FIXED POINT THEOREMS ON TWO COMPLETE FUZZY METRIC SPACES

T. HAMAIZIA, A. ALIOUCHE

ABSTRACT. In this paper, we prove two related fixed points theorems in two fuzzy metric spaces which are the generalization of Theorem 3 of [3] and theorem 4 of [4].

2000 Mathematics Subject Classification: 47H10, 54H25.

Keywords: Fuzzy metric space, sequentially compact Fuzzy metric space, related fixed point.

1. INTRODUCTION AND PRELIMINARIES

In 1965, The concept of fuzzy sets was introduced initially by Zadeh [13]. George and Veeramani [5] modified the concept of fuzzy metric space introduced by Kramosil and Michalek [6] with the help of continuous t-norms. Recently, many authers have proved fixed point theorems involving fuzzy sets. Fisher [3], Telci [12], Popa [8] and Aliouche and Fisher [1] proved some related fixed point Theorems in compact and complete metric spaces. The aim of this paper is to prove a unique fixed point theorem 4 of [4]. We give also a fuzzy version of Theorem 3 of [3] and theorem 4 of [4].

Definition 1. [11] A binary operation $* : [0,1] \times [0,1] \rightarrow [0,1]$ is a continuous *t*-norm if it satisfies the following conditions:

1) * is associative and commutative,

2) * is continuous,

- 3) a * 1 = a for all $a \in [0, 1]$,
- 4) $a * b \le c * d$ whenever $a \le c$ and $b \le d$, for each $a, b, c, d \in [0, 1]$.

Definition 2. [5] A 3-tuple (X, M, *) is called a fuzzy metric space if X is an arbitrary (non-empty) set, * is a continuous t-norm and M is a fuzzy set on $X^2 \times (0, \infty)$ satisfying the following conditions for each $x, y, z \in X$ and t, s > 0,

1) M(x, y, t) > 0, 2) M(x, y, t) = 1 if and only if x = y, 3) M(x, y, t) = M(y, x, t), 4) $M(x, y, t) * M(y, z, s) \le M(x, z, t + s)$, 5) $M(x, y, .) : (0, \infty) \to [0, 1]$ is continuous.

Example 1. [5] Let (X, d) be a metric space. Define a * b = ab for all $a, b \in [0, 1]$ and let M_d fuzzy sets on $X^2 \times (o, \infty)$ defined as follows, $M_d(x, y, t) = \frac{t}{t+d(x,y)}$, then $(X, M_d, *)$ is a fuzzy metric space. We call this fuzzy metric induced by the metric d, the standard fuzzy metric. On the other hand note that there exists no metric on X satisfying the above $M_d(x, y, t)$.

Definition 3. [3] Let (X, M, *) be a fuzzy metric space. 1) For t > 0, the open ball B(x, r, t) with center $x \in X$ and radius 0 < r < 1

is defined by:

$$B(x, r, t) = \{y \in X : M(x, y, t) > 1 - r\}.$$

2) Let (X, M, *) be a fuzzy metric space and τ be the set of all A ⊂ X with x ∈ A if and only if there exist t > 0 and 0 < r < 1 such that B(x, r, t) ⊂ A. Then, τ is a topology on X induced by the fuzzy metric M.
3) A sequence {x_n} in X converges to x if and only if for any 0 < ε < 1 and t > 0, there exists n₀ ∈ N such that for all n ≥ n₀, M(x_n, x, t) > 1 - ε; i.e., M(x_n, x_m, t) → 1 as n → 1 for all t > 0.
4) A sequence {x_n} in X is called a Cauchy sequence if and only if for any 0 < ε < 1 and t > 0, there exists n₀ ∈ N such that for all n, m ≥ n₀, M(x_n, x_m, t) > 1 - ε; i.e., M(x_n, x_m, t) → 1 as n → 1 for all t > 0.
5) A fuzzy metric space (X, M, t) in which every Cauchy sequence is convergent.

