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Abstract. There are few techniques available to numerically solve sixth-order
boundary-value problems with two-point boundary conditions. In this paper we
show that the Legendre-Galerkin method is a very effective tool in numerically solv-
ing such problems. The method is then tested on examples with non-homogeneous
boundary conditions and a comparison with other methods are made. It is shown
that the Legendre-Galerkin method yields better results.
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1. Introduction

High-order differential equations often arise from mathematical modelling of a vari-
ety of physical phenomena. Sixth-order boundary value problems (BVPs) are known
to arise in astrophysics; the narrow convecting layers bounded by stable layers, which
are believed to surround A-type stars, may be modelled by sixth-order BVPs [4, 16].
Dynamo action in some stars may be modelled by such equations [9]. Moreover,
when an infinite horizontal layer of fluid is heated from below and is subjected to
the action of rotation, instability sets in. When this instability is of ordinary convec-
tion, then the governing ordinary differential equation is of sixth order [14]. Further
discussion of the sixth-order BVPs are given in [3].

The literature of numerical analysis contains little on the solution of the sixth-
order BVPs [4, 5, 14, 16]. Theorems that list conditions for the existence and
uniqueness of solutions of such problems are thoroughly discussed in [1], but no
numerical methods are contained therein.

Many numerical methods have been developed for solving sixth-order equation
(1) numerically. Each of these methods has its inherent advantages and disadvan-
tages and the search for alternative, more general, easier and more accurate methods
is a continuous and ongoing process. Next, we present a selective review of the main
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and the most recent methods. These methods include: Finite difference methods
[4, 5], modified decomposition method [18], homotopy perturbation method [10],
non-polynomial splines approach [17], septic spline [13],variational iteration method
[11] and sinc-Galerkin method [7]. The present work describes Legendre-Galerkin
method for the solution of linear sixth-order ordinary differential equations of the
form

Lu(x) = u(6)(x) +

5∑
k=0

µk(x)u(k)(x) = f(x), −1 ≤ x ≤ 1, (1)

subject to boundary conditions

u(i)(−1) = u(i)(1) = 0, i = 0, 1, 2 (2)

where f(x) and u(x) are continuous functions in L2(−1, 1), and µk(x) is xn.
To our best knowledge this is the first result on the application of Legendre-

Galerkin for solving linear sixth-order boundary value problems.
The paper is organized into five sections. Section 2 contains notation, definitions,

some results of Legendre polynomial, new lemmas and new theorems required for
our subsequent development. In Section 3, we use the Legendre-Galerkin method to
solve linear sixth-order and obtain the discrete system. Section 4 presents appropri-
ate techniques to treat nonhomogenuous boundary condition and change interval.
In Section 5, we give four numerical examples which will be tested to verify the
reliability of the proposed algorithm.

2. Preliminaries and Fundamentals

Orthogonal polynomials are widely used in applications in mathematics, math-
ematical physics, engineering and computer science. One of the most common or-
thogonal polynomial set is the Legendre polynomials. The Legendre polynomials
Pn(x) satisfy the Legendre differential equation

(1− x2)y′′ − 2xy′ + n(n− 1)y = 0,−1 ≤ x ≤ 1, n ≥ 0

with recurrence relations

P ′n+1(x)− P ′n−1(x) = (2n+ 1)Pn(x), (3)

xP ′n(x)− P ′n−1(x) = nPn(x) (4)

These polynomial are orthogonal on [−1, 1]∫ 1

−1
Pm(x)Pn(x)dx =

{
2

2n+1 , if m = n,

0, if m 6= n
(5)
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and ∫ 1

−1
Pn(x)dx =

{
2, n = 0,

0, n > 0
(6)

Lemma 1. Let n and l be any two positive integer numbers such that n − l ≤ N
and l > 0, then ∫ 1

−1
Pn(x)P ′′n−l(x)dx = 0.

Proof. Integrating the left term by parts and using equation (6) can prove the above
lemma.

Lemma 2. Let n and m be any two integer numbers such that n ≥ m, then∫ 1

−1
Pn(x)P ′m(x)dx = 0.

Proof. First, let n = m. Integrating the left hand side in Lemma 6 two times by
parts yields∫ 1

−1 Pn(x)P ′n(x)dx = 1
2 [(Pn(x))2]1−1 = 0⇒

∫ 1
−1 Pn(x)P ′m(x)dx = 0.

