A STUDY ON GENERAL CLASS OF MEROMORPHICALLY UNIVALENT FUNCTIONS

M.K. Aouf, A.O. Mostafa, A.Y. Lashin, B.M. Munassar

Abstract. In this paper, we define the general class $V_{n}(\beta, \alpha, \gamma)$ of certain subclasses of meromorphically univalent functions and we derive distortion theorems and modified-Hadamard products for functions belonging to the class.

2000 Mathematics Subject Classification: 30C45.
Keywords: Analytic functions, univalent functions, meromorphic functions, distortion theorems, Hadamard product.

1. Introduction

Let Σ_{n} denote the class of meromorphic functions of the form:

$$
\begin{equation*}
f(z)=\frac{1}{z}+\sum_{k=n}^{\infty} a_{k} z^{k}\left(a_{k} \geq 0 ; n \in \mathbb{N}=\{1,2, \ldots\}\right) \tag{1.1}
\end{equation*}
$$

which are regular and univalent in the punctured unit disc $U^{*}=\{z: z \in \mathbb{C}$ and $0<|z|<1\}=U \backslash\{0\}$. Let $g \in \Sigma_{n}$, be given by

$$
\begin{equation*}
g(z)=\frac{1}{z}+\sum_{k=n}^{\infty} b_{k} z^{k}, \tag{1.2}
\end{equation*}
$$

then the Hadamard product (or convolution) of f and g is given by

$$
\begin{equation*}
(f * g)(z)=\frac{1}{z}+\sum_{k=n}^{\infty} a_{k} b_{k} z^{k}=(g * f)(z) . \tag{1.3}
\end{equation*}
$$

A function $f \in \Sigma_{n}$ is said to be meromorphically starlike of order α if

$$
\begin{equation*}
\operatorname{Re}\left\{-\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \quad\left(z \in U^{*} ; 0 \leq \alpha<1\right) . \tag{1.4}
\end{equation*}
$$

M.K. Aouf, A.O. Mostafa, A.Y. Lashin, B.M. Munassar - General Class ...

The class of all meromorphically starlike functions of order α is denoted by $\Sigma S_{n}^{*}(\alpha)$. A function $f \in \Sigma_{n}$ is said to be meromorphically convex of order α if

$$
\begin{equation*}
\operatorname{Re}\left\{-\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>\alpha\left(z \in U^{*} ;(0 \leq \alpha<1)\right) . \tag{1.5}
\end{equation*}
$$

The class of all meromorphically convex functions of order α is denoted by $\Sigma K_{n}(\alpha)$.We note that

$$
f(z) \in \Sigma K_{n}(\alpha) \Longleftrightarrow-z f^{\prime}(z) \in \Sigma S_{n}^{*}(\alpha) .
$$

The classes $\Sigma S_{n}^{*}(\alpha)$ and $\Sigma K_{n}(\alpha)$ were introduced by Owa et al.[4]. Various subclasses of the class Σ_{n} when $n=1$ were considered earlier by Pommerenke [5], Miller [3] and others.

For $\beta \geq 0,0 \leq \alpha<1,0 \leq \lambda<\frac{1}{2}$ and g given by (1.2) with $b_{k} \geq 0(k \geq n)$, Aouf et al. [2] defined the class $M(f, g ; \beta, \alpha, \lambda)$ consisting of functions of the form (1.1) and satisfying the analytic criterion:

$$
\begin{align*}
& -\operatorname{Re}\left\{\frac{z(f * g)^{\prime}(z)+\lambda z^{2}(f * g)^{\prime \prime}(z)}{(1-\lambda)(f * g)(z)+\lambda z(f * g)^{\prime}(z)}+\alpha\right\} \geq \\
& \quad \beta\left|\frac{z(f * g)^{\prime}(z)+\lambda z^{2}(f * g)^{\prime \prime}(z)}{(1-\lambda)(f * g)(z)+\lambda z(f * g)^{\prime}(z)}+1\right|(z \in U) \tag{1.6}
\end{align*}
$$