5) A fuzzy metric space (X, M, t) in which every Cauchy sequence is convergent is said to be complete.

- **Definition 4.** A subset A of X is said to be F-bounded if there exists t > 0and 0 < r < 1 such that M(x, y, t) > 1 - r for all $x, y \in A$.
- **Lemma 1.** [6] Let (X, M, *) be a fuzzy metric space. Then, M(x, y, t) is non-decreasing with respect to t, for all x, y in X.

Lemma 2. [6] Let (X, M, *) be a fuzzy metric space. Then, M is a continuous function on $X^2 \times (0, \infty)$.

Theorem 3. [3] Let (X, d) and (Y, ρ) be complete metric spaces, let T be a continuous mappings of X into Y and let S be a mappings of Y into X satisfying the inequalities $d(STx, STx') \le c \max\left\{d(x, x'), d(x, STx), d(x', STx'), \rho(Tx, Tx')\right\},\$

 $\rho(TSy, TSy') \le c \max\left\{\rho(y, y'), \rho(y, TSy), \rho(y', TSy'), d(Sy, Sy')\right\},\$

for all x, x' in X and y, y' in Y, where $0 \le c \le 1$.

Then ST has a unique fixed point z in X and TS has a unique fixed point w in Y. Further, Tz = w and Sw = z.

Theorem 4. [4] Let (X, d) and (Y, ρ) be complete metric spaces, let A, B be mappings of X into Y, and let S, T be mappings of Y into X satisfying the inequalities

 $d(SAx, TBx') \le c \max\left\{d(x, x'), d(x, SAx), d(x', TBx'), \rho(Ax, Bx')\right\},\$

 $\rho(BSy, ATy') \le c \max\left\{\rho(y, y'), \rho(y, BSy), \rho(y', ATy'), d(Sy, Ty')\right\},\$

for all x, x' in X and y, y' in Y, where $0 \le c \le 1$. If one of the mappings A, B, Sand T is continuous then SA and TB have a common fixed point z in X and BS and AT have a common fixed point w in Y. Further, Az = Bz = w and Sw = Tw = z.

The following lemma will be useful in the proof of theorem 6 and theorem 7.

Lemma 5. [2] Let $\{x_n\}$ be a sequence in a fuzzy metric spaces (X, M, *) with $M(x, y, t) \rightarrow 1$ as $t \rightarrow \infty$ for all $x, y \in X$. If there exists a number $k \in (0, 1)$ such that

$$M(x_{n+1}, x_n, kt) \ge M(x_n, x_{n-1}, t),$$

for all t > 0 and n = 1, 2, 3, ... Then $\{x_n\}$ is a cauchy sequence in X.

2. Main results

Theorem 6. Let (X, M_1, θ_1) and (Y, M_2, θ_2) be complete fuzzy metric spaces with $M_1(x, x', t) \to 1$ as $t \to \infty$ for all $x, x' \in X$ and $M_2(y, y', t) \to 1$ as $t \to \infty$ for all $y, y' \in Y$. Let $T: X \to Y, S: Y \to X$ be mappings satisfying:

$$M_{1}\left(STx, STx', kt\right) \geq \min\left\{M_{1}(x, x', t), M_{1}(x, STx, t), M_{1}(x', STx', t), M_{2}(Tx, Tx', t)\right\},$$

$$M_{2}\left(TSy, TSy', kt\right) \geq \min\left\{M_{2}(y, y', t), M_{2}(y, TSy, t), M_{2}(y', TSy', t), M_{1}(Sy, Sy', t)\right\},$$

$$(2)$$

for all $x, x' \in X$, $y, y' \in Y$ and for all t > 0, where 0 < k < 1. Then ST has a unique fixed point z in X and TS has a unique fixed point w in Y. Further, Tz = w and Sw = z.