Second, let n > m. Using the recurrence equation (3) and (6), the left term in
Lemma 6 can be written as∫ 1

−1
Pn(x)P ′m(x)dx =

∫ 1

−1
Pn(x)[(2m+ 1)Pm−1(x) + P ′m−2(x)]dx

=

∫ 1

−1
Pn(x)P ′m−2(x)dx =

∫ 1

−1
Pn(x)P ′m−4(x)dx

= · · · =

{ ∫ 1
−1 Pn(x)P ′0(x)dx, if m = even,∫ 1
−1 Pn(x)P ′1(x)dx, if m = odd

= 0.

Theorem 3. Let n and m be any two integer numbers such that n,m ≤ N , then

(i)
1∫
−1
P ′n(x)Pm(x)dx =

{
2, if n = m+ i,

0, if n 6= m+ i or m ≥ n

(ii)
∫ 1
−1 P

′′
n (x)Pm(x)dx =

{
n(n+ 1)−m(m+ 1), if n 6= m+ i,

0, if n = m+ i or m ≥ n

where i = 1, 3, 5, · · · , 2k + 1 ≤ N −m
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Proof. (i) Integrating the left hand side for (i) by parts yields∫ 1

−1
P ′n(x)Pm(x)dx = [Pn(x)Pm(x)]1−1 −

∫ 1

−1
Pn(x)P ′m(x)dx

= [1 + (−1)n+m+1]−
∫ 1

−1
Pn(x)P ′m(x)dx (7)

For n = m+ i, i = 1, 3, 5, · · · ≤ N −m, by using Lemma (6), the integration (7) can
be written as ∫ 1

−1
P ′n(x)Pm(x)dx = 2

As in the above case and Lemma (6) is considered but n = m + i, i = 0, 2, 4, · · · ≤
N −m, yields ∫ 1

−1
P ′n(x)Pm(x)dx = 0

For m ≥ n, previous cases must be considered besides Lemma 6. So, the right
hand side of equation (7) is equal to zero. (ii)To prove this point, the proof must
be divided into four cases. First, let n = m + i, i = 2, 4, 6, · · · , 2k + 1 ≤ N − m.
Integrating the left hand side by parts two times and using Lemma 1 produce∫ 1

−1
P ′′n (x)Pm(x)dx = [P ′n(x)Pn−i(x)]1−1 −

∫ 1

−1
P ′n(x)P ′n−i(x)dx

= n(n+ 1)− [Pn(x)P ′n−i(x)]1−1 +

∫ 1

−1
Pn(x)P ′′n−i(x)dx

= n(n+ 1)−m(m+ 1).

Second, let n = m + i, i = 1, 3, 5, · · · , 2k + 1 ≤ N − m. As in the first case, but
the value of i is odd numbers. So, the integration is zero. Third, let m > n. By
using equation (6) and integrating the left side, the result is equal to zero. Finally,
at m = n, the value of the integration also is equal to zero by using the integration
by parts.

To solve the fourth-order equation, we need the following theorem

Theorem 4. [Gamel-Fathy formula (1)] Let n and m be any two integer num-
bers such that n,m ≤ N , then
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(i)
1∫
−1
P ′′′n (x)Pm(x)dx =



1
4

3∏
i=0

(n− i+ 2)−
[m2 ]∑
k=1

(4k − 1)
[
n(n+ 1)

−2k(2k − 1)
]
, m = even,n = odd, 2k − 1 < n,

1
4

3∏
i=0

(n− i+ 2)−
[m2 ]∑
k=0

(4k + 1)
[
n(n+ 1)

−2k(2k + 1)
]
, m = odd,n = even, 2k < n,

0, otherwise

(ii)
1∫
−1
P ′′′′n (x)Pm(x)dx =



1
24

5∏
i=0

(n− i+ 3)−
[m2 ]∑
k=1

(4k − 1)
[
1
4

3∏
i=0

(n− i+ 2)

−
[ 2k−1

2 ]∑
r=0

(4r + 1)
(
n(n+ 1)− 2r(2r + 1)

)]
,

m andn are even, 2r < n,

1
24

5∏
i=0

(n− i+ 3)−
[m2 ]∑
k=0

(4k + 1)
[
1
4

3∏
i=0

(n− i+ 2)