When we take $g(z)=\frac{1}{z(1-z)}$, in (1.6), we obtain the class $\Sigma_{n}(\beta, \alpha, \lambda)(\beta \geq 0,0 \leq$ $\alpha<1$ and $0 \leq \lambda<\frac{1}{2}$), which consisting of functions of the form (1.1) and satisfying the analytic criterion:

$$
\begin{equation*}
-\operatorname{Re}\left\{\frac{z f^{\prime}(z)+\lambda z^{2} f^{\prime \prime}(z)}{(1-\lambda) f(z)+\lambda z f^{\prime}(z)}+\alpha\right\} \geq \beta\left|\frac{z f^{\prime}(z)+\lambda z^{2} f^{\prime \prime}(z)}{(1-\lambda) f(z)+\lambda z f^{\prime}(z)}+1\right|(z \in U) . \tag{1.7}
\end{equation*}
$$

We note that:

$$
\Sigma_{1}(0, \alpha, 0)=\Sigma^{*}(\alpha)(0 \leq \alpha<1) \text { (see Pommerenke [5]). }
$$

Also, we note that:

$$
\begin{align*}
\Sigma_{n}(\beta, \alpha, 0)= & \Sigma S_{n}^{*}(\beta, \alpha)= \\
& -\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}+\alpha\right\} \geq \quad \beta\left|\frac{z f^{\prime}(z)}{f(z)}+1\right|(z \in U) . \tag{1.8}
\end{align*}
$$

For $\beta \geq 0$ and $0 \leq \alpha<1$, we denote by $\Sigma K_{n}(\beta, \alpha)$ the subclass of Σ_{n} consisting of functions of the form (1.1) and satisfying the analytic criterion:

$$
\begin{equation*}
-\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+\alpha\right\} \geq \beta\left|2+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \quad(z \in U) \tag{1.9}
\end{equation*}
$$

M.K. Aouf, A.O. Mostafa, A.Y. Lashin, B.M. Munassar - General Class ...

We note that
$\Sigma K_{1}(0, \alpha, 1)=\Sigma_{k}^{*}(\alpha)(0 \leq \alpha<1)$ (see Pommerenke [5]).
From (1.8) and (1.9) we have

$$
\begin{equation*}
f(z) \in \Sigma K_{n}(\beta, \alpha) \Longleftrightarrow-z f^{\prime}(z) \in \Sigma S_{n}^{*}(\beta, \alpha) . \tag{1.10}
\end{equation*}
$$

2. General Classes Associated with Coefficient Bounds

In order to prove our results for functions belonging to the class $\Sigma_{n}(\beta, \alpha, \lambda)$, we shall need the following lemma given by Aouf et al. $\left[2\right.$, with $\left.g=\frac{1}{z(1-z)}\right]$.

Lemma 1. [2, Theorem 1]. Let the function f be defined by (1.1). Then $f \in$ $\Sigma_{n}(\beta, \alpha, \lambda)$ if and only if

$$
\begin{equation*}
\sum_{k=n}^{\infty}[1+\lambda(k-1)][k(1+\beta)+(\beta+\alpha)] a_{k} \leq(1-\alpha)(1-2 \lambda) . \tag{2.1}
\end{equation*}
$$

Taking $\lambda=0$ in Lemma 1, we obtain the following corollary.
Corollary 2. Let the function f defined by (1.1). Then $f \in \Sigma S_{n}^{*}(\beta, \alpha)$ if and only if

$$
\begin{equation*}
\sum_{k=n}^{\infty}[k(1+\beta)+(\beta+\alpha)] a_{k} \leq(1-\alpha) \quad(n \in \mathbb{N}) \tag{2.2}
\end{equation*}
$$

