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fuzzy metric spaces which are the generalization of Theorem 3 of [3] and theorem 4
of [4].

2000 Mathematics Subject Classification: 47H10, 54H25.

Keywords: Fuzzy metric space, sequentially compact Fuzzy metric space, related
fixed point.

1. Introduction and preliminaries

In 1965, The concept of fuzzy sets was introduced initially by Zadeh [13]. George and
Veeramani [5] modified the concept of fuzzy metric space introduced by Kramosil
and Michalek [6] with the help of continuous t-norms. Recently, many authers have
proved fixed point theorems involving fuzzy sets. Fisher [3], Telci [12], Popa [8]
and Aliouche and Fisher [1] proved some related fixed point Theorems in compact
and complete metric spaces. The aim of this paper is to prove a unique fixed point
theorem for two and four mappings, which generalize the Theorem 3 of [3] and
theorem 4 of [4]. We give also a fuzzy version of Theorem 3 of [3] and theorem 4 of
[4].

Definition 1. [11] A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is a continuous
t-norm if it satisfies the following conditions:

1) ∗ is associative and commutative,
2) ∗ is continuous,
3) a ∗ 1 = a for all a ∈ [0, 1],
4) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d, for each a, b, c, d ∈ [0, 1].

Definition 2. [5] A 3-tuple (X,M, ∗) is called a fuzzy metric space if X is an
arbitrary (non-empty) set, ∗ is a continuous t-norm and M is a fuzzy set on X2 ×
(0,∞) satisfying the following conditions for each x, y, z ∈ X and t, s > 0,
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1) M(x, y, t) > 0,
2) M(x, y, t) = 1 if and only if x = y,
3) M(x, y, t) = M(y, x, t),
4) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),
5) M(x, y, .) : (0,∞)→ [0, 1] is continuous.

Example 1. [5] Let (X, d) be a metric space. Define a ∗ b = ab for all a, b ∈ [0, 1]
and let Md fuzzy sets on X2 × (o,∞) defined as follows, Md(x, y, t) = t

t+d(x,y) , then

(X,Md, ∗) is a fuzzy metric space. We call this fuzzy metric induced by the metric
d, the standard fuzzy metric. On the other hand note that there exists no metric on
X satisfying the above Md(x, y, t).

Definition 3. [3] Let (X,M, ∗) be a fuzzy metric space.
1) For t > 0, the open ball B(x, r, t) with center x ∈ X and radius 0 < r < 1
is defined by:

B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r} .

2) Let (X,M, ∗) be a fuzzy metric space and τ be the set of all A ⊂ X with
x ∈ A if and only if there exist t > 0 and 0 < r < 1 such that B(x, r, t) ⊂ A.
Then, τ is a topology on X induced by the fuzzy metric M .
3) A sequence {xn} in X converges to x if and only if for any 0 < ε < 1 and
t > 0, there exists n0 ∈ N such that for all n ≥ n0, M(xn, x, t) > 1− ε; i.e.,
M(xn, xm, t)→ 1as n→ 1 for all t > 0.
4) A sequence {xn} in X is called a Cauchy sequence if and only if for any 0 <
ε < 1 and t > 0, there exists n0 ∈ N such that for all n,m ≥ n0, M(xn, xm, t) >
1− ε; i.e., M(xn, xm, t)→ 1 as n,m→ 1 for all t > 0.
5) A fuzzy metric space (X,M, t) in which every Cauchy sequence is convergent

is said to be complete.

Definition 4. A subset A of X is said to be F-bounded if there exists t > 0
and 0 < r < 1 such that M(x, y, t) > 1− r for all x, y ∈ A.

Lemma 1. [6] Let (X,M, ∗) be a fuzzy metric space. Then, M(x, y, t) is
non-decreasing with respect to t, for all x, y in X.

Lemma 2. [6] Let (X,M, ∗) be a fuzzy metric space. Then, M is a continuous
function on X2 × (0,∞).

Theorem 3. [3] Let (X, d) and (Y, ρ) be complete metric spaces, let T be a con-
tinuous mappings of X into Y and let S be a mappings of Y into X satisfying the
inequalities
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d(STx, STx′) ≤ cmax
{
d(x, x′), d(x, STx), d(x′, STx′), ρ(Tx, Tx′)

}
,

ρ(TSy, TSy′) ≤ cmax
{
ρ(y, y′), ρ(y, TSy), ρ(y′, TSy′), d(Sy, Sy′)

}
,

for all x, x′ in X and y, y′ in Y , where 0 ≤ c ≤ 1.
Then ST has a unique fixed point z in X and TS has a unique fixed point w in

Y . Further, Tz = w and Sw = z.

