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Abstract. In this paper we introduce two subclasses Hn
p (q, s, α1;A,B, b) and

Hn,∗
p (q, s, α1;A,B, b) of meromorphic p-valent functions of complex order defined

by certain linear operator. We study the various important properties and charac-
teristics of these two subclasses such as, coefficients estimate, radii of starlikeness
and convexity and closure theorems. We also extend the familiar concept of δ-
neighborhoods of analytic functions to these subclasses.
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1. Introduction

Let
∑

p be the class of functions of the form:

f(z) = z−p +
∞∑

k=1−p
akz

k (p ∈ N = {1, 2, ....}), (1.1)

which are analytic and p-valent in the punctured unit disc U∗ = {z : z ∈ C and
0 < |z| < 1} = U\{0}. Let f and F two analytic functions in the unit disc U ,
we say that f is subordinate to F if there exists an analytic function w(z) with
w(0) = 0 and |w(z)| < 1 (z ∈ U) such that f = F (w(z)). We denote by f ≺ F this
subordination. For functions f(z) ∈

∑
p given by (1.1) and g(z) ∈

∑
p defined by

g(z) = z−p +

∞∑
k=1−p

bkz
k (p ∈ N), (1.2)
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then the Hadamard product (or convolution ) of f(z) and g(z) is given by

(f ∗ g)(z) = z−p +
∞∑

k=1−p
akbkz

k = (g ∗ f)(z). (1.3)

For complex numbers α1, ..., αq and β1, ..., βs (βj /∈ Z−0 = {0,−1,−2, ...}; j = 1, 2, ..., s),
we now define the generalized hypergeometric function qFs(α1, ..., αq;β1, ..., βs; z) by
(see, for example, [18, p.19])

qFs(α1, ..., αq;β1, ..., βs; z) =
∞∑
k=0

(α1)k...(αq)k
(β1)k...(βs)k

.
zk

k!
(1.4)

(q ≤ s+ 1; q, s ∈ N0 = N ∪ {0}; z ∈ U),

where (θ)ν is the Pochhammer symbol defined, in terms of the Gamma function Γ,
by

(θ)ν =
Γ(θ + ν)

Γ(θ)
=

{
1 (ν = 0; θ ∈ C∗ = C\{0})

θ(θ + 1)...(θ + ν − 1) (ν ∈ N; θ ∈ C).
(1.5)

Corresponding to the function hp(α1, ..., αq;β1, ..., βs; z), defined by

hp(α1, ..., αq;β1, ..., βs; z) = z−pqFs(α1, ..., αq;β1, ..., βs; z), (1.6)

we consider a linear operator

Hp(α1, ..., αq;β1, ..., βs) :
∑

p
→
∑

p
,

which is defined by the following Hadamard product:

Hp(α1, ..., αq;β1, ..., βs)f(z) = hp(α1, ..., αq;β1, ..., βs; z) ∗ f(z). (1.7)

We observe that, for a function f(z) of the form (1.1), we have

Hp(α1, ..., αq;β1, ..., βs)f(z) = z−p +
∞∑

k=1−p
Γk+p(α1)akz

k. (1.8)

where, for convenience

Γm(α1) =
(α1)m...(αq)m
(β1)m...(βs)m

.
1

(m)!
(1.9)
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If, for convenience, we write

Hp,q,s(α1) = Hp(α1, ..., αq;β1, ..., βs), (1.10)

then one can easily verify from the definition (1.8) that (see [16])

z(Hp,q,s(α1)f(z))
′

= α1Hp,q,s(α1 + 1)f(z)− (α1 + p)Hp,q,s(α1)f(z). (1.11)

The linear operator Hp,q,s(α1) was investigated recently by Liu and Srivastava [16]
and Aouf [5]. Some interesting subclasses of analytic functions associated with
the generalized hypergeometric function, were considered recently by (for example)
Dziok and Srivastava ([7] and [8]),Gangadharan et al. [9], Liu [14].