Proof. Let x be an arbitrary point in X. We define the sequences $\{x_n\}$ and $\{y_n\}$ in X and Y respectively by:

$$Sy_n = x_n, Tx_{n-1} = y_n,$$

for n=1, 2, ... Putting $x = x_n$ and $y = y_n$ for all n. Applying inequality (1),we get

$$M_1(x_{n+1}, x_n, kt) \ge \min \left\{ M_1(x_n, x_{n-1}, t), M_1(x_n, x_{n+1}, t), M_1(x_{n-1}, x_n, t), M_2(y_{n+1}, y_n, t) \right\},$$
(3)

Using inequality (2), we have

$$M_2(y_{n+1}, y_n, kt) \ge \min \left\{ M_2(y_n, y_{n-1}, t), M_2(y_n, y_{n+1}, t), M_2(y_{n-1}, y_n, t), M_1(x_n, x_{n-1}, t) \right\}$$
(4)

involve, respectively

$$M_1(x_{n+1}, x_n, kt) \ge \min \left\{ M_1(x_n, x_{n-1}, t), M_2(y_{n+1}, y_n, t) \right\},$$
(5)

$$M_2(y_{n+1}, y_n, kt) \ge \min \left\{ M_2(y_n, y_{n-1}, t), M_1(x_n, x_{n-1}, t) \right\},\tag{6}$$

using inequality (1) again, it follows that

$$M_1(x_{n-1}, x_n, kt) \ge \min \left\{ M_1(x_{n-2}, x_{n-1}, t), M_2(y_n, y_{n-1}, t) \right\}.$$
 (7)

Similary, using inequality (2), we get

$$M_2(y_{n+1}, y_n, kt) \ge \min \left\{ M_2(y_n, y_{n-1}, t), M_1(x_n, x_{n-1}, t) \right\},$$
(8)

and

$$M_2(y_n, y_{n-1}, kt) \ge \min \left\{ M_2(y_{n-1}, y_{n-2}, t), M_1(x_{n-1}, x_{n-2}, t) \right\}.$$
 (9)

Using inequalities (5) and (8), we have

$$M_1(x_{n+1}, x_n, kt) \ge \min \left\{ M_1(x_n, x_{n-1}, t), M_2(y_n, y_{n-1}, t) \right\},$$
(10)

and similarly, from inequalities (7) and (9), we get

$$M_1(x_{n+1}, x_n, kt) \ge \min \left\{ M_1(x_n, x_{n-1}, t), M_2(y_n, y_{n-1}, t) \right\}.$$
 (11)

It now follows inequalities (8),(9),(10) and (11) that

$$M_1(x_{n+1}, x_n, kt) \ge M_2(y_n, y_{n-1}, t), \tag{12}$$

$$M_2(y_{n+1}, y_n, kt) \ge M_1(x_n, x_{n-1}, t).$$
(13)

Using (12) and (13) we have for n=1, 2, ...

$$M_1(x_{n+1}, x_n, t) \ge M_1(x_n, x_{n-1}, \frac{t}{k^2}),$$
$$M_2(y_{n+1}, y_n, t) \ge M_2(y_n, y_{n-1}, \frac{t}{k^2}).$$

From Lemma 1, it follows that $\{x_n\}$ and $\{y_n\}$ are cauchy sequences in X and Y respectively. Hence $\{x_n\}$ converges to z in X and $\{y_n\}$ converges to w in Y. Now suppose that T is continuous, then

$$\lim Tx_{n-1} = Tz = \lim y_n = w,$$

and so Tz = w. Applying inequality (1), we have

$$M_1 \quad (STz, STx_{n-1}, kt) \ge \\ \min \left\{ M_1(z, x_{n-1}, t), M_1(z, STz, t), M_1(x_{n-1}, STx_{n-1}, t), M_2(Tz, Tx_{n-1}, t) \right\},$$

letting n tend to infinity, we have

$$M_1(Sw, z, kt) \ge \min\{1, M_1(z, Sw, t), 1\},\$$

so Sw = z. In the same manner we can show that Tz = w. Finally we show that the fixed point is unique. Suppose that ST has a second fixed point z' in X. Then, using inequality (1), we have

$$M_1(z, z', kt) \ge \min \left\{ M_1(z, z', t), M_2(Tz, Tz', t) \right\}.$$
(14)

