g(e2, Y )g(e1, X)ω(ξ)ξ

+g(e2, Y )ω(e1)η(X)ξ

−g(e1, Y )ω(e2)η(X)ξ
)}
. (36)

In view of (28), we get

g(e1, X)g(e1, Y ) + g(e2, X)g(e2, Y ) = g(X,Y )− η(X)η(Y ), (37)

and from (12) and (37), we obtain

g(e1, Y )g((cos θ)e2, X)− g(e2, Y )g((cos θ)e1, X)

= −g(Y, e1)g(e1, TX)− g(TX, e2)g(Y, e2)

= −g(TX, Y ), (38)

and

g(e1, ω
])g((cos θ)e2, X)− g(e2, ω

])g((cos θ)e1, Y )

= −g(TY, e1)g(e1, ω
])− g(TY, e2)g(e2, ω

])

= −ω(TY ). (39)

Now, by substituting (37),(38) and (39) in (36), we get (26).
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The next result characterizes three-dimensional slant submanifolds in term of
the shape operator.

Theorem 8. Let M be a three-dimensional slant submanifold of a conformal Sasakian
manifold M such that ξ ∈ TM . Then, there exists a function C : M 7→ [0, 1] such
that

ANXY = ANYX + C(exp(f))
1
2 (η(X)Y − η(Y )X)

+ω(ξ)g(TX, Y )ξ + g(X,TY )ω] +
1

2
{η(X)ω(TY )ξ

−η(Y )ω(TX)ξ + η(X)ω(ξ)TY − η(Y )ω(ξ)TX

−ω(X)TY + ω(Y )TX + ω(TX)Y − ω(TY )X}, (40)

for any X,Y ∈ TM . Moreover, in this case, if θ is the slant angle of M , then we
have C = sin2 θ.

Proof. Let X,Y ∈ TM and M is a slant submanifold. From (17) and Theorem 7,
we have

th(X,Y ) = −ANYX + (λ− 1)(exp(f))
1
2 {g(X,Y )ξ − η(Y )X}

+
1

2

{
ω(ξ)g(X,TY )ξ − η(X)ω(TY )ξ

+ω(ξ)η(Y )TX − η(X)η(Y )Tω]
T

+ ω(TY )X

−ω(Y )TX + g(X,Y )Tω] − g(X,TY )ω]
}
, (41)

Now, by using the fact that h(X,Y ) = h(Y,X), we obtain (40).

In the following, we assume that M is a three-dimensional proper slant subman-
ifold of a five-dimensional conformal Sasakian manifold M with slant angle θ. Then,
for a unit tangent vector field e1 of M , perpendicular to ξ, we put

e2 = (sec θ)Te1, e3 = ξ,

e4 = (csc θ)Ne1, e5 = (csc θ)Ne2. (42)

It is easy to show that e1 = −(secθ)Te2 and by using Corollary 2, {e1, e2, e3, e4, e5}
form an orthonormal frame such that e1, e2, e3 are tangent to M and e4, e5 are nor-
mal to M . By using (4) and (7), we have
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te4 = −(sin θ)e1, te5 = −(sin θ)e2,

ne4 = −(cos θ)e5, ne5 = −(cos θ)e4. (43)

If we put hrij = g(h(ei, ej), er), i, j = 1, 2, 3, r = 4, 5, then we have the following
lemma

Lemma 9. In the above conditions, we have

h412 = h511, h422 = h512,

h413 = h523 = −(exp(f))
1
2 sin θ

h432 = h433 = h513 = h533 = 0. (44)

Proof. By applying formula (40) with X = e1 and Y = e2, we get

Ae4e2 = Ae5e1 + (cot θ){ω(ξ)ξ − ω] + ω(e1)e1 + ω(e2)e2}. (45)

By using (2), relation (45) yields to the following results

h412 = h511, h422 = h512, h423 = h513. (46)

Moreover, by putting X = e1 and Y = e3 in (40), we have

Ae4e3 = −(exp(f))
1
2 (sin θ)e1, (47)

and from (47), we obtain

h413 = −(exp(f))
1
2 sin θ, h423 = h433 = 0. (48)

