*I***-ASYMPTOTICALLY LACUNARY EQUIVALENT SET SEQUENCES DEFINED BY A MODULUS FUNCTION**

Ö. Kışı, H. Gümüş, F. Nuray

ABSTRACT. Let $\mathcal{I} \subseteq 2^{\mathbb{N}}$ be a non-trivial ideal, $\theta = (k_r)$ be a lacunary sequence and f be a modulus function. Our aim in this study is to introduce some new notions such that $\mathcal{I}_W(f)$ -asymptotic equivalence, $\mathcal{I}_W(w_f)$ -asymptotic equivalence and $\mathcal{I}_W(N^f_{\theta})$ -asymptotic equivalence for set sequences. We also prove some inclusion theorems.

2010 Mathematics Subject Classification: 40G15, 40A35.

Keywords: Asymptotic equivalence, lacunary sequences, \mathcal{I} -convergence, Wijsman convergence, modulus function.

1. INTRODUCTION

Asymptotic equivalence was introduced by Pobyvanets [24] and Marouf extended Pobyvanets's work [20]. Patterson, Savaş and some other authors studied on this concept and they extended asymptotic equivalence to asymptotic statistical equivalence and asymptotic lacunary statistical equivalence. [21, 22]

Das, Savaş and Ghosal in [7] introduced \mathcal{I} -statistical convergence and \mathcal{I} -lacunary statistical convergence with ideal. Also in [25], \mathcal{I} -asymptotically statistical equivalent and \mathcal{I} -asymptotically lacunary statistical equivalent sequences were studied.

Wijsman statistical convergence which is implementation of the concept of statistical convergence to sequences of sets presented by Nuray and Rhoades [18]. After this definition, Ulusu and Nuray [28] introduced Wijsman lacunary statistical convergence of set sequences. In [29] they also defined asymptotically lacunary statistical equivalent set sequences and presented theorems about asymptotic equivalence Wijsman sense. In addition, they also presented asymptotically equivalent (Wijsman sense) analogs of theorems in [29].

Recently, Kişi, Savaş and Nuray [12] introduced \mathcal{I} -asymptotically statistical equivalent and \mathcal{I} -asymptotically lacunary statistical equivalent set sequences.

In this paper we introduce the concepts of $\mathcal{I}_W(f)$ -asymptotically equivalent, $\mathcal{I}_W(w_f)$ -asymptotically equivalent and $\mathcal{I}_W(N^f_{\theta})$ -asymptotically equivalent set sequences and we present some natural inclusion theorems.

2. Definitions and Notations

First we recall the basic definitions and concepts (see [20],[30]). Two nonnegative sequences $x = (x_k)$ and $y = (y_k)$ are said to be asymptotically equivalent if

$$\lim_k \frac{x_k}{y_k} = 1$$

(denoted by $x \sim y$).

A family of sets $\mathcal{I} \subseteq 2^{\mathbb{N}}$ is called an ideal if and only if

(i) $\emptyset \in \mathcal{I}$

(*ii*) For each $A, B \in \mathcal{I}$ we have $A \cup B \in \mathcal{I}$

(*iii*) For each $A \in \mathcal{I}$ and each $B \subseteq A$ we have $B \in \mathcal{I}$

An ideal is called non-trivial if $\mathbb{N} \notin \mathcal{I}$ and non-trivial ideal is called admissible if $\{n\} \in \mathcal{I}$ for each $n \in \mathbb{N}$.

A family of sets $\mathcal{F} \subseteq 2^{\mathbb{N}}$ is a filter in \mathbb{N} if and only if

(i) $\emptyset \notin \mathcal{F}$

(*ii*) For each $A, B \in \mathcal{F}$ we have $A \cap B \in \mathcal{F}$

(*iii*) For each $A \in \mathcal{F}$ and each $B \supseteq A$ we have $B \in \mathcal{F}$

If ${\mathcal I}$ is a non-trivial ideal of ${\mathbb N}$, then the family of sets

$$\mathcal{F}(\mathcal{I}) = \{ M \subset \mathbb{N} : \exists A \in \mathcal{I} : M = \mathbb{N} \setminus A \}$$

is a filter of $\mathbb N$ and it is called the filter associated with the ideal.

Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be an admissible ideal in \mathbb{N} . The sequence (x_n) of elements of \mathbb{R} is said to be \mathcal{I} -convergent to $L \in \mathbb{R}$ if for each $\varepsilon > 0$ the set

$$A(\varepsilon) = \{n \in \mathbb{N} : |x_n - L| \ge \varepsilon\} \in \mathcal{I}.$$

Now we have some easy but important examples about \mathcal{I} -convergence.

Example 1. Take for \mathcal{I} class the \mathcal{I}_f of all finite subsets of \mathbb{N} . Then \mathcal{I}_f is an admissible ideal and \mathcal{I}_f -convergence coincides with the usual convergence.

Example 2. Denote by \mathcal{I}_d the class of all $A \subset \mathbb{N}$ which has natural density zero. Then \mathcal{I}_d is an admissible ideal and \mathcal{I}_d -convergence coincides with the statistical convergence.

Let (X, ρ) be a metric space. For any point $x \in X$ and any non-empty subset A of X, we define the distance from x to A by

$$d(x,A) = \inf_{a \in A} \rho(x,A).$$

Let (X, ρ) be a metric space. For any non-empty closed subsets $A, A_k \subseteq X$, we say that the sequence $\{A_k\}$ is Wijsman convergent to A if

$$\lim_{k \to \infty} d(x, A_k) = d(x, A)$$

for each $x \in X$. In this case we write $W - \lim A_k = A$.

Let (X, ρ) a metric space. For any non-empty closed subsets A_k of X, we say that the sequence $\{A_k\}$ is bounded if

$$\sup_{h} d(x, A_k) < \infty$$

for each $x \in X$. In this case we write $\{A_k\} \in L_{\infty}$.

Let (X, ρ) a metric space. For any non-empty closed subsets $A, A_k \subseteq X$, we say that the sequence $\{A_k\}$ is Wijsman statistical convergent to A if $\{d(x, A_k)\}$ is statistically convergent to d(x, A); i.e., for $\varepsilon > 0$ and for each $x \in X$,

$$\lim_{n \to \infty} \frac{1}{n} |\{k \le n : |d(x, A_k) - d(x, A)| \ge \varepsilon\}| = 0.$$

In this case we write $st - \lim_{W} A_k = A$ or $A_k \to A(WS)$.

In [17] Nakano introduced the notion of a modulus function as follows: By a modulus function, we mean a function f from $[0, \infty)$ to $[0, \infty)$ such that

- (i) f(x) = 0 if and only if x=0;
- (ii) $f(x+y) \le f(x) + f(y)$ for all $x \ge 0, y \ge 0$;
- (iii) f is increasing;
- (iv) f is continuous from the right at 0.

It follows from that f must be continuous on [0, 1). A modulus may be bounded or unbounded. Başarır [3], Maddox [19], Pehlivan [23] and many others used a modulus function f to define some new sequence spaces.

3. MAIN RESULTS

For non-empty closed subsets A_k and B_k of X, define $d(x; A_k, B_k)$ as follows:

$$d(x; A_k, B_k) = \begin{cases} \frac{d(x, A_k)}{d(x, B_k)} &, & \text{if, } x \notin A_k \cup B_k \\ L &, & \text{if, } x \in A_k \cup B_k. \end{cases}$$

We begin with the following definitions.

Definition 1. Let (X, ρ) be a metric space, $\mathcal{I} \subset 2^{\mathbb{N}}$ be a non-trivial in \mathbb{N} . For any non-empty closed subsets A_k , $B_k \subseteq X$, we say that the sequences $\{A_k\}$ and $\{B_k\}$ are said to be strongly asymptotically equivalent of multiple L (Wijsman sense) with respect to the ideal \mathcal{I} provided that every $\varepsilon > 0$, for each $x \in X$,

$$\left\{n \in \mathbb{N} : \frac{1}{n} \sum_{k=1}^{n} |d(x; A_k, B_k) - L| \ge \varepsilon\right\} \in \mathcal{I},$$

 $\left(denoted by A_k \overset{\mathcal{I}_W(w)}{\sim} B_k \right)$ and simply strongly asymptotically equivalent with respect to the ideal \mathcal{I} , if L = 1.