By using Corollary 1 and (1.10), we can prove the following lemma.
Lemma 3. Let the function f defined by (1.1). Then $f \in \Sigma K_{n}(\beta, \alpha)$ if and only if

$$
\begin{equation*}
\sum_{k=n}^{\infty} k[k(1+\beta)+(\beta+\alpha)] a_{k} \leq(1-\alpha) \quad(n \in \mathbb{N}) \tag{2.3}
\end{equation*}
$$

Definition 1. A function f defined by (1.1) and belonging to the class Σ_{n} is said to be in the class $V_{n}(\beta, \alpha, \gamma)$ if it also satisfies the coefficient inequality:
$\sum_{k=n}^{\infty}[k(1+\beta)+(\beta+\alpha)](1-\gamma+\gamma k) a_{k} \leq(1-\alpha)(n \in \mathbb{N} ; \gamma \geq 0 ; \beta \geq 0 ; 0 \leq \alpha<1)$.

It is easily to observe that

$$
\begin{equation*}
V_{n}(\beta, \alpha, 0)=\Sigma S_{n}^{*}(\beta, \alpha) \text { and } V_{n}(\beta, \alpha, 1)=\Sigma K_{n}(\beta, \alpha) . \tag{2.5}
\end{equation*}
$$

M.K. Aouf, A.O. Mostafa, A.Y. Lashin, B.M. Munassar - General Class ...

3. Growth and Distortion Theorems

Unless otherwise mentioned, we assume in the reminder of this paper that $\gamma \geq$ $0, \beta \geq 0,0 \leq \alpha<1$ and $n \in \mathbb{N}$.

Theorem 4. If a functions f defined by (1.1) is in the class $V_{n}(\beta, \alpha, \gamma)$, then

$$
\begin{align*}
& \frac{1}{|z|}-\frac{(1-\alpha)}{[n(1+\beta)+(\beta+\alpha)](1-\gamma+\gamma n)}|z|^{n} \leq|f(z)| \\
& \leq \frac{1}{|z|}+\frac{(1-\alpha)}{[n(1+\beta)+(\beta+\alpha)](1-\gamma+\gamma n)}|z|^{n}\left(z \in U^{*}\right) \tag{3.1}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{1}{|z|^{2}}-\frac{n(1-\alpha)}{[n(1+\beta)+(\beta+\alpha)](1-\gamma+\gamma n)}|z|^{n-1} \leq\left|f^{\prime}(z)\right| \\
& \leq \frac{1}{|z|^{2}}+\frac{n(1-\alpha)}{[n(1+\beta)+(\beta+\alpha)](1-\gamma+\gamma n)}|z|^{n-1}\left(z \in U^{*}\right) \tag{3.2}
\end{align*}
$$

The bounds in (3.1) and (3.2) are attained for the function f given by

$$
\begin{equation*}
f(z)=\frac{1}{z}+\frac{(1-\alpha)}{[n(1+\beta)+(\beta+\alpha)](1-\gamma+\gamma n)} z^{n} . \tag{3.3}
\end{equation*}
$$

Proof. First of all, for $f \in V_{n}(\beta, \alpha, \gamma)$, it follows from (2.4) that

$$
\begin{equation*}
\sum_{k=n}^{\infty} a_{k} \leq \frac{(1-\alpha)}{[n(1+\beta)+(\beta+\alpha)](1-\gamma+\gamma n)}, \tag{3.4}
\end{equation*}
$$

which, in view of (1.1), yields

$$
\begin{align*}
|f(z)| & \geq \frac{1}{|z|}-|z|^{n} \sum_{k=n}^{\infty} a_{k} \tag{3.5}\\
& \geq \frac{1}{|z|}-\frac{(1-\alpha)}{[n(1+\beta)+(\beta+\alpha)](1-\gamma+\gamma n)}|z|^{n}\left(z \in U^{*}\right)
\end{align*}
$$

and

$$
\begin{align*}
|f(z)| & \leq \frac{1}{|z|}+|z|^{n} \sum_{k=n}^{\infty} a_{k} \tag{3.6}\\
& \leq \frac{1}{|z|}+\frac{(1-\alpha)}{[n(1+\beta)+(\beta+\alpha)](1-\gamma+\gamma n)}|z|^{n}\left(z \in U^{*}\right) .
\end{align*}
$$

M.K. Aouf, A.O. Mostafa, A.Y. Lashin, B.M. Munassar - General Class ...