Finally, we put X = e2 and Y = e3 in (40), then, we have

Ae5e3 = −(exp(f))
1
2 (sin θ)e2, (49)

and

h513 = −(exp(f))
1
2 sin θ, h523 = h533 = 0. (50)

The following result characterizes three-dimensional minimal slant submanifolds
in term of ∇N .
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Theorem 10. Let M be a three-dimensional minimal proper slant submanifold of
a five-dimensional conformal Sasakian manifold M such that ξ ∈ TM ,then

(∇XN)Y = (exp(f))
1
2 {2η(X)NTY + η(Y )NTX}

+
1

2
{ω(Y )NX − g(X,Y )Nω] + g(X,TY )ω]

⊥}

+(cot2 θ){ω(X)− ω(ξ)η(X)− ω(Y )g(X,Y )

− 1

cos2 θ
ω(TY )g(X,TY )}NY (51)

for any X,Y ∈ TM . Conversely, suppose that there is an eigenvalue λ of Q|D at
each point of M such that λ ∈ (−1, 0). In this case, if (51) holds then M is a
minimal proper slant submanifold of M .

Proof. Let M be a minimal proper slant submanifold. Then, in view of Theorem
8 we have (40). Furthermore, we can get by minimality of M and straightforward
calculation that (40) satisfies if and only if

AV TY = −AnV Y + (exp(f))
1
2 {2g(Y, tnV )ξ + η(Y )tnV }

+(cot2 θ)g(Y, tV ){ω] − ω(ξ)ξ − ω(Y )Y

− 1

cos2 θ
ω(TY )TY }. (52)

By multiplying (52) to X and using (2) we obtain

h(X,TY ) = nh(X,Y )− (exp f)
1
2 (2(NTY )η(X)

+(NTX)η(Y ))− (cot2 θ){ω(X)− ω(ξ)η(X)

−ω(Y )g(X,Y )

− 1

cos2 θ
ω(TY )g(X,TY )}. (53)

Now, From (53) and (18) we get (51).
Conversely, let p ∈ M and e1 ∈ D such that T 2e1 = − cos2 θ1e1, where θ1 =

θ(e1) ∈ (0, π2 ) denotes the angle between ϕe1 and TpM . Now, we define an or-
thonormal frame {e1, e2, e3, e4, e5} as follow

e2 = (sec θ1)Te1, e3 = ξ,

e4 = (csc θ1)Ne1, e5 = (csc θ1)Ne2, (54)

and then we have

te4 = −(sin θ1)e1, ne4 = −(cos θ1)e5,

te5 = −(sin θ1)e2, ne5 = −(cos θ1)e4. (55)
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It is obvious that from (51) we can obtain (52). Therefore, we find

ANe1e2 = tan θ1Ae4Te1

= sin θ1Ae5e1 − (cos θ1)(ω
] − ω(ξ)ξ − ω(e1)e1

−ω(e2)e2), (56)

and

ANe2e1 = − tan θ1Ae5Te2

= (sin θ1)Ae4e2 + (cos θ1)(ω
] − ω(ξ)ξ − ω(e1)e1

−ω(e2)e2), (57)

Thus, we have

ANe1e2 = ANe2e1 − (cos θ1)(ω
] − ω(ξ)ξ − ω(e1)e1 − ω(e2)e2). (58)

Moreover, we get

ANe1e3 = (sin θ1)Ae4e3 = −(exp f)
1
2 sin2 θ1e1,

ANe2e3 = (sin θ1)Ae5e3 = −(exp f)
1
2 sin2 θ1e2. (59)

Therefore, by a direct computation we obtain (40) and by Theorem 8 we deduce
that M is proper slant.To prove that M is minimal we must show the following

h411 + h422 + h433 = 0

h511 + h522 + h533 = 0.

By taking Y ∈ {e1, e2, e3} and V ∈ {e4, e5} in (52), we have

Ae4e2 = Ae5e1 − (cot θ)(ω] − ω(ξ)ξ − ω(e1)e1 − ω(e2)e2),

Ae4e1 = −Ae5e2 − 2(exp f)
1
2 (sin θ)ξ,

Ae5e3 = −(exp f)
1
2 (sin θ)e2,

Ae4e3 = −(exp f)
1
2 (sin θ)e1. (60)

Thus, the result is an obvious consequence of (2) and (60).
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