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COEFFICIENT ESTIMATES FOR SOME SUBCLASSES OF M-FOLD
SYMMETRIC BI-UNIVALENT FUNCTIONS
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Abstract. In the present investigation, we consider two new general subclasses
HΣm(τ, γ;α) and HΣm(τ, γ;β) of Σm consisting of analytic and m-fold symmetric
bi-univalent functions in the open unit disk U. For functions belonging to the two
classes introduced here, we derive estimates on the initial coefficients |am+1| and
|a2m+1|. Several related classes are also considered and connections to earlier known
results are made.
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1. Introduction, Definitions and Preliminaries

Let A denote the class of functions f(z) normalized by

f(z) = z +

∞∑
k=2

akz
k, (1)

which are analytic in the open unit disk

U =
{
z : z ∈ C and |z| < 1

}
.

We denote by S the class of all functions f(z) ∈ A which are univalent in U [3, 11, 16].
Some of the important and well-investigated subclasses of the univalent function
class S include the class S∗(α) of starlike functions of order α in U and the class
K(α) of convex functions of order α in U.

It is well-known that every function f(z) ∈ S has an inverse f−1, which is defined
by

f−1(f(z)) = z (z ∈ U)
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and

f−1(f(w)) = w

(
|w| < r0(f); r0(f) =

1

4

)
.

The inverse function f−1 may analytically continued to U as follows:

f−1(w) = w − a2w
2 + (2a2

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + · · · . (2)

A function f ∈ A is said to be bi-univalent in U if both f(z) and f−1(z) are
univalent in U. We denote by Σ the class of bi-univalent functions in U given by
(1).

For each function f ∈ S, the function

h(z) = m
√
f (zm) (z ∈ U; m ∈ N) (3)

is univalent and maps the unit disk U into a region with m-fold symmetry. A function
is said to be m-fold symmetric (see [7, 10]) if it has the following normalized form:

f(z) = z +

∞∑
k=1

amk+1z
mk+1 (z ∈ U; m ∈ N). (4)

We denote by Sm the class of m-fold symmetric univalent functions in U, which
are normalized by the series expansion (4). The functions in the class S are said to
be one-fold symmetric.

Each bi-univalent function generates an m-fold symmetric bi-univalent function
for each integer m ∈ N. The normalized form of f is given as in (4) and the series
expansion for f−1, which has been recently proven by Srivastava et al. [17], is given
as follows:

g(w) =w − am+1w
m+1 +

[
(m+ 1)a2

m+1 − a2m+1

]
w2m+1

−
[

1

2
(m+ 1)(3m+ 2)a3

m+1 − (3m+ 2)am+1a2m+1 + a3m+1

]
w3m+1 + · · · ,

(5)

where f−1 = g. We denote by Σm the class of m-fold symmetric bi-univalent func-
tions in U. It is easily seen that for m = 1, the formula (5) coincides with the
formula (2). Here are some examples of m-fold symmetric bi-univalent functions.(

zm

1− zm

) 1
m

,

[
1

2
log

(
1 + zm

1− zm

)] 1
m

and [− log (1− zm)]
1
m
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with the corresponding inverse functions(
wm

1− wm

) 1
m

,

(
e2wm − 1

e2wm + 1

) 1
m

and

(
ew

m − 1

ewm

) 1
m

,

respectively.

In 1967, Lewin [8] investigated the class Σ and showed that |a2| < 1.51. Subse-
quently, Brannan and Clunie [1] conjectured that |a2| 5

√
2. Afterwards in 1981,

Styer and Wright [18] showed that there exist functions f(z) ∈ Σ for which |a2| > 4
3 .

The best known estimate for functions in Σ has been obtained in 1984 by Tan [19],
that is, |a2| 5 1.485. The coefficient estimate problem involving the bound of |an|
(n ∈ N \ {1, 2}) for each f ∈ Σ given by (4) is still an open problem.

Recently, many researchers [5, 6, 9, 13, 14, 15, 17, 20, 21], following the work of
Brannan and Taha [2], introduced and investigated a lot of interesting subclasses of
the bi-univalent function class Σ and they obtained non-sharp estimates of the first
two Taylor-Maclaurin coefficients |a2| and |a3|.