In particular, for q = 2, s = 1 and α2 = 1, we obtain the linear operator

Hp,2,1(α1, 1;β1)f(z) = Lp(α1, β1)f(z) (f(z) ∈
∑

p
; α1 > 0; β1 > 0),

which was introduced and studied by Liu and Srivastava [15]. Also we note that,
for any integer n > −p and f(z) ∈

∑
p, we have

Hp,2,1(n+ p, 1; 1)f(z) = Dn+p−1f(z) =
1

zp(1− z)n+p
∗ f(z),

where Dn+p−1f(z) is the differential operator studied by Uralegaddi and Somanatha
[19] and Aouf [4].

For a function f ∈
∑

p, we define

I0 (Hp,q,s(α1)f(z)) = Hp,q,s(α1)f(z),

I1 (Hp,q,s(α1)f(z)) = z (Hp,q,s(α1)f(z))
′
+
p+ 1

zp
,

I2 (Hp,q,s(α1)f(z)) = z
(
I1 (Hp,q,s(α1)f(z))

)′
+
p+ 1

zp

and (in general)

In (Hp,q,s(α1)f(z)) = z
(
In−1 (Hp,q,s(α1)f(z))

)′
+
p+ 1

zp

=
1

zp
+

∞∑
k=1−p

knΓk+pakz
k (p ∈ N; n ∈ N0 = N ∪ {0}),

where Γk+p is given by (1.9).
We note that In (Hp,2,1(α, 1;β)f(z)) = In (Lp(α, β)f(z)) (see Ghanim and

Darus [10]).
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Making use of the operator In (Hp,q,s(α1)f(z)) , we say that a function f(z) ∈
∑

p

is in the class Hn
p (q, s, α1;A,B, b) if it satisfies the following inequality:

p− 1

b

{
z (In (Hp,q,s(α1)f(z)))

′

In (Hp,q,s(α1)f(z))
+ p

}
≺ p1 +Az

1 +Bz
(1.12)

or, equivalently, to∣∣∣∣∣∣∣∣∣
z (In (Hp,q,s(α1)f(z)))

In (Hp,q,s(α1)f(z))

′

+ p

B
z (In (Hp,q,s(α1)f(z)))

′

In (Hp,q,s(α1)f(z))
+ p [(A−B) b+B]

∣∣∣∣∣∣∣∣∣ < 1

(−1 ≤ B < A ≤ 1;α1, ..., αq ∈ C and β1, ..., βs ∈ C\Z−0 ;

p ∈ N; q, s, n ∈ N0; q ≤ s+ 1; b ∈ C∗; z ∈ U). (1.13)

Let
∑∗

p denote the subclass of
∑

p consisting of functions of the form:

f(z) = z−p +

∞∑
k=p

|ak| zk (p ∈ N). (1.14)

We now write

Hn,∗
p (q, s;α1;A,B, b) = Hn

p (q, s;α1;A,B, b) ∩
∑∗

p
.

We note the following interesting relationship with some of the special function
classes which were investigated recently:

(i) H0,∗
p (q, s;α1;A,B, 1) =

∑∗
p,q (A,B) (see Goyal et al. [12]) ;

(ii)H0,∗
p (2, 1; a, 1, c;A,B, b) = H+

a,c(p;A,B, b, 1) (a ∈ R; c ∈ R\ {0,−1,−2, ...})(see
Aqlan and Kulkarni [6]).

Also, we note that:
(i) Hn,∗

p (q, s;α1;β,−β, b) = Hn,∗
p (q, s;α1;β, b)

=

f(z) ∈
∑∗

p
:

∣∣∣∣∣∣∣∣∣
z (In (Hp,q,s(α1)f(z)))

In (Hp,q,s(α1)f(z))

′

+ p

z (In (Hp,q,s(α1)f(z)))

In (Hp,q,s(α1)f(z))

′

+ p (1− 2b)

∣∣∣∣∣∣∣∣∣ < β

(0 < β ≤ 1; b ∈ C∗; α1, ..., αq ∈ C and β1, ..., βs ∈ C\Z−0 ;
q ≤ s+ 1; p ∈ N ; q, s, n ∈ N0; z ∈ U)

 ; (1.15)
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(ii) Hn,∗
p (q, s;α1;β,− (2γ − 1)β, b) = Hn,∗

p (q, s;α1;β, γ, b)

=

f(z) ∈
∑∗

p
:

