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1. Introduction

Let Σn denote the class of meromorphic functions of the form:

f(z) =
1

z
+
∞∑
k=n

akz
k (ak ≥ 0;n ∈ N = {1, 2, ...}) , (1.1)

which are regular and univalent in the punctured unit disc U∗ = {z : z ∈ C and
0 < |z| < 1} = U\{0}. Let g ∈ Σn, be given by

g (z) =
1

z
+
∞∑
k=n

bkz
k, (1.2)

then the Hadamard product (or convolution) of f and g is given by

(f ∗ g) (z) =
1

z
+
∞∑
k=n

akbkz
k = (g ∗ f) (z) . (1.3)

A function f ∈ Σn is said to be meromorphically starlike of order α if

Re

{
−zf

′(z)

f(z)

}
> α (z ∈ U∗; 0 ≤ α < 1). (1.4)
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The class of all meromorphically starlike functions of order α is denoted by ΣS∗n (α) .A
function f ∈ Σn is said to be meromorphically convex of order α if

Re

{
−(1 +

zf ′′(z)

f ′(z)
)

}
> α (z ∈ U∗; (0 ≤ α < 1)). (1.5)

The class of all meromorphically convex functions of order α is denoted by ΣKn (α) .We
note that

f(z) ∈ ΣKn (α)⇐⇒ −zf ′(z) ∈ ΣS∗n (α) .

The classes ΣS∗n (α) and ΣKn (α) were introduced by Owa et al.[4] . Various sub-
classes of the class Σn when n = 1 were considered earlier by Pommerenke [5] , Miller
[3] and others.

For β ≥ 0, 0 ≤ α < 1, 0 ≤ λ < 1
2 and g given by (1.2) with bk ≥ 0 (k ≥ n),

Aouf et al. [2] defined the class M(f, g;β, α, λ) consisting of functions of the form
(1.1) and satisfying the analytic criterion:

−Re

{
z(f ∗ g)′(z) + λz2(f ∗ g)′′(z)

(1− λ)(f ∗ g)(z) + λz(f ∗ g)′(z)
+ α

}
≥

β

∣∣∣∣ z(f ∗ g)′(z) + λz2(f ∗ g)′′(z)

(1− λ)(f ∗ g)(z) + λz(f ∗ g)′(z)
+ 1

∣∣∣∣ (z ∈ U). (1.6)

When we take g (z) = 1
z(1−z) , in (1.6) , we obtain the class Σn (β, α, λ)(β ≥ 0, 0 ≤

α < 1 and 0 ≤ λ < 1
2), which consisting of functions of the form (1.1) and satisfying

the analytic criterion:

−Re

{
zf ′(z) + λz2f ′′(z)

(1− λ)f(z) + λzf ′(z)
+ α

}
≥ β

∣∣∣∣ zf ′(z) + λz2f ′′(z)

(1− λ)f(z) + λzf ′(z)
+ 1

∣∣∣∣ (z ∈ U). (1.7)

We note that:
Σ1(0, α, 0) = Σ∗(α) (0 ≤ α < 1) (see Pommerenke [5]).

Also, we note that:
Σn(β, α, 0) = ΣS∗n(β, α) =

− Re

{
zf ′(z)

f(z)
+ α

}
≥ β

∣∣∣∣zf ′(z)f(z)
+ 1

∣∣∣∣ (z ∈ U). (1.8)

For β ≥ 0 and 0 ≤ α < 1, we denote by ΣKn (β, α) the subclass of Σn consisting
of functions of the form (1.1) and satisfying the analytic criterion:

− Re

{
1 +

zf ′′(z)

f ′(z)
+ α

}
≥ β

∣∣∣∣2 +
zf ′′(z)

f ′(z)

∣∣∣∣ (z ∈ U) . (1.9)
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We note that
ΣK1(0, α, 1) = Σ∗k(α) (0 ≤ α < 1) (see Pommerenke [5]).
From (1.8) and (1.9) we have

f(z) ∈ ΣKn (β, α)⇐⇒ −zf ′(z) ∈ ΣS∗n (β, α) . (1.10)

2. General Classes Associated with Coefficient Bounds

In order to prove our results for functions belonging to the class Σn (β, α, λ) , we

shall need the following lemma given by Aouf et al.
[
2,with g = 1

z(1−z)

]
.

Lemma 1. [2,Theorem 1]. Let the function f be defined by (1.1). Then f ∈
Σn (β, α, λ) if and only if

∞∑
k=n

[1 + λ (k − 1)][k (1 + β) + (β + α)] ak ≤ (1− α) (1− 2λ) . (2.1)

Taking λ = 0 in Lemma 1, we obtain the following corollary.

