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ABSTRACT. A coupled system of fractional integro-differential equations involv-
ing Riemann-Liouville integral and Caputo derivative is considered in this paper.
Some existence and uniqueness results are obtained using Banach contraction prin-
ciple. Other existence results are also studied using Shaefer’s fixed point theorem.
At the end, some illustrative examples are discussed.
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1. INTRODUCTION

In recent years, differential equations of fractional order have been shown to be
very useful in the study of models of many phenomena in various fields of science
and engineering, such as visco-elasticity, electrochemistry, control, porous media,
electromagnetic, aerodynamics, etc. For more details, we refer the reader to [5, 17,
18]. Recently, there is a large number of papers dealing with such equations, see
[4, 6, 10]. More recently, a basic theory for the initial boundary value problems of
fractional differential equations has been discussed in [11, 18, 21]. On the other hand,
existence and uniqueness of solutions to boundary value problems for fractional
differential equations have attracted the attention of many authors, see for example,
[2, 7, 18] and the references therein. Moreover, the study of coupled systems of
fractional order is also important in various problems of applied nature [3, 8, 9, 15,
20, 22, 23]. Recently, many people have established the existence and uniqueness
for solutions of some fractional systems, see [1, 14, 17, 19] and the reference therein.
This paper deals with the existence and uniqueness of solutions to the following
coupled system of fractional integro-differential equations:
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D (t) = (1 () + 92 (0) o (1. D52 (1), ()
—i—ft(t o) f1<s D2z (s), (s))ds,teJ,

DPy (1) = (sol () = 02 (0) (mw ,D5y<t>) 0
+ft (t= s (s,x(s),Diy(s))ds,tGJ,

z(0) =5, v (0) =y,

where D%, DP denote the Caputo fractional derivatives, with 0 < a < 1,0 < 8 <
1, and 0,6 are non negative real numbers, @1, @2 are two continuous functions on
J:=[0,1], 25,95 € R*, f1, f : J x R? = R are two functions that will be specified
later.

The paper is organized as follows: In section 2, we present some preliminaries and
lemmas. In Section 3, we present our main results for existence and uniqueness of
solutions for the problem (1). Some examples to illustrate our results are presented
in Section 4.

2. PRELIMINARIES

In this section, we present some useful definitions and lemmas [12, 13, 16, 19]:

Definition 1. The Riemann-Liouville fractional integral operator of order o > 0,
for a continuous function f on [a,b] is defined as:

J“f(t):r(la)/(t—T)O‘_lf(T)dT,a>O,a§t§b @)

JOf ()= f (1),

where T (o) := [ e “u*du.

Definition 2. The fractional derivative of f € C" ([a,b]) in the Caputo’s sense is
defined as:

¢
! )/ (t—7)" ) (r)ydr,n—1<a,ne N*a<t<b (3)

The following lemmas give some properties of Riemann-Liouville fractional inte-
grals and Caputo fractional derivative [12, 13]:
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Lemma 1. Let r,s > 0,f € Li([a,b]). Then J"J5f(t) = J"t5f(t), DI f(t) =
f(t),t € la,b].

Lemma 2. Let s >r >0, f € Li([a,b]). Then D"J*f(t) = J*" " f(t),t € [a,b].
Let us now introduce the spaces
X ={z:xeC(0,1),D3z e C([0,1])},
and

Y ={y:yeC(0,1),D7yeC([0,1])}

endowed respectively with the norms

)

I lx=l = [l + || D>z [|; || = [|= sup [z ()], | D>z ||= sup ’Dfﬂc(t)
teJ ted

and

B B B
Iy ly=ly Il + I Dy Iy = suply ()], | DFy || = sup [ Dy ()]
teJ teJ

Obviously, (X, | . ||x)and (Y, . ||y), are two Banach spaces. The product space
(X x Y, | (z, y)HXXY) is also a Banach space with norm [|(z, v)|| vy = l|1z]| x +¥lly -

We also give the following lemmas [12]:

Lemma 3. For a > 0, the general solution of the fractional differential equation
D%z (t) = 0 is given by

z(t) =co+ it + cot® + ..+ 1t (4)
where ¢; € R,i=0,1,2,..,n—1,n=[a] + 1.
Lemma 4. Let o > 0. Then
JoD (t) = 2 (t) + co + c1t + cot® 4+ oo + e t" (5)
for some ¢; e R;i=0,1,2,....n—1,n=[a] + 1.

