APPLICATION OF GENERALIZED HADAMARD PRODUCT ON SPECIAL CLASSES OF ANALYTIC P-VALENT FUNCTIONS

R.M. El-Ashwah

Abstract. In this paper the author established certain results concerning the quasi-Hadamard product for generalized subclasses of p-valent functions with positive coefficients.

2000 Mathematics Subject Classification: 30C45.
Keywords: Analytic, p-valent, quasi-Hadamard product.

1. Introduction

Let $A(p)$ denote the class of analytic p-valent functions in the unit disc $U=\{z \in$ $\mathbb{C}:|z|<1\}$ of the form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=1}^{\infty} a_{n+p} z^{n+p} \quad(p \in \mathbb{N}=\{1,2, \ldots\}) . \tag{1}
\end{equation*}
$$

A function $f(z) \in A(p)$ is called p-valent starlike of order α if $f(z)$ satisfies

$$
\begin{equation*}
\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \tag{2}
\end{equation*}
$$

for $0 \leq \alpha<p$ and $z \in U$. We denote by $S_{p}^{*}(\alpha)$ the class of all starlike p-valent functions of order α. Also a function $f(z) \in A(p)$ is called p-valent convex of order α if $f(z)$ satisfies

$$
\begin{equation*}
\Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha \tag{3}
\end{equation*}
$$

for $0 \leq \alpha<p$ and $z \in U$. We denote by $C_{p}(\alpha)$ the class of convex p-valent functions of order α.
R.M. El-Ashwah - Application of Generalized Hadamard Product . . .

For $p<\beta<p+\frac{1}{2}$ and $z \in U$, let $\mathfrak{M}_{p}(\beta)$ denote the subclass of $A(p)$ consisting of functions $f(z)$ of the form (1) and satisfying the condition

$$
\begin{equation*}
\Re\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}<\beta \tag{4}
\end{equation*}
$$

and let $\mathfrak{N}_{p}(\beta)$ denote the subclass of $A(p)$ consisting of functions $f(z)$ of the form (1) and satisfying the condition

$$
\begin{equation*}
\Re\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}<\beta \tag{5}
\end{equation*}
$$

it follows from (4) and (5) that

$$
\begin{equation*}
f(z) \in \mathfrak{N}_{p}(\beta) \Longleftrightarrow \frac{z f^{\prime}(z)}{p} \in \mathfrak{M}_{p}(\beta) \tag{6}
\end{equation*}
$$

The subclasses $\mathfrak{M}_{p}(\beta)$ and $\mathfrak{N}_{p}(\beta)$ and some related classes have been studied by several authors (e.g. [5], [8], [10] and [11]).

Furthermore, let $V(p)$ denote the subclass of analytic p-valent functions of the form:

$$
\begin{equation*}
f(z)=a_{p} z^{p}+\sum_{n=1}^{\infty} a_{n+p} z^{n+p} \quad\left(a_{p}>0 ; a_{n+p} \geq 0\right) . \tag{7}
\end{equation*}
$$

Also, let

$$
\begin{equation*}
f_{i}(z)=a_{p, i} z^{p}+\sum_{n=1}^{\infty} a_{n+p, i} z^{n+p} \quad\left(a_{p, i}>0 ; a_{n+p, i} \geq 0\right), \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{j}(z)=b_{p, j} z^{p}+\sum_{n=1}^{\infty} b_{n+p, j} z^{n+p} \quad\left(b_{p, i}>0 ; b_{n+p, i} \geq 0\right), \tag{9}
\end{equation*}
$$

the quasi-Hadamard product $\left(f_{i} * g_{j}\right)(z)$ of the functions $f_{i}(z)$ and $g_{j}(z)$ by

$$
\left(f_{i} * g_{j}\right)(z)=a_{p, i} b_{p, j} z+\sum_{n=2}^{\infty} a_{n+p, i} b_{n+p, j} z^{n+p} \quad(i, j=1,2,3, \ldots) .
$$

Similarly, we can define the quasi-Hadamard product of more than two functions.
Also, let $V_{p}(\beta)=\mathfrak{M}_{p}(\beta) \cap V(p)$ and $U_{p}(\beta)=\mathfrak{N}_{p}(\beta) \cap V(p)$, following the technique of Uralegaddi et al. [12], we can obtain the following lemmas.
R.M. El-Ashwah - Application of Generalized Hadamard Product ...