Next, we see from (2.4) that

$$
\begin{align*}
& \frac{[n(1+\beta)+(\beta+\alpha)](1-\gamma+\gamma n)}{n} \sum_{k=n}^{\infty} k a_{k} \tag{3.7}\\
& \leq \sum_{k=n}^{\infty}[k(1+\beta)+(\beta+\alpha)](1-\gamma+\gamma k) a_{k} \\
& \leq(1-\alpha)
\end{align*}
$$

then

$$
\sum_{k=n}^{\infty} k a_{k} \leq \frac{n(1-\alpha)}{[n(1+\beta)+(\beta+\alpha)](1-\gamma+\gamma n)}
$$

which, again in view of (1.1), yields

$$
\begin{align*}
\left|f^{\prime}(z)\right| & \geq \frac{1}{|z|^{2}}-|z|^{n-1} \sum_{k=n}^{\infty} k a_{k} \tag{3.8}\\
& \geq \frac{1}{|z|^{2}}-\frac{n(1-\alpha)}{[n(1+\beta)+(\beta+\alpha)](1-\gamma+\gamma n)}|z|^{n-1}\left(z \in U^{*}\right)
\end{align*}
$$

and

$$
\begin{align*}
\left|f^{\prime}(z)\right| & \leq \frac{1}{|z|^{2}}+|z|^{n-1} \sum_{k=n}^{\infty} k a_{k} \tag{3.9}\\
& \leq \frac{1}{|z|^{2}}+\frac{n(1-\alpha)}{[n(1+\beta)+(\beta+\alpha)](1-\gamma+\gamma n)}|z|^{n-1}\left(z \in U^{*}\right)
\end{align*}
$$

Finally, it is easy to see that the bounds in (3.1) and (3.2) are attained for the function f given by (3.3).

Taking $\gamma=0$ in Theorem 1, and making use of the first relationship in (2.5), we obtain the following corollary.

Corollary 5. If a functions f defined by (1.1) is in the class $\Sigma S_{n}^{*}(\beta, \alpha)$, then

$$
\begin{align*}
& \quad \frac{1}{|z|}-\frac{(1-\alpha)}{[n(1+\beta)+(\beta+\alpha)]}|z|^{n} \leq|f(z)| \\
& \leq \frac{1}{|z|}+\frac{(1-\alpha)}{[n(1+\beta)+(\beta+\alpha)]}|z|^{n}\left(z \in U^{*}\right) \tag{3.10}
\end{align*}
$$

M.K. Aouf, A.O. Mostafa, A.Y. Lashin, B.M. Munassar - General Class ...
and

$$
\begin{align*}
& \quad \frac{1}{|z|^{2}}-\frac{n(1-\alpha)}{[n(1+\beta)+(\beta+\alpha)]}|z|^{n-1} \leq\left|f^{\prime}(z)\right| \\
& \leq \frac{1}{|z|^{2}}+\frac{n(1-\alpha)}{[n(1+\beta)+(\beta+\alpha)]}|z|^{n-1}\left(z \in U^{*}\right) . \tag{3.11}
\end{align*}
$$

The bounds in (3.10) and (3.11) are attained for the function f given by

$$
\begin{equation*}
f(z)=\frac{1}{z}+\frac{(1-\alpha)}{[n(1+\beta)+(\beta+\alpha)]} z^{n} . \tag{3.12}
\end{equation*}
$$

Letting $\gamma=1$ in Theorem 1, and applying the second relationship in (2.5), we obtain the following corollary.