We need also the following auxiliary result:
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Lemma 5. For a given g € C ([0,1],R), the solution of the boundary value problem

t t— o—1
D% (t) = (p19+ v29) (t) +/ (P(i)g(s)ds,t €eJ,0<a<l0>0,
0
z(0) = uxp, (6)
is given by:
0= [ -9 () )+ o) s+ [ U
x =T/, s ©19) (s v29) (8)) ds . Tlato) g (s)ds+ x{.
(7)
Proof. By lemma 5 and Lemma 6, the general solution of (6) is written as
v = g [0 (o) )+ ) s+ [T s
T @) Jo $19 ¥29 v T(ato) g 0-
(8)
Applying the boundary condition of (6), we find that
cop = —xp. 9)
Substituting the value of ¢y in (7), we obtain the solution (6).
3. MAIN RESULTS
First of all, we consider the following quantities:
g, = leidetloalo 1 (10)
P(a+1) I'a+o+1)
6, — letlotloale 1
r($+1) I(¢+o+1)
_ el Hligally 1
O = L(B+1) +I‘<5+5+1)’
o, — letletlool 1 _
r(2+1
(3+1) r (g +0+ 1)

Also, we suppose the following conditions:

(H1) : The functions fi, fo : J x R? — R are continuous.

(H2) : There exist non negative continuous functions a; (¢),b; (t), i = 1,2 such
that for all t € J and (x1,%1), (72,y2) € R?, we have
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|f1(tz,y1) — f1 (2, y2)| < ar (t) |o1 — 22| + 01 () [y1 — 2/, (11)
[fo (tz1,91) — fa (tx2,92)| < an(t) o1 — 22| + b2 () [y1 — 2/,

with

wy =supay (t),wz =supbi (t), @1 =supaz (t), w2 =supby (t).
ted teJ ted teJ

(H3) : There exists non negative continuous functions m; and ma, such that
|fr 2, y)| <ma(t),|f2 (2, y)] <ma(t), for each t € J and all z,y € R,
with

My = supmy (t), Mz = supmo (1) .
teJ teJ

Our first result is obtained using Banach contraction principle. We have:

Theorem 6. Assume that the hypothesis (H2) holds. If
(01 + 02) (w1 + wa) + (03 + 04) (w1 + w2) < 1, (12)

then the fractional integro-differential system (1) has a unique solution on J.

Proof. Define the operator T: X XY — X x Y by:

T (z,y) (t) := (T1 (z, ) (1), T2 (z,y) (1)) , t € J, (13)
where
@) ® ¢ =5 | =97 01 (9 + 2 () i (5. D5 (5).y () ds
+F(al+a) /Ot (t =9 fi (s, D32 (s),y(s) ) ds + a5, (14)
and
T (z,y)(t) : = F(lﬁ) /Ot (t—9)""" (1 (5) = p2(s)) fo <t,ﬂf (t) ,Diy(t)) ds
+r(51+5) /Ot (t— s)P+51 (s,x(s%Dgy(s)) ds+y5.  (15)
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We shall prove that T' is a contraction mapping :
Let (z,y), (z1,y1) € X x Y. Then, for each t € J, we can write

Ty (2, y) (t) — T1 (w1,91) ()] < (16)

%a)/o (t—5)"" sup |p1(s) + g2 (5)] | f1 (s, D%x(s),y(s)) — f1 (s, D21 (s), 1 (s))] ds

0<s<1

t
ey | = A (55 (). (9) = i (5 DF (9. (9)) | s
Thanks to (H2), we obtain

Ty (2,y) (¢) = Ty (w1, 91) (B)] < (17)

t
wy [ €= 5 (erllo + leallo) ds (supcu (1)||D3z — Doy +supbu () |y—y1||)
0 teJ teJ