Lemma 1. Let the function $f(z) \in V(p)$, then $f(z) \in V_{p}(\beta)\left(p<\beta<p+\frac{1}{2}\right)$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty}(n+p-\beta) a_{n+p} \leq(\beta-p) a_{p} \tag{10}
\end{equation*}
$$

Lemma 2. Let the function $f(z) \in V(p)$, then $f(z) \in U_{p}(\beta)\left(p<\beta<p+\frac{1}{2}\right)$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{n+p}{p}\right)(n+p-\beta) a_{n+p} \leq(\beta-p) a_{p} \tag{11}
\end{equation*}
$$

Let $\varphi(z)$ be a fixed function of the form:

$$
\begin{equation*}
\varphi(z)=c_{p} z+\sum_{n=2}^{\infty} c_{n+p} z^{n+p}\left(c_{p}, c_{n+p} \geq 0\right) \tag{12}
\end{equation*}
$$

Using the function defined by (12), we now define the following new classes.
Definition 1. A function $f(z) \in V_{p, \varphi}\left(c_{n+p}, \delta\right)\left(c_{n} \geq c_{2}>0\right)$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n+p} a_{n+p} \leq \delta a_{p} \quad(\delta>0) \tag{13}
\end{equation*}
$$

Definition 2. A function $f(z) \in U_{p, \varphi}\left(c_{n+p}, \delta\right)\left(c_{n+p} \geq c_{p+1}>0\right)$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{n+p}{p}\right) c_{n+p} a_{n+p} \leq \delta a_{p} \quad(\delta>0) . \tag{14}
\end{equation*}
$$

Also, we introduce the following class of analytic p-valent functions which plays an important role in the discussion that follows.

Definition 3. A function $f(z) \in V_{p, \varphi}^{k}\left(c_{n+p}, \delta\right)\left(c_{n+p} \geq c_{p+1}>0\right)$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{n+p}{p}\right)^{k} c_{n+p} a_{n+p} \leq \delta a_{p} \quad(\delta>0) \tag{15}
\end{equation*}
$$

where k is any fixed nonnegative real number.
For suitable choices of c_{n}, δ, k and $a_{0}=1$ we obtain :
(i) $V_{p, \varphi}^{1}\left(\left(\frac{n+p}{p}\right)(n+p-\gamma) \theta(n, p), \gamma-p\right)=A_{p}^{h(z)}(q, s, \gamma)\left(h(z)=\frac{z^{p}}{1-z}, \theta(n, p)=\right.$ $\frac{\left(\alpha_{1}\right)_{n} \ldots\left(\alpha_{q}\right)_{n}}{\left(\beta_{1}\right)_{n} \ldots(\beta s)_{n}} \frac{1}{(1)_{n}}, q \leq s+1\left(\alpha_{i}>0\right.$ for $i=1,2, \ldots ., q ; \beta_{j}>0$ for $\left.j=1,2, \ldots, s\right), p<$ $\gamma<p+\frac{1}{2}$) (Najafzadeh et al. [5]);
R.M. El-Ashwah - Application of Generalized Hadamard Product . . .
(ii) $V_{p, \varphi}^{0}((n+p-\lambda+|n+p-2 \alpha+\lambda|), 2(\alpha-p))=\mathfrak{M}_{p}(\alpha, \lambda)(0<\lambda<p, \alpha>$ p) (Sun et al.[11]);
(iii) $V_{p, \varphi}^{1}\left(\left(\frac{n+p}{p}\right)(n+p-\lambda+|n+p-2 \alpha+\lambda|), 2(\alpha-p)\right)=\mathfrak{N}_{p}(\alpha, \lambda)(0<\lambda<$ $p, \alpha>p)($ Sun et al.[11]);
(iv) $V_{1, \varphi}^{0}((n-\beta),(\beta-1))=V(\beta)\left(1<\beta<\frac{4}{3}\right)$ (Uralegaddi et al.[12]);
(v) $V_{1, \varphi}^{1}(n(n-\beta),(\beta-1))=U(\beta)\left(1<\beta<\frac{4}{3}\right)$ (Uralegaddi et al. [12]);
(vi) $V_{1, \varphi}^{0}((n-1)+|n-2 \beta+1|, 2(\beta-1))=M(\beta)\left(\beta>1, a_{0}=1\right)$ (Niswaki and Owa [3] and Owa and Niswaki [6]);
(vii) $V_{1, \varphi}^{1}\left(n\{(n-1)+|n-2 \beta+1|\}, 2(\beta-1)=N(\beta)\left(\beta>1, a_{0}=1\right)\right.$ (Niswaki and Owa [3] and Owa and Niswaki [6]).