−
k∑
r=1

(4r − 1)
(
n(n+ 1)− 2r(2r − 1)

)]
,

m andn are odd, 2r − 1 < n,

0, otherwise

Proof. At the beginning the first derivative of Legendre Polynomials can be written
as

P ′m(x) =



[m2 ]∑
k=1

(4k − 1)P2k−1(x), m =even

[m2 ]∑
k=0

(4k + 1)P2k(x), m =odd

(8)

(i) Integrating the left hand side for (i) by parts yields

1∫
−1

P ′′′n (x)Pm(x)dx = [P ′′n (x)Pm(x)]1−1 −
1∫
−1

P ′′n (x)P ′m(x)dx (9)
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By recalling (8), the value of the second term in right hand side in (9) has two cases.

1∫
−1

P ′′n (x)P ′m(x)dx =



[m2 ]∑
k=1

(4k − 1)
1∫
−1
P ′′n (x)P2k−1(x)dx, m =even

[m2 ]∑
k=0

(4k + 1)
1∫
−1
P ′′n (x)P2k(x), m =odd

(10)

By using theorem 3 (ii), (10) can be written as

1∫
−1

P ′′n (x)P ′m(x)dx =



[m2 ]∑
k=1

(4k − 1)
(
n(n+ 1)− 2k(2k − 1)

)
,

m = even, n = odd, 2k − 1 < n

[m2 ]∑
k=0

(4k + 1)
(
n(n+ 1)− 2k(2k + 1)

)
,

m = odd, n = even, 2k < n

(11)
The following table shows the second derivative of the polynomial at x = −1 and
x = 1

P ′′n (x) P ′′n (1) P ′′n (−1)

P ′′0 (x) = 0 P ′′0 (1) = 0 P ′′0 (−1) = 0
P ′′1 (x) = 0 P ′′1 (1) = 0 P ′′1 (−1) = 0
P ′′2 (x) = 3P0(x) P ′′2 (1) = 3 P ′′2 (−1) = 3
P ′′3 (x) = 15P ′′1 (x) P ′′3 (1) = 15 P ′′3 (−1) = −15
P ′′4 (x) = 35P ′′2 (x) + 10P ′′0 (x) P ′′4 (1) = 45 P ′′4 (−1) = 45
P ′′5 (x) = 63P ′′3 (x) + 42P ′′1 (x) P ′′5 (1) = 105 P ′′5 (−1) = −105
P ′′6 (x) = 99P ′′4 (x) + 90P ′′2 (x) + 21P ′′0 (x) P ′′6 (1) = 210 P ′′6 (−1) = 210
P ′′7 (x) = 143P ′′5 (x) + 154P ′′3 (x) + 81P ′′1 (x) P ′′7 (1) = 378 P ′′7 (−1) = −378

By using Lagrange interpolation, P ′′n (1) can be written as 1
8n(n− 1)(n+ 1)(n+ 2).

So, The first term in right hand side in (9) is

[P ′′n (x)Pm(x)]1−1 = P ′′n (1)Pm(1)− P ′′n (−1)Pm(−1) = P ′′n (1)− (−1)mP ′′n (−1)

=
1

8
n(n− 1)(n+ 1)(n+ 2)− (−1)n+m

1

8
n(n− 1)(n+ 1)(n+ 2)

=
1

8
(1− (−1)n+m)n(n− 1)(n+ 1)(n+ 2) (12)

By recalling (11) beside (12), we can prove (i).
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(ii) The integration in the left side in (ii) can be written as

1∫
−1

P ′′′′n (x)Pm(x)dx = Λn,m −



[m2 ]∑
k=1

(4k − 1)
1∫
−1
P ′′′n (x)P2k−1(x)dx, m =even

[m2 ]∑
k=0

(4k + 1)
1∫
−1
P ′′′n (x)P2k(x), m =odd

(13)

where

Λn,m =
1

48
(1 + (−1)n+m)

5∏
i=0

(n− i+ 3) (14)

Λn,m results from the interpolation of the third derivative of Legendre polynomials at
x = 1. By collecting theorem 4 (i), (13) beside (14), theorem 4 (ii) can be proved.