∣∣∣∣∣∣∣∣∣
z (In (Hp,q,s(α1)f(z)))

In (Hp,q,s(α1)f(z))

′

+ p

(2γ − 1)
z (In (Hp,q,s(α1)f(z)))

In (Hp,q,s(α1)f(z))

′

+ p [2γ (1− b)− 1]

∣∣∣∣∣∣∣∣∣ < β

(0 < β ≤ 1; 1
2 ≤ γ ≤ 1; b ∈ C∗; α1, ..., αq ∈ C and β1, ..., βs ∈ C\Z−0 ;
q ≤ s+ 1; p ∈ N ; q, s, n ∈ N0; z ∈ U)

 ; (1.16)

(iii) Hn,∗
p (2, 1; δ + p, 1, 1;A,B, b) = Dn,∗

p (δ;A,B, b)

=

f(z) ∈
∑∗

p
:

∣∣∣∣∣∣∣∣∣∣
z
(
In
(
Dδ+p−1f(z)

))′
In (Dδ+p−1f(z))

+ p

B
z
(
In
(
Dδ+p−1f(z)

))′
In (Dδ+p−1f(z))

+ p [(A−B) b+B]

∣∣∣∣∣∣∣∣∣∣
< 1

(−1 ≤ B < A ≤ 1; δ > −p; p ∈ N; n ∈ N0; b ∈ C∗; z ∈ U)

 ; (1.17)

(iv) Hn,∗
p (2, 1; a, 1, c;A,B, b) = Ln,∗p (a, c;A,B, b)

=

f(z) ∈
∑∗

p
:

∣∣∣∣∣∣∣∣∣
z (In (Lp(a, c)f(z)))

′

In (Lp(a, c)f(z))
+ p

B
z (In (Lp(a, c)f(z)))

′

In (Lp(a, c)f(z))
+ p [(A−B) b+B]

∣∣∣∣∣∣∣∣∣ < 1

(−1 ≤ B < A ≤ 1; a ∈ R; c ∈ R\ {0,−1,−2, ...} ;
p ∈ N; n ∈ N0; b ∈ C∗; z ∈ U)

 . (1.18)

2. Some basic properties of the class Hn,∗
p (q, s, α1;A,B, b)

We begin by proving the necessary and sufficient condition (invovling coefficient
bounds) for the class Hn,∗

p (q, s, α1;A,B, b).
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Theorem 1. Let the function f(z) defined by (1.14) be in the class
∑∗

p. Then the

function f(z) belongs to the class Hn,∗
p (q, s, α1;A,B, b) if and only if

∞∑
k=p

kn [(k + p) (1−B)− p |b| (A−B)] Γk+p |ak| ≤ p |b| (A−B). (2.1)

Proof. Assuming that the inequality (2.1) holds true then from (2.1), we find that∣∣∣∣∣ z (In (Hp,q,s(α1)f(z)))
′
+ pIn (Hp,q,s(α1)f(z))

Bz (In (Hp,q,s(α1)f(z)))
′
+ [Bp(1− b) +Apb] In (Hp,q,s(α1)f(z))

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
∞∑
k=p

kn (k + p) Γk+p |ak| zk+p

pb(A−B) +
∞∑
k=p

kn [B (k + p) + pb(A−B)] Γk+p |ak| zk+p

∣∣∣∣∣∣∣∣∣ < 1 (z ∈ U∗),

(2.2)

z ∈ ∂U = {z : z ∈ C and |z| = 1} . Hence, by the maximum modulus theorem, we
have f(z) ∈ Hn,∗

p (q, s, α1;A,B, b).
Conversely, suppose that f(z) is in the class Hn,∗

p (q, s, α1;A,B, b) with f(z) of
the form (1.14), then we find from (1.13), that∣∣∣∣∣ z (In (Hp,q,s(α1)f(z)))

′
+ pIn (Hp,q,s(α1)f(z))

Bz (In (Hp,q,s(α1)f(z)))
′
+ [Bp (1− b) +Apb] In (Hp,q,s(α1)f(z))

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣
∞∑
k=p

kn (k + p) Γk+p |ak| zk+p

pb(A−B) +
∞∑
k=p

kn [B (k + p) + pb(A−B)] Γk+p |ak| zk+p

∣∣∣∣∣∣∣∣∣ < 1. (2.3)

If we choose z to be real and z → 1−, we get

∞∑
k=p

kn [(k + p) (1−B)− p |b| (A−B)] Γk+p |ak| ≤ p |b| (A−B), (2.4)

which is precisely the assertion (2.1) of Theorem 1.