Next, using inequality (2), we have

$$M_2(Tz, Tz', kt) \ge \min \left\{ M_2(Tz, Tz', t), M_2(Tz, Tz, t), M_2(Tz', Tz', t), M_1(z, z', t) \right\}.$$
(15)

It now follows easily from inequalities (14) and (15) that

$$M_1\left(z, z', kt\right) \ge M_2(Tz, Tz', t)$$

and

$$M_2(Tz,Tz',kt) \ge M_1(z,z',t).$$

Hence

$$M_1(z, z', t) \ge M_1(z, z', \frac{t}{k^2})$$

and so z = z'. The uniqueness of w follows in a similar manner.

Theorem 7. Let (X, M_1, θ_1) and (Y, M_2, θ_2) be complete fuzzy metric spaces with $M_1(x, x', t) \to 1$ as $t \to \infty$ for all $x, x' \in X$ and $M_2(y, y', t) \to 1$ as $t \to \infty$ for all $y, y' \in Y$. Let $A, B : X \to Y, S, T : Y \to X$ be mappings satisfying:

 $M_{1}\left(SAx, TBx', kt\right) \geq \min\left\{M_{1}(x, x', t), M_{1}(x, SAx, t), M_{1}(x', TBx', t), M_{2}(Ax, Bx', t)\right\},$ (16) $M_{2}\left(BSy, ATy', kt\right) \geq \min\left\{M_{2}(y, y', t), M_{2}(y, BSy, t), M_{2}(y', ATy', t), M_{1}(Sy, Ty', t)\right\},$ (17)

for all $x, x' \in X$, $y, y' \in Y$ and for all t > 0, where 0 < k < 1. If one of the mappings A, B, S and T is continuous then SA and TB have a common fixed point z in X and BS and AT have a common fixed point w in Y. Further, Az = Bz = w and Sw = Tw = z.

Proof. Let x be an arbitrary point in X. We define the sequences $\{x_n\}$, and $\{y_n\}$ in X and Y respectively by:

$$Sy_{2n-1} = x_{2n-1}, Bx_{2n-1} = y_{2n}, Ty_{2n} = x_{2n}, Ax_{2n} = y_{2n+1},$$

for n=1, 2, Putting $x = x_{2n}$ and $y = y_{2n}$ in(16), we get

 $M_1(x_{2n+1}, x_{2n}, kt) \ge \min\{M_1(x_{2n}, x_{2n-1}, t), M_1(x_{2n}, x_{2n+1}, t), M_1(x_{2n-1}, x_{2n}, t), M_2(y_{2n+1}, y_{2n}, t)\}, (18)$

Using inequality (17), we have

$$M_2(y_{2n+1}, y_{2n}, kt) \ge \min \left\{ M_2(y_{2n}, y_{2n-1}, t), M_2(y_{2n}, y_{2n+1}, t), M_2(y_{2n-1}, y_{2n}, t), M_1(x_{2n+1}, x_{2n}, t) \right\}. (19)$$

Therfore

$$M_1(x_{2n+1}, x_{2n}, kt) \ge \min \left\{ M_1(x_{2n}, x_{2n-1}, t), M_2(y_{2n+1}, y_{2n}, t) \right\},$$
(20)

$$M_2(y_{2n+1}, y_{2n}, kt) \ge \min \left\{ M_2(y_{2n}, y_{2n-1}, t), M_1(x_{2n+1}, x_{2n}, t) \right\}.$$
 (21)

Applying the inequality (16) again, it follows that

$$M_1(x_{2n-1}, x_{2n}, kt) \ge \min \left\{ M_1(x_{2n-2}, x_{2n-1}, t), M_2(y_{2n}, y_{2n-1}, t) \right\}.$$
(22)