Theorem 4. [4] Let (X, d) and (Y, ρ) be complete metric spaces, let A,B be map-
pings of X into Y , and let S, T be mappings of Y into X satisfying the inequalities

d(SAx, TBx′) ≤ cmax
{
d(x, x′), d(x, SAx), d(x′, TBx′), ρ(Ax,Bx′)

}
,

ρ(BSy,ATy′) ≤ cmax
{
ρ(y, y′), ρ(y,BSy), ρ(y′, ATy′), d(Sy, Ty′)

}
,

for all x, x′ in X and y, y′ in Y , where 0 ≤ c ≤ 1. If one of the mappings A,B, S
and T is continuous then SA and TB have a common fixed point z in X and BS and
AT have a common fixed point w in Y . Further, Az = Bz = w and Sw = Tw = z.

The following lemma will be useful in the proof of theorem 6 and theorem 7.

Lemma 5. [2] Let {xn} be a sequence in a fuzzy metric spaces (X,M, ∗) with
M(x, y, t) → 1 as t → ∞ for all x, y ∈ X. If there exists a number k ∈ (0, 1)
such that

M(xn+1, xn, kt) ≥M(xn, xn−1, t),

for all t > 0 and n = 1, 2, 3, ...Then {xn} is a cauchy sequence in X.

2. Main results

Theorem 6. Let (X,M1, θ1) and (Y,M2, θ2) be complete fuzzy metric spaces with
M1(x, x

′, t) → 1 as t → ∞ for all x, x′ ∈ X and M2(y, y
′, t) → 1 as t → ∞ for all

y, y′ ∈ Y. Let T : X → Y, S : Y → X be mappings satisfying:

M1

(
STx, STx′, kt

)
≥ min

{
M1(x, x

′, t),M1(x, STx, t),M1(x
′, STx′, t),M2(Tx, Tx

′, t)
}
,

(1)
M2

(
TSy, TSy′, kt

)
≥ min

{
M2(y, y

′, t),M2(y, TSy, t),M2(y
′, TSy′, t),M1(Sy, Sy

′, t)
}
,

(2)
for all x, x′ ∈ X, y, y′ ∈ Y and for all t > 0, where 0 < k < 1. Then ST has a

unique fixed point z in X and TS has a unique fixed point w in Y . Further, Tz = w
and Sw = z.
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Proof. Let x be an arbitrary point in X. We define the sequences {xn} and {yn} in
X and Y respectively by:

Syn = xn, Txn−1 = yn,

for n=1, 2, ... Putting x = xn and y = yn for all n. Applying inequality (1),we
get

M1 (xn+1, xn, kt) ≥ min {M1(xn, xn−1, t),M1(xn, xn+1, t),M1(xn−1, xn, t),M2(yn+1, yn, t)} ,
(3)

Using inequality (2), we have

M2 (yn+1, yn, kt) ≥ min {M2(yn, yn−1, t),M2(yn, yn+1, t),M2(yn−1, yn, t),M1(xn, xn−1, t)} ,
(4)

involve, respectively

M1 (xn+1, xn, kt) ≥ min {M1(xn, xn−1, t),M2(yn+1, yn, t)} , (5)

M2 (yn+1, yn, kt) ≥ min {M2(yn, yn−1, t),M1(xn, xn−1, t)} , (6)

using inequalty (1) again, it follows that

M1 (xn−1, xn, kt) ≥ min {M1(xn−2, xn−1, t),M2(yn, yn−1, t)} . (7)

Similary, using inequality (2), we get

M2 (yn+1, yn, kt) ≥ min {M2(yn, yn−1, t),M1(xn, xn−1, t)} , (8)

and
M2 (yn, yn−1, kt) ≥ min {M2(yn−1, yn−2, t),M1(xn−1, xn−2, t)} . (9)

Using inequalities (5) and (8), we have

M1 (xn+1, xn, kt) ≥ min {M1(xn, xn−1, t),M2(yn, yn−1, t)} , (10)

and similary, from inequalities (7) and (9), we get

M1 (xn+1, xn, kt) ≥ min {M1(xn, xn−1, t),M2(yn, yn−1, t)} . (11)

It now follows inequalities (8),(9),(10) and (11) that

M1 (xn+1, xn, kt) ≥M2(yn, yn−1, t), (12)

M2 (yn+1, yn, kt) ≥M1(xn, xn−1, t). (13)
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Using (12) and (13) we have for n=1, 2, ....