Definition 2. Let (X, d) be a metric space, $\mathcal{I} \subset 2^{\mathbb{N}}$ be a non-trivial in \mathbb{N} and f be a modulus function. For non-empty closed subsets $A_k, B_k \subset X$, we say that the sequences $\{A_k\}$ and $\{B_k\}$ are said to be f-asymptotically equivalent of multiple L (Wijsman sense) with respect to the ideal \mathcal{I} provided that for each $\varepsilon > 0$ and for each $x \in X$,

$$\{k \in \mathbb{N} : f\left(\left|d\left(x; A_k, B_k\right) - L\right|\right) \ge \varepsilon\} \in \mathcal{I}.$$

 $\left(denoted by A_k \overset{\mathcal{I}_W(f)}{\sim} B_k \right)$ and simply f-asymptotically equivalent(Wijsman sense) with respect to the ideal I, if L = 1.

Definition 3. Let (X, d) be a metric space, $\mathcal{I} \subset 2^{\mathbb{N}}$ be a non-trivial in \mathbb{N} and f be a modulus function. For any non-empty closed subsets A_k , $B_k \subseteq X$, we say that the sequences $\{A_k\}$ and $\{B_k\}$ are said to be strongly f-asymptotically equivalent of multiple L (Wijsman sense) with respect to the ideal I provided that every $\varepsilon > 0$, for each $x \in X$,

$$\left\{n \in \mathbb{N} : \frac{1}{n} \sum_{k=1}^{n} f\left(\left|d\left(x; A_{k}, B_{k}\right) - L\right|\right) \ge \varepsilon\right\} \in \mathcal{I},$$

 $\begin{pmatrix} denoted by A_k \overset{\mathcal{I}_W(w_f)}{\sim} B_k \end{pmatrix}$ and simply strongly f-asymptotically equivalent with respect to the ideal \mathcal{I} , if L = 1.

Definition 4. Let (X, d) be a metric space. For any non-empty closed subsets $A_k, B_k \subseteq X$, we say that the sequences $\{A_k\}$ and $\{B_k\}$ are said to be strongly *f*-asymptotically lacunary equivalent of multiple L (Wijsman sense) with respect to the ideal \mathcal{I} provided that for each $\varepsilon > 0$ and for each $x \in X$,

$$\left\{ r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in I_r} f\left(|d\left(x; A_k, B_k\right) - L| \right) \ge \varepsilon \right\} \in \mathcal{I},$$

 $\left(denoted by A_k \overset{N_{\theta}^f(I_W)}{\sim} B_k \right)$ and simply strongly *f*-asymptotically lacunary equivalent with respect to the ideal \mathcal{I} , if L = 1.

Lemma 1. Let f be a modulus function and let $0 < \delta < 1$. Then for $y \neq 0$ and each $\left(\frac{x}{y}\right) > \delta$, we have $f\left(\frac{x}{y}\right) \leq \frac{2f(1)}{\delta}\left(\frac{x}{y}\right)$.

Theorem 2. Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be a non-trivial in \mathbb{N} and f be a modulus function. Then,

(i) If $A_k \overset{\mathcal{I}_W(w)}{\sim} B_k$ then $A_k \overset{\mathcal{I}_W(w_f)}{\sim} B_k$ and (ii) $\lim_{t \to \infty} \frac{f(t)}{t} = \alpha > 0$, then $A_k \overset{\mathcal{I}_W(w)}{\sim} B_k \Leftrightarrow A_k \overset{\mathcal{I}_W(w_f)}{\sim} B_k$.

Proof. (i)-Let $A_k \stackrel{\mathcal{I}_W(w)}{\sim} B_k$ and $\varepsilon > 0$ be given. Choose $0 < \delta < 1$ such that $f(t) < \varepsilon$ for $0 \le t \le \delta$. Then we can write

$$\frac{1}{n} \sum_{k=1}^{n} f\left(|d\left(x; A_{k}, B_{k}\right) - L|\right) = \frac{1}{n} \sum_{\substack{k=1 \ |d(x; A_{k}, B_{k}) - L| \le \delta}}^{n} f\left(|d\left(x; A_{k}, B_{k}\right) - L|\right) + \frac{1}{n} \sum_{\substack{k=1 \ |d(x; A_{k}, B_{k}) - L| > \delta}}^{n} f\left(|d\left(x; A_{k}, B_{k}\right) - L|\right).$$

Moreover, using the definiton of the modulus function f, we have

$$\frac{1}{n}\sum_{k=1}^{n} f\left(|d(x; A_k, B_k) - L| \right) < \varepsilon + \left(\frac{2f(1)}{\delta} \right) \frac{1}{n} \sum_{k=1}^{n} |d(x; A_k, B_k) - L|.$$