Corollary 2. Let the function f defined by (1.1). Then f ∈ ΣS∗n (β, α) if and only
if

∞∑
k=n

[k(1 + β) + (β + α)] ak ≤ (1− α) (n ∈ N) . (2.2)

By using Corollary 1 and (1.10) , we can prove the following lemma.

Lemma 3. Let the function f defined by (1.1). Then f ∈ ΣKn (β, α) if and only if

∞∑
k=n

k [k(1 + β) + (β + α)] ak ≤ (1− α) (n ∈ N) . (2.3)

Definition 1. A function f defined by (1.1) and belonging to the class Σn is said
to be in the class Vn (β, α, γ) if it also satisfies the coefficient inequality:

∞∑
k=n

[k(1 + β) + (β + α)] (1− γ + γk) ak ≤ (1−α) (n ∈ N; γ ≥ 0; β ≥ 0; 0 ≤ α < 1) .

(2.4)

It is easily to observe that

Vn (β, α, 0) = ΣS∗n (β, α) and Vn (β, α, 1) = ΣKn (β, α) . (2.5)
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3. Growth and Distortion Theorems

Unless otherwise mentioned, we assume in the reminder of this paper that γ ≥
0, β ≥ 0, 0 ≤ α < 1 and n ∈ N.

Theorem 4. If a functions f defined by (1.1) is in the class Vn (β, α, γ) , then

1

|z|
− (1− α)

[n(1 + β) + (β + α)] (1− γ + γn)
|z|n ≤ |f (z)|

≤ 1

|z|
+

(1− α)

[n(1 + β) + (β + α)] (1− γ + γn)
|z|n (z ∈ U∗) , (3.1)

and
1

|z|2
− n (1− α)

[n(1 + β) + (β + α)] (1− γ + γn)
|z|n−1 ≤

∣∣∣f ′
(z)
∣∣∣

≤ 1

|z|2
+

n (1− α)

[n(1 + β) + (β + α)] (1− γ + γn)
|z|n−1 (z ∈ U∗) . (3.2)

The bounds in (3.1) and (3.2) are attained for the function f given by

f (z) =
1

z
+

(1− α)

[n(1 + β) + (β + α)] (1− γ + γn)
zn. (3.3)

Proof. First of all, for f ∈ Vn (β, α, γ), it follows from (2.4) that

∞∑
k=n

ak ≤
(1− α)

[n(1 + β) + (β + α)] (1− γ + γn)
, (3.4)

which, in view of (1.1) , yields

|f (z)| ≥ 1

|z|
− |z|n

∞∑
k=n

ak (3.5)

≥ 1

|z|
− (1− α)

[n(1 + β) + (β + α)] (1− γ + γn)
|z|n (z ∈ U∗) ,

and

|f (z)| ≤ 1

|z|
+ |z|n

∞∑
k=n

ak (3.6)

≤ 1

|z|
+

(1− α)

[n(1 + β) + (β + α)] (1− γ + γn)
|z|n (z ∈ U∗) .
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Next, we see from (2.4) that

[n(1 + β) + (β + α)] (1− γ + γn)

n

∞∑
k=n

kak (3.7)

≤
∞∑
k=n

[k(1 + β) + (β + α)] (1− γ + γk) ak

≤ (1− α) ,

then
∞∑
k=n

kak ≤
n (1− α)

[n(1 + β) + (β + α)] (1− γ + γn)
.

which, again in view of (1.1) , yields∣∣∣f ′
(z)
∣∣∣ ≥ 1

|z|2
− |z|n−1

∞∑
k=n

kak (3.8)

≥ 1

|z|2
− n (1− α)

[n(1 + β) + (β + α)] (1− γ + γn)
|z|n−1 (z ∈ U∗) ,

and ∣∣∣f ′
(z)
∣∣∣ ≤ 1

|z|2
+ |z|n−1

∞∑
k=n

kak (3.9)

≤ 1

|z|2
+

n (1− α)

[n(1 + β) + (β + α)] (1− γ + γn)
|z|n−1 (z ∈ U∗) .

Finally, it is easy to see that the bounds in (3.1) and (3.2) are attained for the
function f given by (3.3) .

Taking γ = 0 in Theorem 1, and making use of the first relationship in (2.5) , we
obtain the following corollary.

Corollary 5. If a functions f defined by (1.1) is in the class ΣS∗n (β, α) , then

1

|z|
− (1− α)

[n(1 + β) + (β + α)]
|z|n ≤ |f (z)|

≤ 1

|z|
+

(1− α)

[n(1 + β) + (β + α)]
|z|n (z ∈ U∗) , (3.10)
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and
1

|z|2
− n (1− α)

[n(1 + β) + (β + α)]
|z|n−1 ≤

∣∣∣f ′
(z)
∣∣∣

≤ 1

|z|2
+

n (1− α)

[n(1 + β) + (β + α)]
|z|n−1 (z ∈ U∗) . (3.11)

The bounds in (3.10) and (3.11) are attained for the function f given by

f (z) =
1

z
+

(1− α)

[n(1 + β) + (β + α)]
zn. (3.12)

Letting γ = 1 in Theorem 1, and applying the second relationship in (2.5) , we
obtain the following corollary.