Corollary 6. If a functions f defined by (1.1) is in the class $\Sigma K_{n}(\beta, \alpha)$, then

$$
\begin{align*}
& \frac{1}{|z|}-\frac{(1-\alpha)}{n[n(1+\beta)+(\beta+\alpha)]}|z|^{n} \leq|f(z)| \\
& \leq \frac{1}{|z|}+\frac{(1-\alpha)}{n[n(1+\beta)+(\beta+\alpha)]}|z|^{n}\left(z \in U^{*}\right), \tag{3.13}
\end{align*}
$$

and

$$
\begin{align*}
& \frac{1}{|z|^{2}}-\frac{(1-\alpha)}{[n(1+\beta)+(\beta+\alpha)]}|z|^{n-1} \leq\left|f^{\prime}(z)\right| \\
& \leq \frac{1}{|z|^{2}}+\frac{(1-\alpha)}{[n(1+\beta)+(\beta+\alpha)]}|z|^{n-1}\left(z \in U^{*}\right) . \tag{3.14}
\end{align*}
$$

The bounds in (3.13) and (3.14) are attained for the function f given by

$$
\begin{equation*}
f(z)=\frac{1}{z}+\frac{(1-\alpha)}{n[n(1+\beta)+(\beta+\alpha)]} z^{n} . \tag{3.15}
\end{equation*}
$$

4. Modified Hadamard Product

Let each of the functions f_{1} and f_{1} defined by

$$
\begin{equation*}
f_{j}(z)=\frac{1}{z}+\sum_{k=n}^{\infty} a_{k, j} z^{k} \quad(j=1,2) \tag{4.1}
\end{equation*}
$$

M.K. Aouf, A.O. Mostafa, A.Y. Lashin, B.M. Munassar - General Class ...
belong to the class Σ_{n}. We denote by $\left(f_{1} * f_{2}\right)$ the modified Hadamard product (or convolution) of the functions f_{1} and f_{2}, that is,

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(z)=\frac{1}{z}+\sum_{k=n}^{\infty} a_{k, 1} a_{k, 2} z^{k} . \tag{4.2}
\end{equation*}
$$

Now we derive the following modified Hadamard product of the general class $V_{n}(\beta, \alpha, \gamma)$:
Theorem 7. Let each of the functions $f_{j}(j=1,2)$ defined by (4.1) be in the class $V_{n}(\beta, \alpha, \gamma)$. Then

$$
\left(f_{1} * f_{2}\right)(z) \in V_{n}(\beta, \eta, \gamma)
$$

where

$$
\begin{equation*}
\eta=1-\frac{(1-\alpha)^{2}(1+\beta)(n+1)}{[n(1+\beta)+(\beta+\alpha)]^{2}(1-\gamma+\gamma n)+(1-\alpha)^{2}} . \tag{4.3}
\end{equation*}
$$

The result is sharp for the functions $f_{j}(j=1,2)$ given by

$$
\begin{equation*}
f_{j}(z)=\frac{1}{z}+\frac{(1-\alpha)}{[n(1+\beta)+(\beta+\alpha)](1-\gamma+\gamma n)} z^{n} \quad(j=1,2) . \tag{4.4}
\end{equation*}
$$

Proof. In order to prove the main assertion of Theorem 2, we must find the largest η such that

$$
\begin{equation*}
\sum_{k=n}^{\infty} \frac{[k(1+\beta)+(\beta+\eta)](1-\gamma+\gamma k)}{(1-\eta)} a_{k, 1} a_{k, 2} \leq 1 \tag{4.5}
\end{equation*}
$$

for $f_{j} \in V_{n}(\beta, \alpha, \gamma)(j=1,2)$. Indeed, since each of the functions $f_{j}(j=1,2)$ does belongs to the class $V_{n}(\beta, \alpha, \gamma)$, then

$$
\begin{equation*}
\sum_{k=n}^{\infty} \frac{[k(1+\beta)+(\beta+\alpha)](1-\gamma+\gamma k)}{(1-\alpha)} a_{k, j} \leq 1 \quad(j=1,2) \tag{4.6}
\end{equation*}
$$