Thus, for any $\gamma > 0$,

$$\left\{ n \in \mathbb{N} : \frac{1}{n} \sum_{k=1}^{n} f\left(\left| d\left(x; A_k, B_k\right) - L \right| \right) \ge \gamma \right\}$$
$$\subseteq \left\{ n \in \mathbb{N} : \frac{1}{n} \sum_{k=1}^{n} \left(\left| d\left(x; A_k, B_k\right) - L \right| \right) \ge \frac{(\gamma - \varepsilon) \delta}{2f(1)} \right\}$$

Since $A_k \overset{\mathcal{I}_W(w)}{\sim} B_k$, it follows the later set, and hence, the first set in above expression to \mathcal{I} . This proves that $A_k \overset{\mathcal{I}_W(w_f)}{\sim} B_k$.

(*ii*) If $\lim_{t\to\infty} \frac{f(t)}{t} = \alpha > 0$, then we have $f(t) \ge \alpha t$ for all $t \ge 0$. Suppose that $A_k \overset{\mathcal{I}_W(w_f)}{\sim} B_k$. Since

$$\frac{1}{n} \sum_{k=1}^{n} f\left(|d(x; A_k, B_k) - L| \right) \geq \frac{1}{n} \sum_{k=1}^{n} \alpha\left(|d(x; A_k, B_k) - L| \right)$$
$$= \alpha\left(\frac{1}{n} \sum_{k=1}^{n} |d(x; A_k, B_k) - L| \right).$$

It follows that for each $\varepsilon > 0$, we have

$$\left\{ n \in \mathbb{N} : \frac{1}{n} \sum_{k=1}^{n} |d(x; A_k, B_k) - L| \ge \varepsilon \right\}$$
$$\subseteq \left\{ n \in \mathbb{N} : \frac{1}{n} \sum_{k=1}^{n} f(|d(x; A_k, B_k) - L|) \ge \alpha \varepsilon \right\}.$$

Since $A_k \overset{\mathcal{I}_W(w_f)}{\sim} B_k$, it follows that the later set belongs to \mathcal{I} , and therefore, the theorem is proved.

Theorem 3. Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be a non-trivial in \mathbb{N} and f be a modulus function. Then,

(i) If $A_k \overset{\mathcal{I}_W(w_f)}{\sim} B_k$ then $A_k \overset{\mathcal{I}_W(S)}{\sim} B_k$ and (ii) If f is bounded, then $A_k \overset{\mathcal{I}_W(w_f)}{\sim} B_k \Leftrightarrow A_k \overset{\mathcal{I}_W(S)}{\sim} B_k$.

Proof. (i)–Suppose $A_k \overset{I_W(w_f)}{\sim} B_k$ and $\varepsilon > 0$ be given. Then we can write

$$\frac{1}{n}\sum_{k=1}^{n} f\left(|d\left(x;A_{k},B_{k}\right)-L|\right) \geq \frac{1}{n}\sum_{\substack{k=1\\|d(x;A_{k},B_{k})-L|\geq\varepsilon}}^{n} f\left(|d\left(x;A_{k},B_{k}\right)-L|\right)$$

$$\geq \frac{f(\varepsilon)}{n} \cdot |\{k \leq n : |d(x; A_k, B_k) - L| \geq \varepsilon\}|$$

Therefore, for any $\gamma > 0$, we have

$$\left\{ n \in \mathbb{N} : \frac{1}{n} \left\{ |k \le n : |d(x; A_k, B_k) - L| \ge \varepsilon | \right\} \ge \frac{\gamma}{f(\varepsilon)} \right\}$$
$$\subseteq \left\{ n \in \mathbb{N} : \frac{1}{n} \sum_{k=1}^n f(|d(x; A_k, B_k) - L|) \ge \gamma \right\}.$$

Since $A_k \overset{\mathcal{I}_W(w_f)}{\sim} B_k$, it follows that the later set belongs to \mathcal{I} , and therefore $A_k \overset{\mathcal{I}_W(S)}{\sim} B_k$.