M1 (xn+1, xn, t) ≥M1(xn, xn−1,
t

k2
),

M2 (yn+1, yn, t) ≥M2(yn, yn−1,
t

k2
).

From Lemma 1, it follows that {xn} and {yn} are cauchy sequences in X and Y
respectively. Hence {xn} converges to z in X and {yn} converges to w in Y. Now
suppose that T is continuous, then

limTxn−1 = Tz = lim yn = w,

and so Tz = w. Applying inequalitiy (1), we have

M1 (STz, STxn−1, kt) ≥
min {M1(z, xn−1, t),M1(z, STz, t),M1(xn−1, STxn−1, t),M2(Tz, Txn−1, t)} ,

letting n tend to infinity, we have

M1 (Sw, z, kt) ≥ min {1,M1(z, Sw, t), 1} ,

so Sw = z. In the same manner we can show that Tz = w. Finally we show
that the fixed point is unique. Suppose that ST has a second fixed point z′ in X.
Then, using inequality (1), we have

M1

(
z, z′, kt

)
≥ min

{
M1(z, z

′, t),M2(Tz, Tz
′, t)

}
. (14)

Next, using inequality (2), we have

M2

(
Tz, Tz′, kt

)
≥ min

{
M2(Tz, Tz

′, t),M2(Tz, Tz, t),M2(Tz
′, T z′, t),M1(z, z

′, t)
}
.

(15)
It now follows easily from inequalities (14) and (15) that

M1

(
z, z′, kt

)
≥M2(Tz, Tz

′, t)

and
M2

(
Tz, Tz′, kt

)
≥M1(z, z

′, t).

Hence

M1

(
z, z′, t

)
≥M1(z, z

′,
t

k2
),

and so z = z′. The uniqueness of w follows in a similar manner.

117



T. Hamaizia, A. Aliouche – Fixed point theorems . . .

Theorem 7. Let (X,M1, θ1) and (Y,M2, θ2) be complete fuzzy metric spaces with
M1(x, x

′, t) → 1 as t → ∞ for all x, x′ ∈ X and M2(y, y
′, t) → 1 as t → ∞ for all

y, y′ ∈ Y. Let A,B : X → Y, S, T : Y → X be mappings satisfying:

M1

(
SAx, TBx′, kt

)
≥ min

{
M1(x, x

′, t),M1(x, SAx, t),M1(x
′, TBx′, t),M2(Ax,Bx

′, t)
}
,

(16)
M2

(
BSy,ATy′, kt

)
≥ min

{
M2(y, y

′, t),M2(y,BSy, t),M2(y
′, ATy′, t),M1(Sy, Ty

′, t)
}
,

(17)
for all x, x′ ∈ X, y, y′ ∈ Y and for all t > 0, where 0 < k < 1.If one of the

mappings A,B, S and T is continuous then SA and TB have a common fixed point
z in X and BS and AT have a common fixed point w in Y . Further, Az = Bz = w
and Sw = Tw = z.

Proof. Let x be an arbitrary point in X. We define the sequences {xn} , and {yn}
in X and Y respectively by:

Sy2n−1 = x2n−1, Bx2n−1 = y2n, T y2n = x2n, Ax2n = y2n+1,

for n=1, 2, .... Putting x = x2n and y = y2n in(16), we get

M1 (x2n+1, x2n, kt) ≥
min {M1(x2n, x2n−1, t),M1(x2n, x2n+1, t),M1(x2n−1, x2n, t),M2(y2n+1, y2n, t)} ,(18)

Using inequality (17), we have

M2 (y2n+1, y2n, kt) ≥
min {M2(y2n, y2n−1, t),M2(y2n, y2n+1, t),M2(y2n−1, y2n, t),M1(x2n+1, x2n, t)} .(19)

Therfore

M1 (x2n+1, x2n, kt) ≥ min {M1(x2n, x2n−1, t),M2(y2n+1, y2n, t)} , (20)

M2 (y2n+1, y2n, kt) ≥ min {M2(y2n, y2n−1, t),M1(x2n+1, x2n, t)} . (21)

Applying the inequality (16) again, it follows that

M1 (x2n−1, x2n, kt) ≥ min {M1(x2n−2, x2n−1, t),M2(y2n, y2n−1, t)} . (22)