1 t too1 o o
L [ o s (supar (6| DR - D+ supb )y~ ).
+F<a+0)/0( s) 8<Supa1() 2 21y +§1615> 1 () [y — 1l

teJ
Consequently,
Ty (2, y) (t) — Th (21, 51) ()] < (18)
loall oo llp2 o 1 g g
[ I'(a+1) + T(a+tot 1)] (w1 + wo) (HD2$ - D2$1H + Hy_ylH) )
which implies that
I3 (@,9) = T (e, y)ll 01 @1 +wo) ([ D2 = Do ||+ lly —will).  (19)
and
DT} (2.y) (1) = DIy (an,) (1)) < (20)

o / (t =95 sup |1 (s) + 02 ()| |2 (5. D3 ()9 (5) = i (5, DFar (5) 30 (s))| ds

bl 0<s<1

aremm O T A D)y )~ i (DR (91 9) | s

By (H2), we have

ST (2,y) (1) = DET (21,01) (1)] < (21)

t
F(1 ) / (t—s)2 1 (g1l + lle2llo) ds (sup a (t) HD5$ — Diale +supb; (t) [|ly — y1\|>
0 teJ teJ

«@
2
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1 /t @i, < a a
+— t—s)2 ds [ supas (t HD295—D2JU H—l—supb t)|ly—y .
F(%—i—g) 0( ) (t) 1 e (@)l 1

teJ
Hence,
DT (2,9) (t) = DT (w1,m1) ()] < (22)
1]l o Hllp2 ]l o 1 a a
[ ) TG dorD) | @t (|p%e = D3as [+ ly = wil).
Therefore,

[DETL (2.9) (6) = DT (w1,0) ()] < 02 (w1 +wo) (|| D = DF ]|+ = wal).
23)

And consequently,

| D271 (2,9) = DET: (@1,90)| < 03 (1 +wa) (| DE2 = DE | + 1y = wall)

(24

By (19) and (24), we can state that

IT3 (2,9) = 71 (@19 L < O+ 02) (@1 +w2) (|| DFw = DEan | + ly ).
(25)

With the same arguments as before, we have

B B
I (@) = T2 (21,9 ly < (05 +60) (@1 +2) (e = 1l] + || D3y = Doy ).

26)

By (25) and (26) , we obtain

1T (z,y) = T (z1,y1) L x oy < [(01 4 02) (w1 +w2) + (03 + 04) (@1 + @2)] [(z — 21,5 — y1) |l x v -

(27)
Thanks to (14), we conclude that T' is contraction. As a consequence of Banach
fixed point theorem, we deduce that 1" has a fixed point which is a solution of the
problem (1).

Our second result is the following theorem:

Theorem 7. Suppose that the hypotheses (H1) and (H3) are satisfied. Then, the
integro-differential system (1) has at least a solution on J.

Proof. We shall use Scheafer’s fixed point theorem to prove that T has at least a
fixed point on X x Y :

The continuity of f; and fo (hypothesis (H1)) implies that the operator T" is con-
tinuous on X x Y.
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[1%] : We shall prove that 7' maps bounded sets into bounded sets in X x Y :
Taking p > 0, and (z,y) € B, := {(z,y) € X xY;||(z,9)| xxy < p}, then for each
t € J, we have:

Ty (z,y) (H)] < F(la) /Ot (t—s)*" 0221 (01 (s) + @2 (5))] ‘fl (s, D3z (s),y (3)) ‘ ds
+r(al+g) /Ot (t —s)xtot ‘f1 (s, D2z (s),y (s)) ’ ds+|zg|.  (28)

Thanks to (H3), we can write

llo1ll oo t+lle2ll oo fgl}m(t) sup my (1)

‘Tl (xa y) (t)’ S F(a+1) + ;‘(GO{Jrngl) + |:C[>§‘ (29)
o1 llog +ll2]l 1 %
< supm (¢ = o 4 + |xg| -
e 1 ( ) |: I'(a+1) F(a+o+l)] | 0|
Therefore, for each t € J,
Ty (2, y) ()] < Mi6y + |ag] - (30)
Hence, we have
T3 (,y)|| < M6y + |g) - (31)
On the other hand,
DET: (2,9) ()] < (32)
]_ t (o3 1 «
— | (t—s)*"2" + ‘ D2 ; ’d
gy, 97 s 1o )+ @ O [f (5 D5 (0) y ()| s
]. t -+ [0 1 (o]
+ t—g)*to32— ‘ ,D2 , ds + |z - 33
o= ) €9 fi (D80 () y () ds + il ()

By (H3), we obtain

D23 (0,0) (0] < supres 0| Ml gl (o)
Consequently,
‘D%Tl (z,7) (t)‘ < Mabs + |23 (35)
Therefore,
HD%T1 (:U,y)H < Myl + | . (36)
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Combining (31) and (35), yields the following inequality
171 (2, y) || x < My (61 + 62) + [ - (37)
Similarly, it can be shown that
ITs (2, y)lly < M2 (03 + 64) + |y - (38)
It follows from (36) and (37) that
1T (2, y)l x oy < My (61 + 02) + Mo (03 + 0a) + |g| + |yol - (39)