(*ii*) Suppose that f is bounded and $A_k \overset{\mathcal{I}_W(S)}{\sim} B_k$. Since f is bounded there exists a real number M such that $\sup f(t) \leq M$. And for $\varepsilon > 0$, we can write

$$\frac{1}{n} \sum_{k=1}^{n} f(|d(x; A_k, B_k) - L|) = \frac{1}{n} \left[\sum_{\substack{k=1 \ |d(x; A_k, B_k) - L| \ge \varepsilon}}^{n} f(|d(x; A_k, B_k) - L|) + \sum_{\substack{k=1 \ |d(x; A_k, B_k) - L| < \varepsilon}}^{n} f(|d(x; A_k, B_k) - L|) \right] \\
\leq \frac{M}{n} |\{k \le n : |d(x; A_k, B_k) - L| \ge \varepsilon\}| + f(\varepsilon).$$

Now if $\varepsilon \to 0$, the theorem is proved. Since $A_k \overset{\mathcal{I}_W(S)}{\sim} B_k$, it follows that the later set belongs to \mathcal{I} , and therefore $A_k \overset{\mathcal{I}_W(w_f)}{\sim} B_k$.

Theorem 4. Let $\mathcal{I} \subset 2^{\mathbb{N}}$ be a non-trivial in \mathbb{N} , $\theta = \{k_r\}$ be a lacunary sequence and f be a modulus function. If $\liminf_r q_r > 1$, then $A_k \overset{\mathcal{I}_W(w_f)}{\sim} B_k \Longrightarrow A_k \overset{\mathcal{I}_W(N_{\theta}^f)}{\sim} B_k$. *Proof.* Suppose that $\liminf_r q_r > 1$, then there exists a $\delta > 0$ such that $q_r = \frac{k_r}{k_{r-1}} \ge 1 + \delta$ for sufficiently large r, which implies that

$$\frac{h_r}{k_r} \ge \frac{\delta}{1+\delta}$$

Let $A_k \overset{\mathcal{I}_W(w_f)}{\sim} B_k$. For a sufficiently large r, we obtain the following;

$$\frac{1}{k_r} \sum_{k=1}^{k_r} f\left(\left|d\left(x; A_k, B_k\right) - L\right|\right) \geq \frac{1}{k_r} \sum_{k \in I_r} f\left(\left|d\left(x; A_k, B_k\right) - L\right|\right)$$
$$= \left(\frac{h_r}{k_r}\right) \frac{1}{h_r} \sum_{k \in I_r} f\left(\left|d\left(x; A_k, B_k\right) - L\right|\right)$$
$$\geq \left(\frac{\delta}{1+\delta}\right) \frac{1}{h_r} \sum_{k \in I_r} f\left(\left|d\left(x; A_k, B_k\right) - L\right|\right).$$

which gives for any $\varepsilon > 0$,

$$\left\{ r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in I_r} f\left(|d\left(x; A_k, B_k\right) - L| \right) \ge \varepsilon \right\}$$
$$\subseteq \left\{ r \in \mathbb{N} : \frac{1}{k_r} \sum_{k=1}^{k_r} f\left(|d\left(x; A_k, B_k\right) - L| \right) \ge \frac{\varepsilon . \delta}{1 + \delta} \right\}.$$

Since $A_k \overset{\mathcal{I}_W(w_f)}{\sim} B_k$, it follows that the later set belongs to I, and therefore $A_k \overset{\mathcal{I}_W(N_{\theta}^f)}{\sim} B_k$.

Theorem 5. Let (X, ρ) be a metric space. Let $I \subset P(\mathbb{N})$ be a non-trivial in \mathbb{N} , $\theta = \{k_r\}$ be a lacunary sequence, A_k , B_k be non-empty closed subsets of X; and f be a modulus function. Then,

(i) If
$$A_k \overset{\mathcal{I}_W(N_{\theta})}{\sim} B_k$$
, then $A_k \overset{\mathcal{I}_W(N_{\theta}^f)}{\sim} B_k$; and
(ii) $\lim_{t \to \infty} \frac{f(t)}{t} = \alpha > 0$, then $A_k \overset{\mathcal{I}_W(N_{\theta})}{\sim} B_k \iff A_k \overset{\mathcal{I}_W(N_{\theta}^f)}{\sim} B_k$

Proof. The proof is similar to the proof of theorem 3.1.

Theorem 6. Let (X, ρ) be a metric space, $\mathcal{I} \subset 2^{\mathbb{N}}$ be a non-trivial in \mathbb{N} , $\theta = \{k_r\}$ be a lacunary sequence, A_k , B_k be non-empty closed subsets of X; and f be a modulus function. Then,

(i) If
$$A_k \overset{\mathcal{I}_W(N^f_{\theta})}{\sim} B_k$$
, then $A_k \overset{\mathcal{I}_W(S_{\theta})}{\sim} B_k$; and
(ii) If f is bounded, then $A_k \overset{\mathcal{I}_W(N^f_{\theta})}{\sim} B_k \iff A_k \overset{\mathcal{I}_W(S_{\theta})}{\sim} B_k$.