To solve the sixth order equation (1)-(2), we need the following theorem

Theorem 5. [Gamel-Fathy formula (2)] Let n and m be any two integer num-
bers such that n,m ≤ N , then

(i)
1∫
−1
P ′′′′′n (x)Pm(x)dx =



1
192

7∏
i=0

(n− i+ 4)−
[m2 ]∑
k=0

(4k + 1)

[
1
24

5∏
i=0

(n− i+ 3)

−
k∑
r=1

(4r − 1)
[
1
4

3∏
i=0

(n− i+ 2)

−
[ 2r−1

2 ]∑
s=0

(4s+ 1)
(
n(n+ 1)− 2s(2s+ 1)

)]]
,

m = even,n = odd, 2s < n,

1
192

7∏
i=0

(n− i+ 4)−
[m2 ]∑
k=0

(4k + 1)

[
1
24

5∏
i=0

(n− i+ 3)

−
2k−1

2∑
r=1

(4r − 1)
[
1
4

3∏
i=0

(n− i+ 2)

−
r∑
s=0

(4s+ 1)
(
n(n+ 1)− 2s(2s+ 1)

)]]
,

m = odd,n = even, 2s− 1 < n,

0, otherwise

151



M. El-Gamel, M.S. El-Azab, M. Fathy – The solution of . . .

(ii)
1∫
−1
P ′′′′′′n (x)Pm(x)dx =



1
1920

9∏
i=0

(n− i+ 5)−
[m2 ]∑
k=1

(4k − 1)

[
1

192

7∏
i=0

(n− i+ 4)

−
[ 2k−1

2 ]∑
r=0

(4r + 1)

[
1
24

5∏
i=0

(n− i+ 3)

−
r∑
s=1

(4s− 1)
[
1
4

3∏
i=0

(n− i+ 2)

−
[ 2s−1

2 ]∑
v=0

(4v + 1)
(
n(n+ 1)− 2v(2v + 1)

)]]]
,

m andn are even, 2v < n,

1
1920

9∏
i=0

(n− i+ 5)−
[m2 ]∑
k=0

(4k + 1)

[
1

192

7∏
i=0

(n− i+ 4)

−
k∑
r=1

(4r − 1)

[
1
24

5∏
i=0

(n− i+ 3)

−
2r−1

2∑
s=0

(4s+ 1)
[
1
4

3∏
i=0

(n− i+ 2)

−
v∑
v=1

(4v − 1)
(
n(n+ 1)− 2v(2v − 1)

)]]]
,

m andn are odd, 2v − 1 < n,

0, otherwise

Proof. To prove (i), we transfer one derivative from Pn to Pm by using integration
by parts to use (8). So, we can write the left-hand side of (i) as

1∫
−1

P ′′′′′n (x)Pm(x)dx = Υn,m −



[m2 ]∑
k=1

(4k − 1)
1∫
−1
P ′′′′n (x)P2k−1(x)dx, m =even

[m2 ]∑
k=0

(4k + 1)
1∫
−1
P ′′′′n (x)P2k(x), m =odd

(15)

where

Υn,m =
1

384
(1− (−1)n+m)

7∏
i=0

(n− i+ 4) (16)

which comes from the intepolation of P ′′′′n (1). By gathering theorem 4, (15) and
(16), we can prove the required.
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We can prove theorem 5(ii) in a similar manner of theorem 5(i).

3. Legendre-Galerkin method

This section presents how Legendre basis can be used beside Galekin method to solve
the sixth-order differential equation (1) with the boundary conditions (2). First,we
assume the solution of (1) is approximate by the finite expansion of Legendre basis
function

u(x) =
n∑
j=0

cjPj(x) (17)

The unknown coefficients cj in equation (17) are determined by orthogonalizing the
residual with respect to the basis functions

〈u(6)(x), Pr(x)〉+
5∑

k=0

〈µk(x)u(k)(x), Pr(x)〉 − 〈f(x), Pr(x)〉 = 0 (18)

where

〈ζ, η〉 =

∫ 1

−1
ζ · η dx

The method of approximating the integrals in (18) begins by integrating by parts
to transfer all derivatives from u to Pr. The approximation of the last four inner
products on the left-hand side of (18) has been thoroughly treated in [8]. We will
list them for convenience〈

µ2(x)u′′(x), Pr(x)
〉

=

∫ 1

−1
u(x)[µ2(x)Pr(x)]′′dx, (19)

〈
µ1(x)u′(x), Pr(x)

〉
= −

∫ 1

−1
u(x)[µ1(x)Pr(x)]′dx, (20)