Consequently

1T (2, y) | xxy < 00 (40)
[2%] : Now, we will prove that T" is equi-continuous on J :
For (z,y) € B, and t1,ts € J, such that ty < t;. We have:

Th (2, y) () — Th (2, y) (t2)] < (41)

o /0152 <(t1 )l gy — s)a—1> sup |(¢1(s) + @2 ()] ’fl (s,p%x (s) ,y(s)) ‘ ds

0<s<1

by [ =9 s G019+ 2 6D [ (D% 0) ) s

0<s<1 ‘

+P(al+a) /Otl (=977 = (02 = )Y | 7 (5, D% ()0 (5)) | ds
b [ G (5. DY )y )

Thus,

M (llerlloe + ll2(l0)
I'(a+1)
M,y

TlatorD

Ty (2, ) () = Th (2,9) (t2)] < [(t1 — 2)" + 25 — 17 (42)

[(tl o t2)a+a + tgz+o _ tTHra] ,

and

DTy (2,y) (1) = DT () (t2)] < (43)
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to - .
@A ((tQ_S)afii _(tl_s)aiff )OiliglK@l (8)4—@2 ||f1 (S sz( )|d8
t1 o
+@/t (tlfs)a—f—loiuglucpl( )JrgpQ |f1 (5 Dzz( )’ds
1 t1 ato—%—1 ato—%—1 o
+1—\(a+0_g)A ((tl_S) —(tQ—S) >|f1(SD 1?( )|d3
1 t2 a+o— 2
ey e D AR AN A CLA RO L
Using (H3), we obtain:
‘D%Tl (2,9) (1) = D3Th (2,y) (tz)‘ < Ml("?(”gfl”)mm) [(tl — )% g 7751%] (44)
1 5t+o 2+0'_ 2+0'
N CErsy (b = 12) 377 + 43 |-

), we can write

By (41) and (43
My (le1]lo + lle2lls) (b1 — £2)® + 15 — £9] (45)

T} t1) — 1} t <
1T (2, y) (t1) 1 (z,y) ()|l < et D)
M, ato a+o a+o
|1 — ¢ t —t
+F(a+0+1) [t = 1) 485 ]
Ml(H(mHooJrllsozHoo)[ a o o«
b= t2)? +t5 —t] |
r(5+1) o)t
M @ Q5 Q5
1 [(tl—t2)5+a+t22+ —tf+}

+I‘(%+U—|—1)

With the same arguments as before, we get

M (|1l + ll22]]0) [ = 02)° + 45 — £]](46)

<
172 (2, y) (t1) = T2 (2, y) (t2) ]|y < T
_ My _ i \BHE Bt B
NCETESY (61 = 1) 1 —
Ms ([|o1]l 0 + llp2ll o) |:(t1 _t2)§ +t§ B tg}
2 1
()
M, s s
- [(tl—tQ)g +t§+6—tf+6]
r(5+6+1)

Thanks to (44) and (45), we can state that ||T" (z,y) (t1) — T (z,y) (t2)|| xxy — 0
as t; — to. Combining [1*] and [2x] and using Arzela-Ascoli theorem, we conclude

that T is completely continuous operator
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[3%] : Finally, we shall show that
Q={(z,y) € X x Y, (2,y) = uT (z,y),0 < p <1}, (47)

is a bounded set:
Let (x,y) € Q, then (z,y) = uT (z,y), for some 0 < p < 1. Thus, for each t € J, we
have:

z(t) = pT (z,y) (t) ,y (¢) = pTa (z,y) (1) - (48)
Then

el < I;a)J€t<t——s>“—1 sup (1 (s) + 02 ()] [ £1 (. DF 2 (5) .9 (5) )| ds

L 0<s<1
t
b | =9 | (s D) ) | s+l (49)
0
Thanks to (H3), we can write
1 (H@ll\oo+||<p2||oo)ilelr;ml(t) sup m1 (1) .
" e @] < T(a+1) + Fatorn T |20l - (50)
Mi(llerlloo +lle2ll o0 ) M *
< T(a+1) * Tatorn T ol -
Therefore,
1 +
PLAGIER N ES v e R B (51)
Hence,
& (1)) < udMyy + e (52)