Now, by the Cauchy-Schwarz inequality, we find from (4.6) that

$$
\begin{equation*}
\sum_{k=n}^{\infty} \frac{[k(1+\beta)+(\beta+\alpha)](1-\gamma+\gamma k)}{(1-\alpha)} \sqrt{a_{k, 1} a_{k, 2}} \leq 1 . \tag{4.7}
\end{equation*}
$$

Equation (4.7) implies that we need only to show that

$$
\begin{equation*}
\frac{[k(1+\beta)+(\beta+\eta)]}{(1-\eta)} a_{k, 1} a_{k, 2} \leq \frac{[k(1+\beta)+(\beta+\alpha)]}{(1-\alpha)} \sqrt{a_{k, 1} a_{k, 2}} \quad(k \geq n) \tag{4.8}
\end{equation*}
$$

that is, that

$$
\begin{equation*}
\sqrt{a_{k, 1} a_{k, 2}} \leq \frac{[k(1+\beta)+(\beta+\alpha)](1-\eta)}{[k(1+\beta)+(\beta+\eta)](1-\alpha)} \quad(k \geq n) . \tag{4.9}
\end{equation*}
$$

Hence, by the inequality (4.7) it is sufficient to prove that

$$
\begin{equation*}
\frac{(1-\alpha)}{[k(1+\beta)+(\beta+\alpha)](1-\gamma+\gamma k)} \leq \frac{[k(1+\beta)+(\beta+\alpha)](1-\eta)}{[k(1+\beta)+(\beta+\eta)]((1-\alpha))} \quad(k \geq n) . \tag{4.10}
\end{equation*}
$$

It follows from (4.10) that

$$
\begin{equation*}
\eta \leq 1-\frac{(1-\alpha)^{2}(1+\beta)(k+1)}{[k(1+\beta)+(\beta+\alpha)]^{2}(1-\gamma+\gamma k)+(1-\alpha)^{2}} \quad(k \geq n) . \tag{4.11}
\end{equation*}
$$

Defining the function $\Phi(k)$ by

$$
\begin{equation*}
\Phi(k)=1-\frac{(1-\alpha)^{2}(1+\beta)(k+1)}{[k(1+\beta)+(\beta+\alpha)]^{2}(1-\gamma+\gamma k)+(1-\alpha)^{2}} \quad(k \geq n) \tag{4.12}
\end{equation*}
$$

we see that $\Phi(k)$ is an increasing function of $k(k \geq n)$. Therefore, we conclude from (4.11) that

$$
\begin{equation*}
\eta \leq \Phi(n)=1-\frac{(1-\alpha)^{2}(1+\beta)(n+1)}{[n(1+\beta)+(\beta+\alpha)]^{2}(1-\gamma+\gamma n)+(1-\alpha)^{2}}, \tag{4.13}
\end{equation*}
$$

which completes the proof of the main assertion of Theorem 2.
Setting $\gamma=0$ in Theorem 2, and making use of first relationship in (2.5), we obtain the following corollary.

Corollary 8. Let each of the functions $f_{j}(j=1,2)$ defined by (4.1) be in the class $\Sigma S_{n}^{*}(\beta, \alpha)$. Then

$$
\left(f_{1} * f_{2}\right)(z) \in \Sigma S_{n}^{*}(\beta, \mu)
$$

where

$$
\begin{equation*}
\mu=1-\frac{(1-\alpha)^{2}(1+\beta)(n+1)}{[n(1+\beta)+(\beta+\alpha)]^{2}+(1-\alpha)^{2}} . \tag{4.14}
\end{equation*}
$$

The result is sharp for the functions $f_{j}(j=1,2)$ given by

$$
\begin{equation*}
f_{j}(z)=\frac{1}{z}+\frac{(1-\alpha)}{[n(1+\beta)+(\beta+\alpha)]} z^{n} \quad(j=1,2) \tag{4.15}
\end{equation*}
$$

M.K. Aouf, A.O. Mostafa, A.Y. Lashin, B.M. Munassar - General Class ...