〈µ0(x)u(x), Pr(x)〉 =

∫ 1

−1
µ0(x)u(x)Pr(x) d x, (21)

and

〈f(x), Pr(x)〉 '
m∑
i=0

f(xi)
2

[(1− x2i )(P ′m(xi))2]
, (22)

To solve the equation (1)-(2), we need the following lemma
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Lemma 6. The following relations hold

〈
u(6)(x), Pr(x)

〉
=

5∑
k=3

(−1)k+1
[
u(k)(x)P (5−k)

r (x)
]1
−1

+

∫ 1

−1
u(x)P (6)

r (x)dx, (23)

〈
µ5(x)u(5)(x), Pr(x)

〉
=

4∑
k=3

(−1)k
[
u(k)(x)(µ5(x)Pr(x))(4−k)

]1
−1
−

∫ 1

−1
u(x)[µ5(x)Pr(x)](5)dx, (24)

〈
µ4(x)u(4)(x), Pr(x)

〉
=
[
u(3)(x)µ4(x)Pr(x)

]1
−1

+

∫ 1

−1
u(x)[µ4(x)Pr(x)](4)dx, (25)

〈
µ3(x)u(3)(x), Pr(x)

〉
= −

∫ 1

−1
u(x)[µ3(x)Pr(x)]′′′dx (26)

Proof. For u(6), the inner product with Legendre basis elements is given by〈
u(6), Pr(x)

〉
=

∫ 1

−1
u(6)Pr(x) dx.

Integrating by parts to remove the sixth derivatives from the dependent variable u
leads to the equality

∫ 1

−1
u(6)(x)Pr(x) d x = BT,6 +

5∑
k=3

(−1)k+1
[
u(k)(x)P (5−k)

r (x)
]1
−1

+

∫ 1

−1
u(x)P (6)

r (x)dx (27)

where the boundary term

BT,6 =

[
2∑

k=0

(−1)k+1u(k)(x)P (5−k)
r (x)

]1
−1

is zero because the three terms vanish due to the fact that u satisfies the boundary
conditions (2) .
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The inner product for
{
µ5(x)u(5)(x)

}
may be handled in a similar manner to

yield∫ 1

−1
µ5(x)u(5)(x)Pr(x) d x = BT,5 +

4∑
k=3

(−1)k
[
u(k)(x)(µ5(x)Pr(x))(4−k)

]1
−1

−
∫ 1

−1
u(x)(µ5(x)Pr(x))(5)dx, (28)

where the boundary term is

BT,5 =

[
2∑

k=0

(−1)k u(k)(x)(µ5(x)Pr(x))(4−k)

]1
−1

= 0.

Similarly, for
{
µ4(x)u(4)(x)

}
, after four integrations by parts to remove the four

derivatives from the dependent variable u, we have the equality〈
µ4(x)u(4)(x), Pr(x)

〉
= BT,4 +

[
u(3)(x)µ4(x)Pr(x)

]1
−1

+

∫ 1

−1
u(x)[µ4(x)Pr(x)](4)dx,

(29)
where the boundary term is

BT,4 =

[
2∑

k=0

(−1)k+1 u(k)(x)(µ4(x)Pr(x))(3−k)

]1
−1

= 0.

then (29) may be written as (25).

Replacing each term of (18) with the approximation defined in (19)-(26), we
obtain the following theorem

Theorem 7. If the assumed approximate solution of the boundary-value problem
(1)-(2) is (17), then the discrete Legendre-Galerkin system for the determination of
the unknown coefficients {cj}nj=0is given by

n∑
j=0

[
5∑

k=3

(−1)k+1
[
P

(k)
j (x)P (5−k)

r (x)
]
1
−1 +

4∑
k=3

(−1)k
[
P

(k)
j (x)(µ5(x)Pr(x))(4−k)

]
1
−1+

[
P

(3)
j µ4(x)Pr(x)

]1
−1

+

∫ 1

−1

6∑
σ=0

(−1)σPj(x) [µσ(x)Pr(x)](σ) d x

]
cj

=
m∑
q=0

2f(xq)Pr(xq)

[(1− x2q)(P ′m(xq))2]
, µ6(x) = 1, 0 ≤ r ≤ n. (30)
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The system in (30)takes the matrix form

A c = b (31)

where

A =



e0, 0 + v0, 0 e1, 0 + v1, 0 . . . en, 0 + vn, 0
e0, 1 + v0, 1 e1, 1 + v1, 1 . . . en, 1 + vn, 1
e0, 2 + v0, 2 e1, 2 + v1, 2 . . . en, 2 + vn, 2
e0, 3 + v0, 3 e1, 3 + v1, 3 . . . en, 3 + vn, 3

...
...