Corollary 2. Let the function f(z) be defined by (1.14) be in the class Hn,∗
p (q, s, α1;A,B, b)

Then

|ak| ≤
p |b| (A−B)

kn [(k + p) (1−B)− p |b| (A−B)] Γk+p
(k ≥ p). (2.5)
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The result is sharp for the function f(z) given by

f(z) = z−p +
p |b| (A−B)

kn [(k + p) (1−B)− p |b| (A−B)] Γk+p
zk (k ≥ p). (2.6)

Next we prove the following growth and distortion properties for the class
Hn,∗
p (q, s, α1;A,B, b).

Theorem 3. If a function f(z) defined by (1.14) is in the class Hn,∗
p (q, s, α1;A,B, b),

then for |z| = r < 1, we have{
(p+m− 1)!

(p− 1)!
− p! |b| (A−B)

[2(1−B)− |b| (A−B)] pn(p−m)!Γ2p
r2p
}
r−(p+m)

≤
∣∣∣f (m)(z)

∣∣∣ ≤ {(p+m− 1)!

(p− 1)!
− p! |b| (A−B)

[2(1−B)− |b| (A−B)] pn(p−m)!Γ2p
r2p
}
r−(p+m).

(2.7)

The result is sharp for the function f(z) given by

f(z) = z−p +
|b| (A−B)

pn [2(1−B)− |b| (A−B)] Γ2p
zp. (2.8)

Proof. Let f(z) ∈ Hn,∗
p (q, s, α1;A,B, b). Then we find from Theorem 1 that

p [2(1−B)− |b| (A−B)] pn(p−m)!Γ2p

p!

∞∑
k=p

k!

(k −m)!
|ak|

≤
∞∑
k=p

[(k + p) (1−B)− p |b| (A−B)] knΓk+p. |ak| ≤ p |b| (A−B),

which yields

∞∑
k=p

k!

(k −m)!
|ak| ≤

|b| (A−B)

pn [2(1−B)− |b| (A−B)] Γ2p

p!

(p−m)!
. (2.9)

Now, by differentiating both sides of (1.14) m times with respect to z, we have

f (m)(z) = (−1)m
(p+m− 1)!

(p− 1)!
z−(p+m) +

∞∑
k=p

k!

(k −m)!
|ak| zk−m (p ∈ N ; 0 ≤ m < p)

(2.10)
and Theorem 3 follows easily from (2.9) and (2.10), respectively.

Finally, it is easy to see that the bounds in (2.7) are attained for the function
f(z) given by (2.8).
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Next, we determine the radii of meromorphically p-valent starlikeness and con-
vexity of order ϕ (0 ≤ ϕ < p) for functions in the class Hn,∗

p (q, s, α1;A,B, b).

Theorem 4. Let the function f(z) defined by (1.14) be in the class Hn,∗
p (q, s, α1;A,B, b),

then we have:
(i) f(z) is meromorphically p-valent starlike of order ϕ (0 ≤ ϕ < p) in the disc

|z| < r1, that is,

<

{
−zf

′
(z)

f(z)

}
> ϕ (|z| < r1; 0 ≤ ϕ < p; p ∈ N), (2.11)

where

r1 = inf
k≥p

{
kn [(k + p) (1−B)− p |b| (A−B)] Γk+p

p |b| (A−B)

(p− ϕ)

(k + ϕ)

} 1

k + p , (2.12)

(ii) f(z) is meromorphically p-valent convex of order ϕ (0 ≤ ϕ < p) in the disc
|z| < r2, that is,

<

{
−

(
1 +

zf
′′
(z)

f ′(z)

)}
> ϕ (|z| < r2; 0 ≤ ϕ < p; p ∈ N), (2.13)

where

r2 = inf
k≥p

{
kn−1 [(k + p) (1−B)− p |b| (A−B)] Γk+p

p |b| (A−B)

p(p− ϕ)

(k + ϕ)

} 1

k + p
. (2.14)

Each of these results is sharp for the function f(z) given by (2.6).