Proof. (i) Suppose that $A_k \overset{\mathcal{I}_W(N_{\theta}^f)}{\sim} B_k$ and $\varepsilon > 0$ be given. Since

$$\frac{1}{h_r} \sum_{k \in I_r} f\left(|d\left(x; A_k, B_k\right) - L| \right) \geq \frac{1}{h_r} \sum_{\substack{k \in I_r \\ |d\left(x; A_k, B_k\right) - L| \ge \varepsilon}} f\left(|d\left(x; A_k, B_k\right) - L| \right) \\
\geq f\left(\varepsilon\right) \frac{1}{h_r} \left| \{k \in I_r : |d\left(x; A_k, B_k\right) - L| \ge \varepsilon\} \right|$$

If follows that for any $\gamma > 0$, if we denote sets

$$A(\varepsilon,\gamma) = \left\{ r \in \mathbb{N} : \frac{1}{h_r} \left| \{k \in I_r : |d(x; A_k, B_k) - L| \ge \varepsilon \} \right| \ge \gamma \right\}$$
$$B(\varepsilon,\gamma) = \left\{ r \in \mathbb{N} : \frac{1}{h_r} \sum_{k \in I_r} f(|d(x; A_k, B_k) - L|) \ge \gamma f(\varepsilon) \right\}.$$

Then $A(\varepsilon, \gamma) \subset B(\varepsilon, \gamma)$. Since $A_k \overset{\mathcal{I}_W(N_{\theta}^f)}{\sim} B_k$, so $B(\varepsilon, \gamma) \in \mathcal{I}$. But then, by the definition of an ideal, $A(\varepsilon, \gamma) \in \mathcal{I}$, and therefore, $A_k \overset{\mathcal{I}_W(S_{\theta})}{\sim} B_k$.

(*ii*) Suppose that f is bounded and let $A_k \overset{\mathcal{I}_W(S_\theta)}{\sim} B_k$. Since f is bounded there exists a positive real number M such that $|f(x)| \leq M$ for all $x \geq 0$. Further, using the fact

$$\frac{1}{h_r} \sum_{k \in I_r} f\left(|d\left(x; A_k, B_k\right) - L|\right) = \frac{1}{h_r} \left[\sum_{\substack{k \in I_r \\ |d\left(x; A_k, B_k\right) - L| \ge \varepsilon}} f\left(|d\left(x; A_k, B_k\right) - L|\right) + \sum_{\substack{k \in I_r \\ |d\left(x; A_k, B_k\right) - L| < \varepsilon}} f\left(|d\left(x; A_k, B_k\right) - L|\right) \right] \right]$$
$$\leq \frac{M}{h_r} \left| \{k \in I_r : |d\left(x; A_k, B_k\right) - L| \ge \varepsilon\} \right| + f\left(\varepsilon\right)$$

Now if $\varepsilon \to 0$, the theorem is proved. Since $A_k \overset{\mathcal{I}_W(S_\theta)}{\sim} B_k$, it follows the later set, and hence, the first set in above expression to \mathcal{I} . This proves that $A_k \overset{\mathcal{I}_W(N_\theta^f)}{\sim} B_k$.

References

[1] J. P. Aubin.and H. Frankowska, Set-valued analysis, Birkhauser, Boston, 1990.

[2] M. Baronti and P. Papini, *Convergence of sequences of sets*, Methods of functional analysis in approximation theory, (1986), 133-155.

[3] M. Başarır and S. Altundağ, $On [w]_{\sigma,\theta}^{L}$ -lacunary asymptotically equivalent sequences, Int. J. Math., (2008), 373-182.

[4] T. Bilgin, *f-Asymptotically Equivalent sequences*, Acta Univ. Apulensis, 28, (2011), 271-178.

[5] G. Beer, Convergence of continuous linear functionals and their level sets, Archiv der Mathematik, 52,(1989), 482-491.

[6] G. Beer, On convergence of closed sets in a metric space and distance functions, The Bulletin of the Australian Mathematical Society 31,(1985), 421-432.