Similarly, we can get,

1, « t a1 a
;|Dfx(t)\ < F(%_Q)/O(t—S) 270 sup (o1 (s) + @2 ()] [ f1 (s, D2z (s),y(s))]ds

Pl 0<s<1

+m /0 (t—s)*to 21 |f1 (s, D% (s),y(s))|ds+ |x5]. (53)

By (H3), we have

Lne 11l o 2] 1 .
—D?xt’<sumt Yo 2 4 — + |z - 54
Lt @] <o o [I2ltale ol e
Therefore,
1) a
p ‘Dax (t)‘ < My + |23 . (55)
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Thus,
’D%:c (t)‘ < M0y + pla) . (56)
From (51) and (55), we get
2]l < by (01 + 02) + gl - (57)
Analogously, we can obtain
[ylly < nMz (03 + 04) + 1 yol - (58)

It follows from (56) and (57) that
12, 9) |y < o [Mi (61 + 02) + Ma (63 + 6a) + |2p] + [yo]] - (59)
Hence,

HT(wvy)HXXY < 00. (60)

This shows that the set 2 is bounded.
Thanks to [1%],[2%] and [3%], we deduce that T has at least one fixed point;
which is a solution of the problem (1).

Corollary 8. Suppose there exist two constants k1 > 0 and ko > 0 such that for all
le Ja (331’ yl) ) (332a y2) € R2a

|fi(t,w, 1) — fi(tw2,92)] <0 k1 (Jee — 21| + [y2 —m1l),
|fa (t,z1,91) — fa (t,22,92)] < ko (Jwe — 21| + [y2 — w1l),
and let
ki (01 +02) + ko (05 + 04) < 1. (61)

Then, the integro-differential system (1) has a unique solution on J.

Corollary 9. Suppose that there exist two positive constants Ly, Lo, such that
|f1(t,x,y)| < Li,|f2(t,z,y)| < Lojt € J,x,y € R. Then, the problem (1) has at
least a solution on J.

4. EXAMPLES

To illustrate our main results, we treat the following examples.
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Example 1. Let us consider the following system:

Ay Vi cos(mt) (| DEa(0)] +y(0))
DQ.%' (t) - (17(1+t2) + 20\/]_+7Tt2> 16(t+2)2<2+’D%x(t)’+|y(t)\>

1
+f01 (t—s)% (ﬁcos(ws)(’D4I(s)‘+y(5)) ) ds,t € [O, 1]’

P2\ 16(s+2)2 (24 DT a(s)] +1y(s))
L <1n(1+t) et ) |Jf(t)|+‘D%y(t)‘ > (62)

Dsy(t) = 17(1+82)  20V/1+nt2 25/m+e ) (1+|z(t) [ +y(t)])

(

e ja(s)+ Db y(s)| dste 0.1]

0 T(8) \ (@vate ™)t +Hy()) | =
z(0) =2,y (0) =3.

For this example, we have

v cos () (|| + [y|)
16 (t +2)* (24 |=| + [y])’
2| + |y

l,x, = ,te€0,1],z,y e R
REow = Gimrem e’ <00

filt,z,y) = tel0,1],z,y € R,

and
In(1+1¢) e Tt
= ) ()=
1) 17(1+ £2) ez (1) 20V/1 + 2
For (z1,11) , (v2,92) € Rt € [0,1], we can write:
7 cos (Tt 7 cos (Tt
VECos(rt) | cos ()
16 (t + 2) 16 (t + 2)

1 1
|f2(t7$,y)—f2(t,$1,y1)| < |[L‘1—:E2‘+ ‘yl_y2"
25\/m + et 25y/m 4 e~

A

|f1 (tvxlvyl)_fl (t7x27y2)| = ‘yl_y2‘7

So, we can take

\/m cos (rt) 1

t) = bi(t) = Y g (t) = bo(t) = e
or(6) = 1) =Yg =0 alt) = o) = et
It follows then that
wi = sup aj(t) = sup by (t) = — = wo,
t€[0,1] t€[0,1] 64
1
wy = sup ag(t) = sup b (t) = ————— = wo,
t€[0,1] t€[0,1] 25y/m+1

il = 0,040773, [|lpall., = 0,02456 9,
6, = 0,57373,0, =0,69383,0; = 0,997 13,0, = 0,892 93.