. . .
...

e0, n + v0, n e1, n + v1, n . . . en, n + vn, n


(32)

and

ej,r =

6∑
k=0

(−1)k
∫ 1

−1
Pj(µk(x)Pr(x))(k)dx, µ6(x) = 1,

vj,r =

[
5∑

k=3

(−1)k+1P
(k)
j (x)P (5−k)

r (x) +
4∑

k=3

(−1)kP
(k)
j (x)(µ5(x)Pr(x))(4−k)

+P
(3)
j (x)µ4(x)Pr(x)

]1
−1

ej,r can be evaluated from theorems and lemmas in section 2 and the boundary term
vj,r for case µi(x) = xn can be calculated as

[
P

(3)
j (x)µ4(x)Pr(x)

]1
−1

=
1

48

[
1 + (−1)n+r+j

] 5∏
i=0

(j − i+ 3),

4∑
k=3

(−1)k
[
P

(k)
j (x)(µ5(x)Pr(x))(4−k)

]1
−1

=
1

384

[
1− (−1)n+r+j

] 7∏
i=0

(j − i+ 4)

− 1

96

[(
2n+ r(r + 1))(1 + (−1)n+r+j−1

)] 5∏
i=0

(j − i+ 3),
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and

5∑
k=3

(−1)k+1
[
P

(k)
j (x)P (5−k)

r (x)
]1
−1

=
1

3840

[
1 + (−1)r+j

] 9∏
i=0

(j − i+ 5)

− 1

768

[
1− (−1)r+j−1

]
r(r + 1)

7∏
i=0

(j − i+ 4)

+
1

384
(1− (−1)r+j−1)

(
3∏
i=0

(r − i+ 2)

)(
5∏
i=0

(j − i+ 3)

)

Now we have a linear system (30) of n equations for n unknown coefficients. We can
obtain the coefficient of the approximate solution by solving this linear system by
Q-R method. The solution c = (c0, . . . , cn)τ gives the coefficients in the approximate
Legendre-Galerkin solution u(x).

4. Treatment of the Boundary Conditions and Solution Domain

In the previous section, we put our algorithm of the solution depends on the ho-
mogeneous boundary with solution domain [−1, 1]. If the boundary conditions are
nonhomogeneous or the solution domain is [a, b], then these conditions need be con-
verted to homogeneous conditions via an interpolation by a known function and the
domain of solution must be convert to [−1, 1]. For example, consider

Lu(y) = u(6)(y) +
5∑

k=0

µk(y)u(k)(y) = f(y), a ≤ y ≤ b (33)

subject to boundary conditions

u(i)(a) = θi, u(i)(b) = φi, i = 0, 1, 2 (34)

By using the linear transformation y = b−a
2 x+ b+a

2 , the problem (33) can be written
as

Lu(x) =

(
2

b− a

)6

u(6)(x) +
5∑

k=0

µk(X)

(
2

b− a

)k
u(k)(x) = f(X), −1 ≤ x ≤ 1

(35)
where

X =
b− a

2
x+

b+ a

2
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subject to the boundary conditions

u(i)(−1) =

(
2

b− a

)i
θi = Θi, u(i)(1) =

(
2

b− a

)i
φi = Φi, i = 0, 1, 2 (36)

The nonhomogeneous boundary conditions in (36) can be transformed to homoge-
neous boundary conditions by the change of dependent variable

Ψ(x) = u(x)− Ω(x) (37)

where Ψ(x) is the interpolating polynomial that satisfies Ψ(−1) = Θi and Ψ(1) =
Φi, i = 0, 1, 2. It is easy to see that