Similary, using inequality (17), we get

$$M_2(y_{2n+1}, y_{2n}, kt) \ge \min \left\{ M_2(y_{2n}, y_{2n-1}, t), M_1(x_{2n-1}, x_{2n}, t) \right\},$$
(23)

and

$$M_2(y_{2n}, y_{2n-1}, kt) \ge \min \left\{ M_2(y_{2n-1}, y_{2n-2}, t), M_1(x_{2n-1}, x_{2n-2}, t) \right\}.$$
 (24)

Using inequalities (20) and (23) that

$$M_1(x_{2n+1}, x_{2n}, kt) \ge \min \left\{ M_1(x_{2n}, x_{2n-1}, t), M_2(y_{2n}, y_{2n-1}, t) \right\},$$
(25)

and in a similar manner, from inequalities (22) and (24), we obtain

$$M_1(x_{n+1}, x_{2n}, kt) \ge \min \left\{ M_1(x_{2n-2}, x_{2n-1}, t), M_2(y_{2n-1}, y_{2n-2}, t) \right\}.$$
 (26)

It now follows inequalities (23), (24), (25) and (26) that

$$M_1(x_{n+1}, x_n, kt) \ge M_2(y_n, y_{n-1}, t),$$
(27)

and

$$M_2(y_{n+1}, y_n, kt) \ge M_1(x_n, x_{n-1}, t).$$
(28)

Using (27) and (28) we have for n=1, 2, ...

$$M_1(x_{n+1}, x_n, t) \ge M_1(x_n, x_{n-1}, \frac{t}{k^2}),$$

and

$$M_2(y_{n+1}, y_n, t) \ge M_2(y_n, y_{n-1}, \frac{t}{k^2}).$$

From lemma 1, it follows that $\{x_n\}$ and $\{y_n\}$ are cauchy sequences in X and Y respectively. Hence $\{x_n\}$ converges to z in X and $\{y_n\}$ converges to w in Y. If A is continuous, then

$$\lim Ax_{2n} = Az = \lim y_{2n+1} = w,$$

and so Az = w. Using inequality (16), we have

$$M_1(SAz, TBx_{2n-1}, kt) \ge \min\{M_1(z, x_{2n-1}, t), M_1(z, SAz, t), M_1(x_{2n-1}, TBx_{2n-1}, t), M_2(Az, y_{2n}, t)\},\$$

 $M_1(Sw, x_{2n}, kt) \ge \min \left\{ M_1(z, x_{2n-1}, t), M_1(z, Sw, t), M_1(x_{2n-1}, x_{2n}, t), M_2(w, y_{2n}, t) \right\},\$

letting n tend to infinity, we get

$$M_1(Sw, z, kt) \ge \min\{1, M_1(z, Sw, t), 1\}$$

and so Sw = z. Similarly we can show that Az = w. Now, SAz = Sw = zand ASw = Az = w The same result hold also if one of the mappings B, S, T is continuous. To prove the uniqueness of z, suppose that SA has a second fixed point z' in X. Then, using inequality (16), we have

$$M_1(SAz, TBz', kt) \ge \\\min\{M_1(z, z', t), M_1(z, SAz, t), M_1(z', TBz', t), M_2(Az, Bz', t)\}.$$
 (29)

Next, using inequality (17), we have

$$M_2(Bz, Az', kt) \ge \min\{M_2(y, y', t), M_2(y, Bz, t), M_2(y', Az', t), M_1(z, z', t)\}.$$
(30)

$$M_2(Az, Bz', kt) \ge \min \left\{ M_2(Az, Bz', t), M_2(Az, Bz, t), M_2(Az', Az', t), M_1(z, z', t) \right\}.$$
(31)

It now follows easily from inequalities (29) and (30) that

$$M_1(z, z', kt) \ge \min\{1, M_1(z, z', t), M_2(Az, Bz', t)\}$$

and

$$M_1(Az, Bz', kt) \ge \min\{1, M_1(z, z', t), M_2(Az, Bz', t)\}.$$

Then

$$M_1(z, z', kt) \ge M_2(Az, Bz', t)$$

Similarly, we have

$$M_2(Az, Bz', kt) \ge M_1(z, z', t)$$

Hence

$$M_1(z, z', t) \ge M_1(z, z', \frac{t}{k^2}),$$

and so z = z'. The uniqueness of w follows in a similar manner.