Evidently, $V_{p, \varphi}^{0}\left(c_{n}, \delta\right)=V_{p, \varphi}\left(c_{n}, \delta\right)$ and $V_{p, \varphi}^{1}\left(c_{n}, \delta\right)=U_{p, \varphi}\left(c_{n}, \delta\right)$. Further $V_{p, \varphi}^{\gamma_{1}}\left(c_{n}, \delta\right) \subset$ $V_{p, \varphi}^{\gamma_{2}}\left(c_{n}, \delta\right)$ if $\gamma_{1}>\gamma_{2} \geq 0$, the containment being proper. moreover for any positive integer k, we have the following inclusion relation
$V_{p, \varphi}^{k}\left(c_{n}, \delta\right) \subset V_{p, \varphi}^{k-1}\left(c_{n}, \delta\right) \subset \ldots \subset V_{p, \varphi}^{2}\left(c_{n}, \delta\right) \subset U_{p}\left(c_{n}, \delta\right) \subset V_{p}\left(c_{n}, \delta\right)$.
We also note that for nonnegative real number k, the class $V_{p, \varphi}^{k}\left(c_{n}, \delta\right)$ is nonempty as the function

$$
\begin{equation*}
f(z)=a_{p} z^{p}+\sum_{n=1}^{\infty}\left(\frac{n+p}{p}\right)^{-k} \frac{\delta a_{p}}{c_{n+p}} \lambda_{n+p} a_{n+p} z^{n+p} \tag{16}
\end{equation*}
$$

where $a_{p}>0, \lambda_{n+p} \geq 0$ and $\sum_{n=1}^{\infty} \lambda_{n+p} \leq 1$, satisfy the inequality (15).
The quasi-Hadamard product of two or more p-valent functions has recently been defined and used by Aouf et al. [1], Hossen [3] and Sekine [9].

The object of this paper is to establish a results concerning the quasi-Hadamard product of functions in the classes $V_{p, \varphi}^{k}\left(c_{n}, \delta\right), U_{p, \varphi}\left(c_{n}, \delta\right)$ and $V_{p, \varphi}\left(c_{n}, \delta\right)$.

2. The Main Results

Theorem 3. Let the functions $f_{i}(z)$ defined by (8) belong to the class $U_{p, \varphi}\left(c_{n}, \delta\right)$ for every $i=1,2, \ldots, m$; and let the functions $g_{j}(z)$ defined by (9) belong to the class $V_{p, \varphi}\left(c_{n}, \delta\right)$ for every $i=1,2, \ldots, q$. If $c_{n} \geq\left(\frac{n+p}{p}\right) \delta$
$(n \in \mathbb{N})$. Then the quasi-Hadamard product $f_{1} * f_{2} * \ldots * f_{m} * g_{1} * g_{2} * \ldots * g_{q}(z)$ belongs to the class $V_{p, \varphi}^{2 m+q-1}\left(c_{n}, \delta\right)$.

Proof. It is sufficient to show that

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left[\left(\frac{n+p}{p}\right)^{2 m+q-1} c_{n+p}\left(\prod_{i=1}^{m}\left|a_{n+p, i}\right| \cdot \prod_{j=1}^{q}\left|b_{n+p, j}\right|\right)\right] \\
& \quad \leq \delta\left(\prod_{i=1}^{m} a_{p, i} \cdot \prod_{j=1}^{q} b_{p, j}\right)
\end{aligned}
$$