Putting $\gamma=1$ in Theorem 2, and applying the second relationship in (2.5), we obtain the following corollary.

Corollary 9. Let each of the functions $f_{j}(j=1,2)$ defined by (4.1) be in the class $\Sigma K_{n}(\beta, \alpha)$. Then

$$
\left(f_{1} * f_{2}\right)(z) \in \Sigma K_{n}(\beta, \nu),
$$

where

$$
\begin{equation*}
\nu=1-\frac{(1-\alpha)^{2}(1+\beta)(n+1)}{n[n(1+\beta)+(\beta+\alpha)]^{2}+(1-\alpha)^{2}} . \tag{4.16}
\end{equation*}
$$

The result is sharp for the functions $f_{j}(j=1,2)$ given by

$$
\begin{equation*}
f_{j}(z)=\frac{1}{z}+\frac{(1-\alpha)}{n[n(1+\beta)+(\beta+\alpha)]} z^{n} \quad(j=1,2) . \tag{4.17}
\end{equation*}
$$

Theorem 10. Let each of the functions $f_{j}(j=1,2)$ defined by (4.1) be in the class $V_{n}(\beta, \alpha, \gamma)$. Then the function $h(z)$ defined by

$$
\begin{equation*}
h(z)=\frac{1}{z}+\sum_{k=n}^{\infty}\left(a_{k, 1}^{2}+a_{k, 2}^{2}\right) z^{k} \tag{4.18}
\end{equation*}
$$

belongs to the class $V_{n}(\beta, \xi, \gamma)$, where

$$
\begin{equation*}
\xi=1-\frac{2(1-\alpha)^{2}(1+\beta)(n+1)}{[n(1+\beta)+(\beta+\alpha)]^{2}(1-\gamma+\gamma n)+2(1-\alpha)^{2}} . \tag{4.19}
\end{equation*}
$$

The result is sharp for the functions $f_{j}(j=1,2)$ given by (4.4).
Proof. Noting that

$$
\begin{align*}
& \sum_{k=n}^{\infty} \frac{[k(1+\beta)+(\beta+\alpha)]^{2}(1-\gamma+\gamma k)^{2}}{(1-\alpha)^{2}} a_{k, j}^{2} \tag{4.20}\\
& \leq\left[\sum_{k=n}^{\infty} \frac{[k(1+\beta)+(\beta+\alpha)](1-\gamma+\gamma k)}{(1-\alpha)} a_{k, j}\right]^{2} \leq 1,
\end{align*}
$$

for $f_{j} \in V_{n}(\beta, \alpha, \gamma)(j=1,2)$, we have

$$
\begin{equation*}
\sum_{k=n}^{\infty} \frac{[k(1+\beta)+(\beta+\alpha)]^{2}(1-\gamma+\gamma k)^{2}}{2(1-\alpha)^{2}}\left(a_{k, 1}^{2}+a_{k, 2}^{2}\right) \leq 1 . \tag{4.21}
\end{equation*}
$$

Thus we need to find the largest ξ such that

$$
\begin{equation*}
\frac{[k(1+\beta)+(\beta+\xi)]}{(1-\xi)} \leq \frac{[k(1+\beta)+(\beta+\alpha)]^{2}(1-\gamma+\gamma k)}{2(1-\alpha)^{2}} \quad(k \geq n) \tag{4.22}
\end{equation*}
$$

that is, that

$$
\begin{equation*}
\xi \leq 1-\frac{2(1-\alpha)^{2}(1+\beta)(k+1)}{[k(1+\beta)+(\beta+\alpha)]^{2}(1-\gamma+\gamma k)+2(1-\alpha)^{2}} \quad(k \geq n) . \tag{4.23}
\end{equation*}
$$