Proof. (i) From the definition (1.14), we easily get∣∣∣∣∣∣∣∣∣
zf

′
(z)

f(z)
+ p

zf
′
(z)

f(z)
− p+ 2ϕ

∣∣∣∣∣∣∣∣∣ ≤
∞∑
k=p

(k + p) |ak| |z|k+p

2(p− ϕ)−
∞∑
k=p

(k − p+ 2ϕ) |ak| |z|k+p
. (2.15)

Thus, we have the desired inequality∣∣∣∣∣∣∣∣∣
zf

′
(z)

f(z)
+ p

zf
′
(z)

f(z)
− p+ 2ϕ

∣∣∣∣∣∣∣∣∣ ≤ 1 (0 ≤ ϕ < p; p ∈ N), (2.16)
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if

∞∑
k=p

(
k + ϕ

p− ϕ

)
|ak| |z|k+p ≤ 1. (2.17)

Hence, by Theorem 1, (2.17) will be true(
k + ϕ

p− ϕ

)
|z|k+p ≤

kn [(k + p) (1−B)− p |b| (A−B)] Γk+p
p |b| (A−B)

|z| ≤
{
kn [(k + p) (1−B)− p |b| (A−B)] Γk+p

p |b| (A−B)

(p− ϕ)

(k + ϕ)

} 1

k + p . (2.18)

The last inequality (2.18) leads us immediately to the disc |z| < r1, where r1 is given
by (2.12).

(ii) In order to prove the second assertion of Theorem 3, we find from the defi-
nition (1.14) that∣∣∣∣∣∣∣∣∣

1 +
zf

′′
(z)

f ′(z)
+ p

1 +
zf

′′
(z)

f ′(z)
− p+ 2ϕ

∣∣∣∣∣∣∣∣∣ ≤
∞∑
k=p

k(k + p) |ak| |z|k+p

2p(p− ϕ)−
∞∑
k=p

k(k − p+ 2ϕ) |ak| |z|k+p
. (2.19)

Thus, we have the desired inequality∣∣∣∣∣∣∣∣∣
1 +

zf
′′
(z)

f ′(z)
+ p

1 +
zf

′′
(z)

f ′(z)
− p+ 2ϕ

∣∣∣∣∣∣∣∣∣ ≤ 1 (0 ≤ ϕ < p; p ∈ N), (2.20)

if
∞∑
k=p

k

p

(
k + ϕ

p− ϕ

)
|ak| |z|k+p ≤ 1. (2.21)

Hence, by Theorem 1, (2.21) will be true if

k

p

(
k + ϕ

p− ϕ

)
|z|k+p ≤

kn [(k + p) (1−B)− p |b| (A−B)] Γk+p
p |b| (A−B)

. (2.22)

The last inequality (2.22) readily yields the disc |z| < r2, where r2 defined by (2.14),
and the proof of Theorem 4 is completed by merely verifying that each assertion is
sharp for the function f(z) given by (2.6).
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3. Closure theorems

In this section we first prove:

Theorem 5. The class Hn,∗
p (q, s, α1;A,B, b) is closed under convex linear combi-

nations.

Proof. Let each of the functions

fj(z) = z−p +

∞∑
k=p

|ak,j | zk (j = 1, 2; p ∈ N) (3.1)

be in the class Hn,∗
p (q, s, α1;A,B, b). It is sufficient to show that the function z(z)

defined by
z(z) = (1− t)f1(z) + tf2(z) (0 ≤ t ≤ 1) (3.2)

is also in the class Hn,∗
p (q, s, α1;A,B, b). Since

z(z) = z−p +
∞∑
k=p

[(1− t) |ak,1|+ t |ak,2|] zk (0 ≤ t ≤ 1). (3.3)

With the aid of Theorem 1, we have

∞∑
k=p

kn [(k + p) (1−B)− p |b| (A−B)] Γk+p. {(1− t) |ak,1|+ t |ak,2|}

= (1− t)
∞∑
k=p

kn [(k + p) (1−B)− p |b| (A−B)] Γk+p |ak,1|+

t
∞∑
k=p

kn [(k + p) (1−B)− p |b| (A−B)] Γk+p |ak,2|

≤ (1− t)p |b| (A−B) + tp |b| (A−B) = p |b| (A−B),

which shows that z(z) ∈ Hn,∗
p (q, s, α1;A,B, b).