Ω(x) =
5∑
i=0

ρi x
i

and

ρ0 =
1

16
(8Θ0 + 5Θ1 + Θ2 + 8Φ0 − 5Φ1 + Φ2),

ρ1 =
1

16
(−15Θ0 − 7Θ1 −Θ2 + 15Φ0 − 7Φ1 + Φ2),

ρ2 =
1

8
(−3Θ1 −Θ2 + 3Φ1 − Φ2),

ρ3 =
1

8
(5Θ0 + 5Θ1 + Θ2 − 5Φ0 + 5Φ1 − Φ2),

ρ4 =
1

16
(Θ1 + Θ2 − Φ1 + Φ2),

ρ5 =
1

16
(−3Θ0 − 3Θ1 −Θ2 + 3Φ0 − 3Φ1 + Φ2)

The new problem with homogeneous boundary conditions is then

LΨ(x) = Ψ(6)(x) +
5∑

k=0

µk(x) Ψ(k)(x) = f̃(x), −1 ≤ x ≤ 1 (38)

subject to boundary conditions

Ψ(i)(−1) = 0, Ψ(i)(1) = 0, i = 0, 1, 2 (39)

where

f̃(x) = f(x)− LΩ(x)

= f(x)−
5∑

κ=0

µκ(x)Ω(κ)(x)
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Now apply the Legendre-Galerkin method to (38). We define an approximate solu-
tion of (38) via the formula

Ψ(x) =

n∑
j=0

cjPj(x) (40)

Then, the approximate solution of (37) is

u(x) =

n∑
j=0

cjPj(x) + Ω(x) (41)

By using the inverse linear transformation x = 2
b−ay −

b+a
b−a , we can find u(y) that is

the approximate solution of (33).

Algorithm

• compute
∫ 1
−1 P

(i)
n (x)Pm(x)dx, for i = 0, 1, 2, . . . , 6

• if the domain is [a, b], y = b−a
2 x+ b+a

2

• if nonhomogeneous boundary, Ψ(x) = u(x)− Ω(x)

• assume Ψ(x) = c0P0(x) + c1P1(x) + . . .+ cnPn(x) and n < N ∈ Z

• apply LΨ(x)

• evaluate A and b

• solve A c = b

• OUTPUT: the values of c0, c1, c2, ..., cn

• u(x) = Ψ(x) + Ω(x)

• use the transformation x = 2
b−ay −

b+a
b−a

• end

5. Numerical Examples

The four examples included in this section were selected in order to illustrate
the performance of the Legendre-Galerkin method in solving sixth-order boundary-
value problems. In all example, demonstrate that the Legendre-Galerkin method

159



M. El-Gamel, M.S. El-Azab, M. Fathy – The solution of . . .

can be applied to solve nonhomogeneous boundary conditions. Absolute error is
calculated to show the accuracy by

||ELG|| = |uexact(x)− uLegendre-Galerkin(x)|

We also compare our method with other method introduce in [12, 10, 11, 7, 18, 2, 17].
It is shown that the Legendre-Galerkin method yields better results.

Example 1. [10, 11] Consider the following special sixth-order boundary value
problem involving a parameter c

u(6) = (1 + c)u(4) − c u′′ + c x, 0 ≤ x ≤ 1,

subject to the boundary conditions

u(0) = u′(0) = u′′(0) = 1

u(1) =
7

6
+ sinh(1), u′(1) =

1

2
+ cosh(1), u′′(x) = 1 + sinh(1)

whose exact solution is

u(x) = 1 +
x3

6
+ sinh(x)

Table 1 exhibit the numerical results for small and large values of c = 1, 10, 100, 1000,
1000000. Tables 2 and 3 exhibit the maximum absolute error for small and large
values of c.

Table 1: Maximum absolute errors for example 1 at different n and c
n c = 1 c = 10 c = 100 c = 1000 c = 1000000

8 1.081E-02 3.960E-05 1.902E-07 8.731E-08 8.077E-08
10 3.726E-10 3.874E-10 2.152E-09 1.884E-11 1.496E-11
12 3.108E-14 3.241E-14 3.641E-14 1.376E-14 5.440E-15
14 6.661E-16 3.330E-15 1.776E-15 2.442E-15 1.998E-15

Example 2. [2, 17] Consider the following linear boundary value problem of sixth
order

u(6) + xu = −
(
24 + 11x+ x3

)
ex, 0 ≤ x ≤ 1,

subject to the boundary conditions

u(0) = u(1) = 0,

u′(0) = 1, u′(1) = −e,
u′′(0) = 0, u′′(1) = −4 e
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Table 2: Comparison maximum absolute error for example 1
Method c = 1 c = 10 c = 100