Defining the function $\Theta(k)$ by

$$
\begin{equation*}
\Theta(k)=1-\frac{2(1-\alpha)^{2}(1+\beta)(k+1)}{[k(1+\beta)+(\beta+\alpha)]^{2}(1-\gamma+\gamma k)+2(1-\alpha)^{2}} \quad(k \geq n), \tag{4.24}
\end{equation*}
$$

we observe that $\Theta(k)$ is an increasing function of $k \geq n$. Therefore, we conclude from (4.23) that

$$
\begin{equation*}
\xi \leq \Theta(n)=1-\frac{2(1-\alpha)^{2}(1+\beta)(n+1)}{[n(1+\beta)+(\beta+\alpha)]^{2}(1-\gamma+\gamma n)+2(1-\alpha)^{2}}, \tag{4.25}
\end{equation*}
$$

which completes the proof of Theorem 3.
In its special case when $\gamma=0$, Theorem 3 yields
Corollary 11. Let each of the functions $f_{j}(j=1,2)$ defined by (4.1) be in the class $\Sigma S_{n}^{*}(\beta, \alpha)$. Then the function $h(z)$ defined by (4.18) belongs to the class $\Sigma S_{n}^{*}(\beta, \sigma)$, where

$$
\begin{equation*}
\sigma=1-\frac{2(1-\alpha)^{2}(1+\beta)(n+1)}{[n(1+\beta)+(\beta+\alpha)]^{2}+2(1-\alpha)^{2}} . \tag{4.26}
\end{equation*}
$$

The result is sharp for the functions f_{1} and f_{2} given by (4.15).
Setting $\gamma=1$ in Theorem 3, we obtain the following corollary.
Corollary 12. Let each of the functions $f_{j}(j=1,2)$ defined by (4.1) be in the class $\Sigma K_{n}(\beta, \alpha)$. Then the function $h(z)$ defined by (4.18) belongs to the class $\Sigma K_{n}(\beta, \rho)$, where

$$
\begin{equation*}
\rho=1-\frac{2(1-\alpha)^{2}(1+\beta)(n+1)}{n[n(1+\beta)+(\beta+\alpha)]^{2}+2(1-\alpha)^{2}} . \tag{4.27}
\end{equation*}
$$

The result is sharp for the functions f_{1} and f_{2} given by (4.17).
Remark 1. Putting $\beta=0$ in Theorems 1, 2 and 3, respectively, we obtain the results obtained by Aouf et al. [1, Theorems 1, 2 and 3, respectively with $\beta=B=1$ and $A=-1]$.
M.K. Aouf, A.O. Mostafa, A.Y. Lashin, B.M. Munassar - General Class ...

References

[1] M. K. Aouf, H. E. Darwish, and H. M. Srivastava, A general class of meromorphically univalent functions, PanAmer. Math. J., 7 (1997), no. 3, 69-84.
[2] M. K. Aouf, R. M. EL-Ashwah and H. M. Zayed, Subclass of meromorphic funcions with positive coefficients defined by convolution, Studia Univ. Babes-Bolai Math. (To appear).
[3] J. E. Miller, Convex meromorphic mapping and related functions, Proc. Amer. Math. Soc., 25 (1970), 220-228.
[4] S. Owa, M. Nunokawa and H. Saitoh, Generalization of certain subclasses of meromorphic univalent functions, J. Fac. Sci. Tech. Kinki Univ., 25 (1989), 21-27.
[5] Ch. Pommerenke, On meromorphic starlike functions, Pacific J. Math., 13 (1963), 221-235.
M. K. Aouf

Department of Mathematics, Faculty of Science, University of Mansoura, Mansoura, Egypt email: mkaouf127@yahoo.com
A. O. Mostafa

Department of Mathematics, Faculty of Science, University of Mansoura, Mansoura, Egypt
email: adelaeg254@yahoo.com
A. Y. Lashin

Department of Mathematics, Faculty of Science, University of Mansoura, Mansoura, Egypt email: aylashin@yahoo.com(Lashin)
B. M. Munassar

Department of Mathematics, Faculty of Science, University of Mansoura, Mansoura, Egypt
email: bmunassar@yahoo.com