In this paper, we derive estimates on the initial coefficients |am+1| and |a2m+1| for
functions belonging to the new general subclasses HΣm(τ, γ;α) and HΣm(τ, γ;β) of
Σm. Several related classes are also considered and connections to earlier known re-
sults are made. These two new subclasses HΣm(τ, γ;α) and HΣm(τ, γ;β) are defined
as follows:

Definition 1. A function f(z) ∈ Σm given by (4) is said to be in the class HΣm(τ, γ;α)
if the following conditions are satisfied:∣∣∣∣arg

(
1 +

1

τ

[
f ′(z) + γzf ′′(z)− 1

])∣∣∣∣ < απ

2
(z ∈ U) (6)

and ∣∣∣∣arg

(
1 +

1

τ

[
g′(w) + γwg′′(w)− 1

])∣∣∣∣ < απ

2
(w ∈ U) (7)

(
0 < α 5 1; τ ∈ C \ {0}; 0 5 γ 5 1

)
,

and where the function g = f−1 is given by (5).

Definition 2. A function f(z) ∈ Σm given by (4) is said to be in the class HΣm(τ, γ;β)
if the following conditions are satisfied:

<
(

1 +
1

τ

[
f ′(z) + γzf ′′(z)− 1

])
> β (z ∈ U) (8)
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and

<
(

1 +
1

τ

[
g′(w) + γwg′′(w)− 1

])
> β (w ∈ U) (9)

(
0 5 β < 1; τ ∈ C \ {0}; 0 5 γ 5 1

)
,

and where the function g = f−1 is given by (5).

The following lemma [3] will be required in order to derive our main results.

Lemma 1. If h ∈ P, then |ck| 5 2 for each k ∈ N, where P is the family of all
functions h, analytic in U, for which

< (h(z)) > 0, (z ∈ U),

where
h(z) = 1 + c1z + c2z

2 + · · · (z ∈ U).

2. Coefficient Bounds for the functions class HΣm(τ, γ;α)

We begin this section by finding the estimates on the coefficients |am+1| and |a2m+1|
for functions in the class HΣm(τ, γ;α).

Theorem 2. Let f(z) ∈ HΣm(τ, γ;α) (0 < α 5 1; τ ∈ C \ {0}; 0 5 γ 5 1) be of the
form (4). Then

|am+1| 5
2α|τ |√∣∣∣τα(m+ 1)(2m+ 1)(2γm+ 1) + (1− α)(m+ 1)2(γm+ 1)2

∣∣∣ (10)

and

|a2m+1| 5
2α2|τ |2

(m+ 1)(γm+ 1)2
+

2α|τ |
(2m+ 1)(2γm+ 1)

. (11)

Proof. It follows from (6) and (7) that

1 +
1

τ

[
f ′(z) + γzf ′′(z)− 1

]
= [p(z)]α (12)
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and

1 +
1

τ

[
g′(w) + γwg′′(w)− 1

]
= [q(w)]α , (13)

where the functions p(z) and q(w) are in P and have the following series represen-
tations:

p(z) = 1 + pmz
m + p2mz

2m + p3mz
3m + · · · (14)

and

q(w) = 1 + qmw
m + q2mw

2m + q3mw
3m + · · · . (15)

Now, equating the coefficients in (12) and (13), we obtain

(m+ 1)(γm+ 1)

τ
am+1 = αpm, (16)

(2m+ 1)(2γm+ 1)

τ
a2m+1 = αp2m +

1

2
α(α− 1)p2

m, (17)

−(m+ 1)(γm+ 1)

τ
am+1 = αqm, (18)

and

(2m+ 1)(2γm+ 1)

τ

[
(m+ 1)a2

m+1 − a2m+1

]
= αq2m +

1

2
α(α− 1)q2

m. (19)

From (16) and (18), we find

pm = −qm (20)

and

2
(m+ 1)2(γm+ 1)2

τ2
a2
m+1 = α2(p2

m + q2
m). (21)

From (17), (19) and (21), we get

(2m+ 1)(2γm+ 1)

τ
(m+ 1) a2

m+1

= α(p2m + q2m) +
α(α− 1)