Similary, using inequality (17), we get

M2 (y2n+1, y2n, kt) ≥ min {M2(y2n, y2n−1, t),M1(x2n−1, x2n, t)} , (23)

and

M2 (y2n, y2n−1, kt) ≥ min {M2(y2n−1, y2n−2, t),M1(x2n−1, x2n−2, t)} . (24)
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Using inequalities (20) and (23) that

M1 (x2n+1, x2n, kt) ≥ min {M1(x2n, x2n−1, t),M2(y2n, y2n−1, t)} , (25)

and in a similar manner, from inequalities (22) and (24), we obtain

M1 (xn+1, x2n, kt) ≥ min {M1(x2n−2, x2n−1, t),M2(y2n−1, y2n−2, t)} . (26)

It now follows inequalities (23), (24), (25) and (26) that

M1 (xn+1, xn, kt) ≥M2(yn, yn−1, t), (27)

and
M2 (yn+1, yn, kt) ≥M1(xn, xn−1, t). (28)

Using (27) and (28) we have for n=1, 2, ....

M1 (xn+1, xn, t) ≥M1(xn, xn−1,
t

k2
),

and

M2 (yn+1, yn, t) ≥M2(yn, yn−1,
t

k2
).

From lemma 1, it follows that {xn} and {yn} are cauchy sequences in X and Y
respectively. Hence {xn} converges to z in X and {yn} converges to w in Y. If A is
continuous, then

limAx2n = Az = lim y2n+1 = w,

and so Az = w. Using inequalitiy (16), we have

M1 (SAz, TBx2n−1, kt) ≥
min {M1(z, x2n−1, t),M1(z, SAz, t),M1(x2n−1, TBx2n−1, t),M2(Az, y2n, t)} ,

M1 (Sw, x2n, kt) ≥ min {M1(z, x2n−1, t),M1(z, Sw, t),M1(x2n−1, x2n, t),M2(w, y2n, t)} ,

letting n tend to infinity, we get

M1 (Sw, z, kt) ≥ min {1,M1(z, Sw, t), 1} ,

and so Sw = z. Similary we can show that Az = w. Now, SAz = Sw = z
and ASw = Az = w The same result hold also if one of the mappings B,S, T is
continuous. To prove the uniqueness of z, suppose that SA has a second fixed point
z′ in X.
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Then, using inequality (16), we have

M1

(
SAz, TBz′, kt

)
≥

min
{
M1(z, z

′, t),M1(z, SAz, t),M1(z
′, TBz′, t),M2(Az,Bz

′, t)
}
. (29)

Next, using inequality (17), we have

M2

(
Bz,Az′, kt

)
≥ min

{
M2(y, y

′, t),M2(y,Bz, t),M2(y
′, Az′, t),M1(z, z

′, t)
}
.
(30)

M2

(
Az,Bz′, kt

)
≥ min

{
M2(Az,Bz

′, t),M2(Az,Bz, t),M2(Az
′, Az′, t),M1(z, z

′, t)
}
.

(31)
It now follows easily from inequalities (29) and (30) that

M1

(
z, z′, kt

)
≥ min

{
1,M1(z, z

′, t),M2(Az,Bz
′, t)

}
,

and
M1

(
Az,Bz′, kt

)
≥ min

{
1,M1(z, z

′, t),M2(Az,Bz
′, t)

}
.

Then
M1

(
z, z′, kt

)
≥M2(Az,Bz

′, t).

Similarly, we have
M2

(
Az,Bz′, kt

)
≥M1(z, z

′, t).

Hence

M1

(
z, z′, t

)
≥M1(z, z

′,
t

k2
),

and so z = z′. The uniqueness of w follows in a similar manner.

The following example illustrate the theorem 6 theorem 7.

Example 2. Let X = Y = [0, 1] and M1(x, y, t) = M2(x, y, t) = t
t+|x−y| . For all

x ∈ X and for all t > 0, let A, B be mappings of X into Y define by:

Ax = Bx =

{
x
2 if x ∈

(
0, 12

]
1
2 if x = 0

,

and for all y ∈ Y and for all t > 0, let S, T be mappings of Y into X define by:
Sy = Ty = 1

2 . In this example, the ineqality (16) is satisfied since the value of the left
hand side of inequalitiy is 1 and the inequality (17) is satisfied. Clearly, SA(12) =
TB(12) = 1

2 , BS(14) = AT (14) = 1
4 , A

(
1
2

)
= B

(
1
2

)
= 1

4 and S
(
1
4

)
= T

(
1
4

)
= 1

2 .

.
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