The following example illustrate the theorem 6 theorem 7.

Example 2. Let X = Y = [0,1] and $M_1(x, y, t) = M_2(x, y, t) = \frac{t}{t+|x-y|}$. For all $x \in X$ and for all t > 0, let A, B be mappings of X into Y define by:

$$Ax = Bx = \begin{cases} \frac{x}{2} & if \ x \in (0, \frac{1}{2}] \\ \frac{1}{2} & if \ x = 0 \end{cases},$$

and for all $y \in Y$ and for all t > 0, let S, T be mappings of Y into X define by: $Sy = Ty = \frac{1}{2}$. In this example, the inequality (16) is satisfied since the value of the left hand side of inequality is 1 and the inequality (17) is satisfied. Clearly, $SA(\frac{1}{2}) = TB(\frac{1}{2}) = \frac{1}{2}$, $BS(\frac{1}{4}) = AT(\frac{1}{4}) = \frac{1}{4}$, $A(\frac{1}{2}) = B(\frac{1}{2}) = \frac{1}{4}$ and $S(\frac{1}{4}) = T(\frac{1}{4}) = \frac{1}{2}$.

References

[1] A. Aliouche and B. Fisher, *Fixed point theorems for mappings satisfying implicit relation on two complete and compact metric spaces*, Applied Mathematics and Mechanics., 27 (9) (2006), 1217-1222.

[2] Y. J. Cho, Fixed points in fuzzy metric spaces, J. Fuzzy. Math., 5 (4) (1997), 949-962.

[3] B. Fisher, *Fixed point on two metric spaces*, Glasnik Mat., 16 (36) (1981), 333-337.

[4] B. Fisher, P. P. Murthy, Related fixed point theorems for two pairs of mappings on two metric spaces, Kyungpook Math. J. 37 (1997), 343-347.

[5] A. George, P. Veeramani, On some result in fuzzy metric space, Fuzzy Sets Syst., 64 (1994), 395-399.

[6] M. Grabiec, *Fixed points in fuzzy metric spaces*, Fuzzy Sets Syst., 27 (1988), 385-389.

[7] I. Kramosil, J. Michalek, *Fuzzy metric and statistical metric spaces*, Kybernetica., 11 (1975), 326-334.

[8] V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Math, 32 (1999),157-163.

[9] V. Popa, A general fixed point theorem for two pairs of mappings on two metric spaces, Novi Sad J. Math., Vol. 35, No. 2, (2005), 79-83.

[10] L. J. Rodriguez, S. Ramaguera, *The Hausdor fuzzy metric on compact sets*, Fuzzy Sets Sys., 147 (2004), 273-283.

[11] B. Schweizer, A. Sklar, *Statistical metric spaces*, Pacific J. Math. 10 (1960), 313-334.

[12] M. Telci, *Fixed points on two complete and compact metric spaces*, Applied Mathematics and Mechanics., 22 (5) (2001), 564-568.

[13] L. A. Zadeh, *Fuzzy sets*, Inform and Control., 8 (1965), 338-353.

Taieb Hamaizia

Department of Mathematics, Faculty of Sciences, Larbi Ben M'hidi University, Oum Elbouaghi, Algeria email: tayeb042000@yahoo.fr

Abdelkrim Aliouche Department of Mathematics, Faculty of Sciences, Larbi Ben M'hidi University, Oum Elbouaghi, Algeria email: *alioumath@yahoo.fr*