Theorem 6. Let fp−1(z) =
1

zp
and

fk(z) =
1

zp
+

p |b| (A−B)

kn [(k + p) (1−B)− p |b| (A−B)] Γk+p
zk (k ≥ p; p ∈ N) . (3.4)

Then f(z) ∈ Hn,∗
p (q, s, α1;A,B, b) if and only if it can be expressed in the form:

f(z) =

∞∑
k=p−1

µkfk(z), (3.5)
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where µk ≥ 0 (k ≥ p− 1; p ∈ N) and
∞∑

k=p−1
µk = 1.

Proof. Let the function f(z) expressed in the form given by (3.5), then

f(z) = z−p +
∞∑
k=p

µk
p |b| (A−B)

kn [(k + p) (1−B)− p |b| (A−B)] Γk+p
zk (3.6)

and for this function, we have

∞∑
k=p

kn [(k + p) (1−B)− p |b| (A−B)] Γk+pµk
p |b| (A−B)

kn [(k + p) (1−B)− p |b| (A−B)] Γk+p

=

∞∑
k=p

µkp |b| (A−B) = p |b| (A−B)(1− µp−1) ≤ p |b| (A−B), (3.7)

which shows that f(z) ∈ Hn,∗
p (q, s, α1;A,B, b) by Theorem 1.

Conversely, suppose that the function f(z) defined by (1.14) belongs to the class
Hn,∗
p (q, s, α1;A,B, b). Since

|ak| ≤
p |b| (A−B)

kn [(k + p) (1−B)− p |b| (A−B)] Γk+p
(k ≥ p; p ∈ N) , (3.8)

by Corollary 2, setting

µk =
kn [(k + p) (1−B)− p |b| (A−B)] Γk+p

p |b| (A−B)
|ak| (k ≥ p; p ∈ N) (3.9)

and

µp−1 = 1−
∞∑
k=p

µk,

it follows that

f(z) =
∞∑

k=p−1
µkfk(z).

This completes the proof of Theorem 6.

4. Neighborhoods and partial sums

Following the earlier works (based upon the familiar concept of neighborhoods of
analytic functions) by Goodman [11] and Ruscheweyh [17] and (more recently) by
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Altintas et al. ([1], [2] and [3]), Liu [13] and Liu and Srivastava [15], we begin by
introducing here the δ-neighborhoods of a function f(z) ∈ Σp of the form (1.1) by
means of the definition given below:

Nδ(f) =

g : g ∈ Σp, g(z) = z−p +
∞∑

k=1−p
bkz

k and

∞∑
k=1−p

kn [(k + p) (1 + |B|)− p |b| (A−B)]

p |b| (A−B)
Γk+p |bk − ak| ≤ δ

(δ > 0;−1 ≤ B < A ≤ 1;α1, ..., αq ∈ C and β1, ..., βs ∈ C\Z−0 ;
p ∈ N; q, s, n ∈ N0; q ≤ s+ 1; b ∈ C∗)

 . (4.1)

Making use of the definition (4.1), we now prove:

Theorem 7. Let the function f(z) defined by (1.1) be in the class Hn
p (q, s, α1;A,B, b).

If f(z) satisfies the condition:

f(z) + εz−p

1 + ε
∈ Hn

p (q, s, α1;A,B, b) (ε ∈ C; |ε| < δ; δ > 0) (4.2)

then
Nδ(f) ⊂ Hn

p (q, s, α1;A,B, b). (4.3)

Proof. It is easily from (1.13) that g(z) ∈ Hn
p (q, s, α1;A,B, b) if and only if, for any

complex number σ with |σ| = 1, we have

z (In (Hp,q,s(α1)f(z)))
′
+ pIn (Hp,q,s(α1)f(z))