79



M. Houas, Z. Dahmani — A Coupled System of Integro-Differential ...

It is clear that
(61 + 02) (w1 + w2)+ (03 + 0a) (01 + 2) = 0,0701191+0, 0834461 = 0, 1535652 < 1.
Thanks to Theorem 8, the system (61) has a unique solution on [0, 1].

Example 2. As a second illustrative example, let us take

6 42 ﬁsinht> cos” (D%gﬁ(t)) =Tl 1>
+3

D1tz (t) = (16(\/%—%6_”) + e Torerz (32y/m+e=mt) (1+|y(t)])

3
n (t—s)‘/ﬁ_l cos? (Dﬁx(s)> e—7rs2|y(s)‘ 1 .
T fo I‘(\/ﬁ) ( 16+s+s2 + (32ﬁ+e—ws)(1+‘y(s)|) + 2 ds = 07 te [07 1] )
2
4 B ot | /Fsinht 2 (0) sin (27D 7 y(1))
Pt = (wwﬂ) V12w+t2> ((15+ﬁet)(2+|x<t>|> L e

2 . 2
t(t=s)5 j2(s) sin(22D7y(5)) |
+ o r(%) ((15+ﬁes)<2+|x<s)|> tlt ey | ds=0.t<[0.1],

2(0) = V5,3 (0) = V3.

(63)
We have
cos? (D%x (t)) e |y (£)] 1
htey) = —gore T evrremaspap 2 €O LmyeR,
|z (t)] sin (QWD%y (t))
Rley) = G ereo) T Tenerer ot BImvER
and

—t2 .
€ V/msinht
o1 (t) = = 2 () = NGl
16 (ﬁ +e ™) 127 + ¢
For (z,y), (z1,y1) € R%,t € [0,1], we have
1 —mt?

e
t’ ’ ta I <_ 5 - —_— — ,
|fi(tzy) — fi (G2, ) 164142 |z — 21| + 327 + et ly — vl

1 1
t — fot < — |z B S —
|f2(71:ay) f2(a$1ayl)| = 15+ﬁ€t |3§' $1|+87T(t+2>2 ‘y yl‘

Hence, we take

1 e*ﬂt2
() rire W= B e
1 1
as(t) =

S S () J———
5+ et 20 8 (t +2)°
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It follows then that

1
wi = sup ai(t)=-——,wr= sup b () = 5=,
te[0,1] 16’ te[0,1] 32ym+1
1 1
@i = sup ag(t) =——=,@2= sup by (t) = -,
t€[0,1] 15+ ym t€[0,1] 321

1 1752f

1
01 = 0,7262443,05 = 0,7327529, 93 =1,2047853,04 = 1,3392506.

Therefore,
(91 + 92) (w1 + LUQ) + (93 + 94) (wl + ?DQ> =0,1164702 4 0, 1770020 = 0, 2934722.

Thanks to Theorem 8, we can state that the fractional system (62) has a unique
solution on [0, 1] .

Example 3. Our third example is the following:

;

. 2
10 _ { cosh(wt+1) —t2 Smh(et) . 5
D (1) = (Sii? + 7errs) qromares o (D52 () +y(1) +

s‘ﬁ 1 smh( 2

+ fg (t— v 21\/7727 sin <D1%x (s)+vy (s)) ds,t €[0,1],
(

h 1 —¢2 —7t 4 (64)
D15y( ) = (Cfgs(t(ﬁ;)g - w§t+15) P a07 COS (93 t)+ Disy (t))
\ﬁ 1 —ms
+ ft (t= S 5205 COS (ac (s) + Disy (s)) ds,t €0,1],
{ z(0)=3,y(0)=V5
We have
sinh (etQ)
fl(t,%,y) = 7QSHI($+:I/),1€G[O,H,ZC,Z/€R,
21/ met™ + 7
e*ﬂ't
fa(t,2,y) cos (v +y),t€0,1],z,y €R.

t2 + 207
For z,y € R and ¢t € [0, 1], we have

. 2
sinh (et ) ot

t t < .
|f1( T y)| 91 7-‘-6152 +7a’f2( away)| = t2+207T
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Hence,
sinh (et2> et
ma (1)

t) = -
mi (1) 21207

21w + 7
and then,

My = sup my (t) = 0,01757, My = sup mg (t) = 0,01592.
t€(0,1] t€[0,1]

By Theorem 9, the system (63) has at least one solution on [0, 1].
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