Corollary 6. If a functions f defined by (1.1) is in the class ΣKn (β, α) , then

1

|z|
− (1− α)

n [n(1 + β) + (β + α)]
|z|n ≤ |f (z)|

≤ 1

|z|
+

(1− α)

n [n(1 + β) + (β + α)]
|z|n (z ∈ U∗) , (3.13)

and
1

|z|2
− (1− α)

[n(1 + β) + (β + α)]
|z|n−1 ≤

∣∣∣f ′
(z)
∣∣∣

≤ 1

|z|2
+

(1− α)

[n(1 + β) + (β + α)]
|z|n−1 (z ∈ U∗) . (3.14)

The bounds in (3.13) and (3.14) are attained for the function f given by

f (z) =
1

z
+

(1− α)

n [n(1 + β) + (β + α)]
zn. (3.15)

4. Modified Hadamard Product

Let each of the functions f1 and f1 defined by

fj (z) =
1

z
+
∞∑
k=n

ak,jz
k (j = 1, 2) (4.1)
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belong to the class Σn. We denote by (f1 ∗ f2) the modified Hadamard product (or
convolution) of the functions f1 and f2, that is,

(f1 ∗ f2) (z) =
1

z
+
∞∑
k=n

ak,1ak,2z
k. (4.2)

Now we derive the following modified Hadamard product of the general class Vn (β, α, γ) :

Theorem 7. Let each of the functions fj (j = 1, 2) defined by (4.1) be in the class
Vn (β, α, γ) . Then

(f1 ∗ f2) (z) ∈ Vn (β, η, γ) ,

where

η = 1− (1− α)2 (1 + β) (n+ 1)

[n(1 + β) + (β + α)]2 (1− γ + γn) + (1− α)2
. (4.3)

The result is sharp for the functions fj (j = 1, 2) given by

fj (z) =
1

z
+

(1− α)

[n(1 + β) + (β + α)] (1− γ + γn)
zn (j = 1, 2) . (4.4)

Proof. In order to prove the main assertion of Theorem 2, we must find the largest
η such that

∞∑
k=n

[k(1 + β) + (β + η)] (1− γ + γk)

(1− η)
ak,1ak,2 ≤ 1 (4.5)

for fj ∈ Vn (β, α, γ) (j = 1, 2). Indeed, since each of the functions fj (j = 1, 2) does
belongs to the class Vn (β, α, γ) , then

∞∑
k=n

[k(1 + β) + (β + α)] (1− γ + γk)

(1− α)
ak,j ≤ 1 (j = 1, 2) . (4.6)

Now, by the Cauchy-Schwarz inequality, we find from (4.6) that

∞∑
k=n

[k(1 + β) + (β + α)] (1− γ + γk)

(1− α)

√
ak,1ak,2 ≤ 1. (4.7)

Equation (4.7) implies that we need only to show that

[k(1 + β) + (β + η)]

(1− η)
ak,1ak,2 ≤

[k(1 + β) + (β + α)]

(1− α)

√
ak,1ak,2 (k ≥ n) , (4.8)
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that is, that

√
ak,1ak,2 ≤

[k(1 + β) + (β + α)] (1− η)

[k(1 + β) + (β + η)] (1− α)
(k ≥ n) . (4.9)

Hence, by the inequality (4.7) it is sufficient to prove that

(1− α)

[k(1 + β) + (β + α)] (1− γ + γk)
≤ [k(1 + β) + (β + α)] (1− η)

[k(1 + β) + (β + η)] ((1− α))
(k ≥ n) .

(4.10)
It follows from (4.10) that

η ≤ 1− (1− α)2 (1 + β) (k + 1)

[k(1 + β) + (β + α)]2 (1− γ + γk) + (1− α)2
(k ≥ n) . (4.11)

Defining the function Φ (k) by

Φ (k) = 1− (1− α)2 (1 + β) (k + 1)

[k(1 + β) + (β + α)]2 (1− γ + γk) + (1− α)2
(k ≥ n) , (4.12)

we see that Φ (k) is an increasing function of k (k ≥ n). Therefore, we conclude from
(4.11) that

η ≤ Φ (n) = 1− (1− α)2 (1 + β) (n+ 1)

[n(1 + β) + (β + α)]2 (1− γ + γn) + (1− α)2
, (4.13)

which completes the proof of the main assertion of Theorem 2.

Setting γ = 0 in Theorem 2, and making use of first relationship in (2.5) , we
obtain the following corollary.