[7] P. Das, E. Savaş and S. Ghosal, On generalized of certain summability methods using ideals, Appl. Math. Letter, 36, (2011), 1509-1514.

[8] J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301-313.

[9] J. A. Fridy and C. Orhan, *Lacunary statistical convergence*, Pacific Journal of Mathematics, 160, 1 (1993), 43-51.

[10] Ô. Kişi and F. Nuray, New Convergence Definitions for Sequence of Sets, Abstract and Applied Analysis Volume 2013, Article ID 852796 (2013) 6 pages.

[11] Ö. Kişi and F. Nuray, On $S_{\lambda}(\mathcal{I})$ – asymptotically statistical equivalence of sequence of sets, ISRN Mathematical Analysis Volume 2013, Article ID 602963 (2013), 6 pages.

[12] Ö. Kişi, E. Savaş and F. Nuray, On I- asymptotically lacunary statistical equivalence of sequences of sets (submitted for publication).

[13] V. Kumar, A. Sharma, Aysmptotically lacunary equivalent sequences defined by ideal and modulus function. Math. Sci. 6, 23 (2012) 5 pages.

[14] C. Kuratowski, *Topology (Vol.1)*, Academic Press, New York, 1966.

[15] P. Kostyrko, T. Salát and W. Wilezyński, \mathcal{I} -Convergence, Real Anal. Exchange, 26, 2 (2000), 669-686.

[16] P. Kostyrko, M. Mačaj, T. Šalát and M. Sleziak, $\mathcal{I}-Convergence$ and extremal *I-limit points*, Math. Slovaca, 55 (2005), 443-464.

[17] H. Nakano, Concave modulars, J. Math. Soc. Japan. 5 (1953), 29-49.

[18] F. Nuray and B. E. Rhoades, *Statistical convergence of sequences of sets*, Fasciculi Mathematici 49 (2012), 87-99.

[19] I. J. Maddox, Sequence spaces defined by a modulus, Math.Proc. Camb. Phil. Soc. 100 (1986), 161-166.

[20] M. Marouf, Asymptotic equivalence and summability, Internat. J. Math. Math. Sci. 16, 4 (1993), 755-762.

[21] R. F. Patterson, On asymptotically statistically equivalent sequences, Demostratio Math. 36, 1 (2003), 149-153.

[22] R. F. Patterson and E. Savaş, On asymptotically lacunary statistical equivalent sequences, Thai J. Math. 4 (2)(2006), 267-272.

[23] S. Pehlivan, B. Fisher, Some sequences defined by a modulus, Math. Slovaca. 45, 3 (1995), 275-280.

[24] I. P. Pobyvanets, Asymptotic equivalence of some linear transformation defined by a nonnegative matrix and reduced to generalized equivalence in the sense of Cesàro and Abel, Matematicheskaya Fizika, 28(1980), 83-87.

[25] E. Savas, On $\mathcal{I}-$ asymptotically lacunary statistical equivalent sequences, Advances in Difference Equations, 2013, 2013:111.

[26] E. Savas and P. Das, A generalized statistical convergence via ideals, Appl.Math.Lett., 24 (2011), 826-830.

[27] E. Öztürk and T. Bilgin, Strongly summable sequence spaces defined by a modulus, Indian J. Pure Appl. Math., 25, 6 (1994), 621-625.

[28] U. Ulusu and F. Nuray, *Lacunary statistical convergence of sequence of sets*, Prog. Appl. Math., 4, 2 (2012), 99-109.

[29] U. Ulusu and F. Nuray, On asymptotically lacunary statistically equivalent set sequences, Journal of Mathematics, 2013, Article ID 310438, (2013)5 pages.

[30] R. A. Wijsman, Convergence of sequences of Convex sets, Cones and Functions II, Transactions of the American Mathematical Society, 123, 1 (1966), 32-45.

Ömer Kişi Department of Mathematics, Faculty of Education Cumhuriyet University, Sivas, Turkey email:okisi@cumhuriyet.edu.tr

Hafize GüMüş Department of Mathematics, Faculty of Eregli Education Necmettin Erbakan University Eregli, Konya, Turkey email:hqumus@konya.edu.tr

Fatih Nuray Department of Mathematics Afyon Kocatepe University Afyonkarahisar, Turkey email: fnuray@aku.edu.tr (Current address:North Florida University, Department of Mathematics and Statistics, Jacksonville, FL, USA email: f.nuray@unf.edu)