Since $f_{i}(z) \in U_{p, \varphi}\left(c_{n}, \delta\right)$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{n+p}{p}\right) c_{n+p} a_{n+p, i} \leq \delta a_{p, i} \tag{17}
\end{equation*}
$$

for every $i=1,2, \ldots, m$. Therefore

$$
a_{n+p, i} \leq\left(\frac{n+p}{p}\right)^{-1}\left(\frac{\delta}{c_{n+p}}\right) a_{p, i}
$$

and hence

$$
\begin{equation*}
a_{n+p, i} \leq\left(\frac{n+p}{p}\right)^{-2} a_{p, i} \tag{18}
\end{equation*}
$$

the inequalities (17) and (18) hold for every $i=1,2, \ldots, m$. Further, since $g_{j}(z)$ $\in V_{\varphi}\left(c_{n}, \delta\right)$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} c_{n+p} b_{n+p, j} \leq \delta b_{p, j} \tag{19}
\end{equation*}
$$

for every $j=1,2, \ldots ., q$. Hence we obtain

$$
\begin{equation*}
\left|b_{n+p, j}\right| \leq\left(\frac{n+p}{p}\right)^{-1} b_{0, j} \tag{20}
\end{equation*}
$$

for every $j=1,2, \ldots, q$.
Using (18) for $i=1,2, \ldots, m,(20)$ for $j=1,2, \ldots, q-1$ and (19) for $j=q$, we

$$
\begin{aligned}
& \text { have } \\
& \qquad \sum_{n=1}^{\infty}\left[\left(\frac{n+p}{p}\right)^{2 m+q-1} c_{n+p}\left(\prod_{i=1}^{m}\left|a_{n+p, i}\right| \cdot \prod_{j=1}^{q}\left|b_{n+p, j}\right|\right)\right] \\
& \leq \sum_{n=1}^{\infty}\left[\left(\frac{n+p}{p}\right)^{2 m+q-1} c_{n}\left(\left(\frac{n+p}{p}\right)^{-2 m}\left(\frac{n+p}{p}\right)^{-(q-1)} \prod_{i=1}^{m} a_{p, i} \cdot \prod_{j=1}^{q-1} b_{p, j}\right)\left|b_{n+p, q}\right|\right]
\end{aligned}
$$

R.M. El-Ashwah - Application of Generalized Hadamard Product ...

$$
=\left(\prod_{i=1}^{m} a_{p, i} \cdot \prod_{j=1}^{q-1} b_{p, j}\right) \sum_{n=1}^{\infty} c_{n+p}\left|b_{n+p, q}\right| \leq \delta\left(\prod_{i=1}^{m} a_{p, i} \cdot \prod_{j=1}^{q} b_{p, j}\right)
$$

Hence $f_{1} * f_{2} * \ldots * f_{m} * g_{1} * g_{2} * \ldots * g_{q} \in V_{\varphi}^{2 m+q-1}\left(c_{n}, \delta\right)$.
We note that the required estimate can also be obtained by using (18) for $i=$ $1,2, \ldots, m-1,(20)$ for $j=1,2, \ldots ., q$, and (17) for $i=m$.

Taking into account the quasi-Hadamard product functions $f_{1}(z), f_{2}(z)$, $\ldots, f_{m}(z)$ only, in the proof of Theorem 1 and using (18) for $i=1,2, \ldots, m-1$, and (17) for $i=m$, we obtain

Corollary 4. Let the functions $f_{i}(z)$ defined by (8) belong to the class $U \varphi\left(c_{n}, \delta\right)$ for every $i=1,2, \ldots, m$. If $c_{n} \geq n \delta,(n \in \mathbb{N})$, then the quasi-Hadamard product $f_{1} * f_{2} *$ $\ldots * f_{m}(z)$ belongs to the class $V_{p, \varphi}^{2 m-1}\left(c_{n}, \delta\right)$.

Also taking into account the quasi-Hadamard product functions $g_{1}(z), g_{2}(z)$, $\ldots, g_{q}(z)$ only, in the proof of Theorem 1 and using (20) for $j=1,2, \ldots, q-1$, and (19) for $j=q$, we obtain

Corollary 5. Let the functions $g_{i}(z)$ defined by (9) belong to the class $V_{\varphi}\left(c_{n}, \delta\right)$ for every $i=1,2, \ldots, q$. If $c_{n} \geq n \delta,(n \in \mathbb{N})$. Then the quasi-Hadamard product $g_{1} * g_{2} *$ $\ldots . * g_{q}$ belongs to the class $V_{p, \varphi}^{q-1}\left(c_{n}, \delta\right)$.