Legendre-Galerkin, n = 14 6.66E-16 3.33E-15 1.77E-15
Homotopy perturbation [11] 1.70E-08 1.7E-05 1.1E-03
Adomian decomposition [11] 1.7E-08 1.1E-05 1.1E-03
Differential transformation [11] 1.0E-04 1.5E-04 1.7E-03
Variational [11] 1.9E-08 1.1E-05 1.0E-03

Table 3: Comparison maximum absolute error for example 1
Method c = 1000 c = 1000000

Legendre-Galerkin, n = 14 2.44E-15 1.99E-15
Homotopy perturbation [11] 1.0E-01 6.5E+04
Adomian decomposition [11] 1.0E-01 6.5E+04
Differential transformation [11] 1.0E-03 1.2E-03
Variational [11] 1.0E-01 6.5E+04

whose exact solution is
u(x) = x (1− x) exp(x)

The maximum errors are listed in Table 4 for different values of n. Table 5 shows
the comparison between Legendre-Galerkin method and non-polynomial splines method
in [2].

Table 4: Maximum absolute errors for example 2 for different n
n Legendre-Galerkin ‖ELG‖

10 1.045E-07

12 1.780E-09

14 7.155E-13

16 9.436E-16

Table 5: Comparison maximum absolute error for example 2
Legendre-Galerkin,n = 16 non-polynomial splines

9.436E-16 4.410E-11

Example 3. [2, 17] Consider the following linear boundary value problem of sixth
order

u(6) + u = 6 [2x cos x+ 5 sin x] , −1 ≤ x ≤ 1,
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subject to the boundary conditions

u(−1) = u(1) = 0,

u′(−1) = 2 sin(1), u′(1) = 2 sin(1),

u′′(−1) = −4 cos(−1) + 2 sin(−1)

u′′(1) = 4 cos(1) + 2 sin(1)

whose exact solution is
u(x) =

(
x2 − 1

)
sin(x)

The maximum errors are listed in Table 6 for different values of n. Table 7 shows
the comparison between Legendre-Galerkin method , non-polynomial splines method
in [17] and septic spline in [13].

Table 6: Maximum absolute errors for example 3 at different n
n Legendre-Galerkin ‖ELG‖
8 4.298E-03

10 1.236E-06

12 7.329E-10

14 4.669E-13

16 1.831E-15

Table 7: Comparison maximum absolute error for example 3
Legendre-Galerkin,n = 16 non-polynomial splines septic spline

1.831E-15 9.200E-09 7.17E-08

Example 4. [13] Consider the following linear boundary value problem of sixth
order

u(6)+(5x+1)u =
[
185x− 25x2 + 10x4

]
cos x+

(
270− 36x2

)
sin x, −1 ≤ x ≤ 1,

subject to the boundary conditions

u(−1) = 4 cos(1), u(1) = −2 cos(1),

u′(−1) = cos(1) + 4 sin(1), u′(1) = cos(1) + 2 sin(1),

u′′(−1) = −16 cos(1) + 2 sin(1)

u′′(1) = 14 cos(1)− 2 sin(1)
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whose exact solution is

u(x) =
(
2x3 − 5x+ 1

)
cos(x)

The maximum errors are listed in Table 8 for different values of n. Table 9 shows
the comparison between Legendre-Galerkin method and septic spline method in [13].

Table 8: Maximum absolute errors for example 4 at different n
n Legendre-Galerkin ‖ELG‖
8 5.147E-01

10 2.309E-05

12 1.643E-08

14 1.231E-11

16 1.110E-14

18 9.769E-15

Table 9: Comparison maximum absolute error for example 4
Legendre-Galerkin,n = 18 Septic spline

9.769E-15 8.68E-07

6. Conclusion

In this paper, Legendre-Galerkin method has been successfully used for finding the
solution of linear sixth-order boundary value problems. Comparison of the results
obtained by the present method with those obtained by the septic splines method,
non-polynomial splines method, modified decomposition method, homotopy pertur-
bation method, variational iteration method and differential transformation method
reveals that the present method is superior because of the lower error. It may be
concluded that the method is very powerful and efficient in finding the numerical
solutions for such problem.

It is seen that Legendre-Galerkin method can be an alternative way for the
solution of sixth-order differential equations that have no exact solutions.
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