Bz (In (Hp,q,s(α1)f(z)))
′
+ [Bp (1− b) +Apb] In (Hp,q,s(α1)f(z))

6= σ (z ∈ U),

(4.4)
which is equivalent to

(g ∗ h)(z)

z−p
6= 0 (z ∈ U), (4.5)

where, for convenience,

h(z) = z−p +

∞∑
k=1−p

ckz
k

= z−p +
∞∑

k=1−p

kn [(k + p) (1−Bσ)− pbσ(A−B)]

pbσ(A−B)
Γk+pz

k. (4.6)
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From (4.6), we have

|ck| =
∣∣∣∣kn [(k + p) (1−Bσ)− pbσ(A−B)]

pbσ(A−B)
Γk+p

∣∣∣∣
≤ kn [(k + p) (1 + |B|)− p |b| (A−B)]

p |b| (A−B)
Γk+p (k ≥ p; p ∈ N). (4.7)

If f(z) = z−p +
∞∑

k=1−p
akz

k ∈ Σp satisfies the condition (4.2), then (4.5) yields

∣∣∣∣(f ∗ h)(z)

z−p

∣∣∣∣ > δ (z ∈ U∗; δ > 0). (4.8)

Next, if we suppose that

Φ(z) = z−p +

∞∑
k=1−p

dkz
k ∈ Nδ(f) (4.9)

we easily see that

∣∣∣∣ [Φ(z)− f(z)] ∗ h(z)

z−p

∣∣∣∣ =

∣∣∣∣∣∣
∞∑

k=1−p
(dk − ak)ckzk+p

∣∣∣∣∣∣
≤ |z|

∞∑
k=1−p

kn [(k + p) (1 + |B|)− p |b| (A−B)]

p |b| (A−B)
Γk+p |dk − ak|

(4.10)

< δ (z ∈ U ; δ > 0).

Thus we have (4.5), and hence also (4.4) for any σ ∈ C such that |σ| = 1, which
implies that Φ(z) ∈ Hn

p (q, s, α1;A,B, b). This evidently proves the assertion (4.3) of
Theorem 7.

We now define the δ-neighborhoods of a function f(z) ∈ Σ∗p of the form (1.14)
as follows:
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N+
δ (f) =

g ∈ Σ∗p, g(z) = z−p +
∞∑
k=p

|bk| zk and

∞∑
k=p

kn [(k + p) (1 + |B|)− p |b| (A−B)]

p |b| (A−B)
Γk+p ||bk| − |ak|| ≤ δ

(δ > 0; ;−1 ≤ B < A ≤ 1;α1, ..., αq ∈ C and β1, ..., βs ∈ C\Z−0 ;
p ∈ N; q, s, n ∈ N0; q ≤ s+ 1; b ∈ C∗)

 .

(4.11)

Theorem 8. Let −1 ≤ B ≤ 0. If the function f(z) given by (1.14) is in the class
Hn,∗
p (q, s, α1 + 1;A,B, b), then

N+
δ (f) ⊂ Hn,∗

p (q, s, α1;A,B, b) (δ =
2p

α1 + 2p
). (4.12)

The result is sharp in the sense that δ cannot be increased.

Proof. Making use of the same method as in the proof of Theorem 7, we can show
that [cf. Equation (4.6)]

h(z) = z−p +
∞∑
k=p

ckz
k

= z−p +
∞∑
k=p

kn [(k + p) (1−Bσ)− pbσ(A−B)]

pbσ(A−B)
Γk+pz

k. (4.13)

Thus, under the hypothesis −1 ≤ B < A ≤ 1; −1 ≤ B ≤ 0; q ≤ s + 1; p ∈ N;
q, s, n ∈ N0; b ∈ C∗, if f(z) ∈ Hn,∗

p (q, s, α1 + 1;A,B, b) is given by (1.14), we obtain∣∣∣∣(f ∗ h)(z)

z−p

∣∣∣∣ =

∣∣∣∣∣∣1 +
∞∑
k=p

ck |ak| zk+p
∣∣∣∣∣∣

≥ 1−
∞∑
k=p

kn
[(k + p) (1 + |B|)− p |b| (A−B)]

p |b| (A−B)
Γk+p |ak|

≥ 1− α1

α1 + 2p

∞∑
k=p

kn [(k + p) (1 + |B|)− p |b| (A−B)]

p |b| (A−B)
Γk+p |ak|

≥ 1− α1

α1 + 2p
=

2p

α1 + 2p
= δ.
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The remaining part of the proof of Theorem 8 is similar to that of Theorem 8 and
we skip the details involved.