Remark 1. (i) Putting $p=1$ in the above results, we obtain the results obtained by El-Ashwah [2];
(ii)Putting $c_{n+p}=(k+p-\gamma) \theta(k, p)$ and $\delta=\gamma-p\left(p<\gamma<p+\frac{1}{2}\right)$ in the above results we obtain results corresponding to the class $A_{p}^{h(z)}(m, n, \gamma) \quad(h(z)=$ $\frac{z^{p}}{1-z},, \theta(k, p)=\frac{\left(\alpha_{1}\right)_{k} \ldots\left(\alpha_{m}\right)_{k}}{\left(\beta_{1}\right)_{k} \cdots\left(\beta_{n}\right)_{k}} \frac{1}{(1)_{k}}, n \leq m+1$
$\left(\alpha_{i}>0\right.$ for $i=1,2, \ldots, q ; \beta_{j}>0$ for $\left.\left.j=1,2, \ldots, s\right), p<\gamma<p+\frac{1}{2}\right)$;
(iii) Putting $c_{n+p}=(n+p-\lambda-|n+p-2 \alpha+\lambda|)$ and $\delta=2(\gamma-p)$ in the above results we obtain results corresponding to the classes $\mathfrak{M}_{p}(\alpha, \lambda)$ and $\mathfrak{N}_{p}(\alpha, \lambda)(0<\lambda<$ $p, \alpha>p)$.

References

[1] M. K. Aouf, A. Shamandy and M. F. Yassen, Quasi-Hadamard product of certain p-valent functions, common. Fac. Sci. Univ. Ank. Series A, 44(1995), 35-40.
[2] R.M. El-Ashwah, Application of generalized Hadamard product on special classes of analytic univalent functions, J. Egyp. Math. Soc. (2014), no. 22, 28-30
R.M. El-Ashwah - Application of Generalized Hadamard Product ...
[3] H. M. Hossen, Quasi-Hadamard product of certain p-valent functions, Demonstratio Math. 33 (2000), no.2, 277-281.
[4] J. Nishiwaki and S. Owa, Coefficient inequalities for certain analytic functions, Internt. J. Math. Math. Sci., 29(2002), no. 5, 285-290.
[5] Sh. Najafzadeh, S. R. Kulkarni and D. kalaj, Application of convolution and Dziok-Srivastava linear operators on analytic functions, Filomat, 20(2006), no. 2, 115-124.
[6] S. Owa and J. Nishiwaki, Coefficient estimates for certain classes of analytic functions, J. Inequal. Pure Appl. Math., 3(2002), no. 5, art. 72, 1-5.
[7] S. Owa and H. M. Srivastava, Some generalized convolution properties associated with certain subclasses of analytic functions, J. Inequal. Pure Appl. Math., 3(2002), no. 3, art. 42, 1-13.
[8] Y. Poltoglu, M. Bolcal, A. Sen and E. Yavuz, An investigation on a subclass of p-valent functions in the unit disc, Truk. J. Math., 31(2007), 221-228.
[9] T. Sekine, On quasi-Hadamard products of p-valent functions with negative coefficients in : H. M. Srivastava and S. Owa (Eds.), Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press (Ellis Horwood Limited, Chicester), Brisbane and Toronto, 1989, 317-328.
[10] R. B. Sharma and K. Saroja, Coefficient inequalities for certain subclasses of p-valent functions, Interat. J. Math. Engin. Sci., 1(2012), no. 8, 13-25.
[11] Y. Sun, W. P. Kuang, Z. G. Wang and Darus, Further properties of certain subclasses of multivalent functions, General Math., 19(2011), no. 2, 117-129.
[12] B. A. Uralegaddi, M. D. Ganigi and S. M. Sarangi, Univalent functions with positive coefficient, Tamkang J. Math. 23(1994), no. 3, 225-230.
R.M. El-Ashwah

Department of Mathematics
Faculty of Science
Damietta University
NewDamietta 34517,Egypt
email: r_elashwah@yahoo.com