Corollary 8. Let each of the functions fj (j = 1, 2) defined by (4.1) be in the class
ΣS∗n (β, α) . Then

(f1 ∗ f2) (z) ∈ ΣS∗n (β, µ) ,

where

µ = 1− (1− α)2 (1 + β) (n+ 1)

[n(1 + β) + (β + α)]2 + (1− α)2
. (4.14)

The result is sharp for the functions fj (j = 1, 2) given by

fj (z) =
1

z
+

(1− α)

[n(1 + β) + (β + α)]
zn (j = 1, 2) . (4.15)
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Putting γ = 1 in Theorem 2, and applying the second relationship in (2.5) , we
obtain the following corollary.

Corollary 9. Let each of the functions fj (j = 1, 2) defined by (4.1) be in the class
ΣKn (β, α) . Then

(f1 ∗ f2) (z) ∈ ΣKn (β, ν) ,

where

ν = 1− (1− α)2 (1 + β) (n+ 1)

n [n(1 + β) + (β + α)]2 + (1− α)2
. (4.16)

The result is sharp for the functions fj (j = 1, 2) given by

fj (z) =
1

z
+

(1− α)

n [n(1 + β) + (β + α)]
zn (j = 1, 2) . (4.17)

Theorem 10. Let each of the functions fj (j = 1, 2) defined by (4.1) be in the class
Vn (β, α, γ) . Then the function h(z) defined by

h (z) =
1

z
+
∞∑
k=n

(
a2k,1 + a2k,2

)
zk (4.18)

belongs to the class Vn (β, ξ, γ) , where

ξ = 1− 2 (1− α)2 (1 + β) (n+ 1)

[n(1 + β) + (β + α)]2 (1− γ + γn) + 2 (1− α)2
. (4.19)

The result is sharp for the functions fj (j = 1, 2) given by (4.4) .

Proof. Noting that

∞∑
k=n

[k(1 + β) + (β + α)]2 (1− γ + γk)2

(1− α)2
a2k,j (4.20)

≤

[ ∞∑
k=n

[k(1 + β) + (β + α)] (1− γ + γk)

(1− α)
ak,j

]2
≤ 1,

for fj ∈ Vn (β, α, γ) (j = 1, 2) , we have

∞∑
k=n

[k(1 + β) + (β + α)]2 (1− γ + γk)2

2 (1− α)2
(
a2k,1 + a2k,2

)
≤ 1. (4.21)
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Thus we need to find the largest ξ such that

[k(1 + β) + (β + ξ)]

(1− ξ)
≤ [k(1 + β) + (β + α)]2 (1− γ + γk)

2 (1− α)2
(k ≥ n) , (4.22)

that is, that

ξ ≤ 1− 2 (1− α)2 (1 + β) (k + 1)

[k(1 + β) + (β + α)]2 (1− γ + γk) + 2 (1− α)2
(k ≥ n) . (4.23)

Defining the function Θ (k) by

Θ (k) = 1− 2 (1− α)2 (1 + β) (k + 1)

[k(1 + β) + (β + α)]2 (1− γ + γk) + 2 (1− α)2
(k ≥ n) , (4.24)

we observe that Θ (k) is an increasing function of k ≥ n. Therefore, we conclude
from (4.23) that

ξ ≤ Θ (n) = 1− 2 (1− α)2 (1 + β) (n+ 1)

[n(1 + β) + (β + α)]2 (1− γ + γn) + 2 (1− α)2
, (4.25)

which completes the proof of Theorem 3.

In its special case when γ = 0, Theorem 3 yields

Corollary 11. Let each of the functions fj (j = 1, 2) defined by (4.1) be in the class
ΣS∗n (β, α) . Then the function h (z) defined by (4.18) belongs to the class ΣS∗n (β, σ) ,
where

σ = 1− 2 (1− α)2 (1 + β) (n+ 1)

[n(1 + β) + (β + α)]2 + 2 (1− α)2
. (4.26)

The result is sharp for the functions f1 and f2 given by (4.15) .

Setting γ = 1 in Theorem 3, we obtain the following corollary.

Corollary 12. Let each of the functions fj (j = 1, 2) defined by (4.1) be in the class
ΣKn (β, α) . Then the function h (z) defined by (4.18) belongs to the class ΣKn (β, ρ) ,
where

ρ = 1− 2 (1− α)2 (1 + β) (n+ 1)

n [n(1 + β) + (β + α)]2 + 2 (1− α)2
. (4.27)

The result is sharp for the functions f1 and f2 given by (4.17) .

Remark 1. Putting β = 0 in Theorems 1, 2 and 3, respectively, we obtain the results
obtained by Aouf et al. [1, Theorems 1, 2 and 3, respectively with β = B = 1 and
A = −1].
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