Theorem 9. Let f(z) ∈ Σp defined by (1.1) and −1 ≤ B ≤ 0, we define the partial
sums S1(z) and Sq(z) as follows

S1(z) = z−p and Sq(z) = z−p +

q−1∑
k=1−p

akz
k (q ∈ N\{1}), (4.14)

it beging understood that an empty sum is (as usual) nil. Suppose also that

∞∑
k=1−p

ck+p |ak| ≤ 1

(
ck+p =

kn [(k + p) (1 + |B|)− p |b| (A−B)]

p |b| (A−B)
Γk+p

)
. (4.15)

Then

(i) f(z) ∈ Hn
p (q, s, α1;A,B, b)

(ii) <
{
f(z)

Sq(z)

}
> 1− 1

cq
(z ∈ U ; q ∈ N)

(4.16)
and

(iii) <
{
Sq(z)

f(z)

}
>

cq
1 + cq

(z ∈ U ; q ∈ N).

(4.17)
The estimates in (4.16) and (4.17) are sharp.

Proof. Since
z−p + εz−p

1 + ε
= z−p ∈ Hn

p (q, s, α1;A,B, b), |ε| < 1, then by Theo-

rem 7, we have Nδ(f) ⊂ Hn
p (q, s, α1;A,B, b), p ∈ N (N1(z

−p) denoting the 1-
neighbourhood). Now since

∞∑
k=1−p

ck |ak| ≤ 1, (4.18)

then f ∈ N1(z
−p) and f ∈ Hn

p (q, s, α1;A,B, b).(ii) Since {ck} is an increasing se-
quence, we obtain

q−p−1∑
k=1−p

|ak|+ cq

∞∑
k=q−p

|ak| ≤
∞∑

k=1−p
ck+p |ak| ≤ 1, (4.19)
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where we have used the hypothesis (4.15) again. By seeting

h1(z) = cq

{
f(z)

Sq(z)
− (1− 1

cq
)

}
= 1 +

cq
∞∑

k=q−p
|ak| zk+p

1 +
q−p−1∑
k=1−p

|ak| zk+p

and applying (4.19), we find that

∣∣∣∣h1(z)− 1

h1(z) + 1

∣∣∣∣ ≤
cq

∞∑
k=q−p

|ak|

2− 2
q−p−1∑
k=1−p

|ak| − cq
∞∑

k=q−p
|ak|
≤ 1 (z ∈ U), (4.20)

which readily yields the assertion (4.16) of Theorem 9. If we take

f(z) = z−p − zq

cq
, (4.21)

then
f(z)

Sq(z)
= 1− zp+q

cq
→ 1− 1

cq
, as z → 1−,

which shows that the bound in (4.16) is the best possible for each q ∈ N. (iii) Just
as in part (ii) above, if we put

h2(z) = (1 + cq)

{
Sq(z)

f(z)
− cq

1 + cq

}
= 1−

(1 + cq)
∞∑

k=q−p
|ak| zk+p

1 +
∞∑

k=1−p
|ak| zk+p

, (4.22)

and make use of (4.19), we can deduce that

∣∣∣∣h2(z)− 1

h2(z) + 1

∣∣∣∣ ≤
(1 + cq)

∞∑
k=q−p

|ak|

2− 2
q−p−1∑
k=1−p

|ak| − (1− cq)
∞∑

k=q−p
|ak|
≤ 1,

which leads us immediately to the assertion (4.17) of Theorem 9.
The bound in (4.17) is sharp for each n ∈ N , with the extremal function f(z)

given by (4.21). The proof of Theorem 9 is thus completed.

Remark 1. Taking n = 0, q = 2, s = 1, α1 = a (a > 0), α2 = 1 and β1 = c
(c > 0), in all our results, we obtain the results obtained by Aqlan and Kulkarni [6].
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