2

(
p2
m + q2

m

)
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= α(p2m + q2m) +
(α− 1)

α

(m+ 1)2(γm+ 1)2

τ2
a2
m+1. (22)

Therefore, we have

a2
m+1 =

τ2α2(p2m + q2m)

[τα(m+ 1)(2m+ 1)(2γm+ 1) + (1− α)(m+ 1)2(γm+ 1)2]
. (23)

Applying Lemma 1 for the coefficients p2m and q2m, we have

|am+1| 5
2α|τ |√∣∣∣τα(m+ 1)(2m+ 1)(2γm+ 1) + (1− α)(m+ 1)2(γm+ 1)2

∣∣∣ . (24)

This gives the desired bound for |am+1| as asserted in (10).

In order to find the bound on |a2m+1|, by subtracting (19) from (17), we get

2
(2m+ 1)(2γm+ 1)

τ
a2m+1 −

(2m+ 1)(2γm+ 1)

τ
(m+ 1) a2

m+1

= α(p2m − q2m) +
α(α− 1)

2

(
p2
m − q2

m

)
. (25)

It follows from (20) and (25) that

a2m+1 =
α2τ2(p2

m + q2
m)

4(m+ 1)(γm+ 1)2
+

ατ(p2m − q2m)

2(2m+ 1)(2γm+ 1)
. (26)

Applying Lemma 1 once again for the coefficients pm, p2m, qm and q2m, we readily
obtain

|a2m+1| 5
2α2|τ |2

(m+ 1)(γm+ 1)2
+

2α|τ |
(2m+ 1)(2γm+ 1)

. (27)

3. Coefficient Bounds for the functions class HΣm(τ, γ;β)

This section is devoted to find the estimates on the coefficients |am+1| and |a2m+1|
for functions in the class HΣm(τ, γ;β).
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Theorem 3. Let f(z) ∈ HΣm(τ, γ;β) (0 5 β 5 1; τ ∈ C \ {0}; 0 5 γ 5 1) be of the
form (4). Then

|am+1| 5

√
4|τ |(1− β)

(m+ 1)(2m+ 1)(2γm+ 1)
(28)

and

|a2m+1| 5
2|τ |2(1− β)2

(m+ 1)(γm+ 1)2
+

2|τ |(1− β)

(2m+ 1)(2γm+ 1)
. (29)

Proof. It follows from (8) and (9) that there exist p, q ∈ P such that

1 +
1

τ

[
f ′(z) + γzf ′′(z)− 1

]
= β + (1− β)p(z) (30)

and

1 +
1

τ

[
g′(w) + γwg′′(w)− 1

]
= β + (1− β)q(w), (31)

where p(z) and q(w) have the forms (14) and (15), respectively. By suitably com-
paring coefficients in (30) and (31), we get

(m+ 1)(γm+ 1)

τ
am+1 = (1− β)pm, (32)

(2m+ 1)(2γm+ 1)

τ
a2m+1 = (1− β)p2m, (33)

−(m+ 1)(γm+ 1)

τ
am+1 = (1− β)qm (34)

and

(2m+ 1)(2γm+ 1)

τ

[
(m+ 1)a2

m+1 − a2m+1

]
= (1− β)q2m. (35)

From (32) and (34), we find

pm = −qm (36)

and

2
(m+ 1)2(γm+ 1)2

τ2
a2
m+1 = (1− β)2(p2

m + q2
m). (37)
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Adding (33) and (35), we have

(2m+ 1)(2γm+ 1)

τ
(m+ 1) a2

m+1 = (1− β)(p2m + q2m). (38)

Applying Lemma 1, we obtain

|am+1| 5

√
4|τ |(1− β)

(m+ 1)(2m+ 1)(2γm+ 1)
. (39)

This is the bound on |am+1| asserted in (28).

In order to find the bound on |a2m+1|, by subtracting (35) from (33), we get

2
(2m+ 1)(2γm+ 1)

τ
a2m+1 −

(2m+ 1)(2γm+ 1)

τ
(m+ 1) a2

m+1

= (1− β)(p2m − q2m)

or, equivalently,

a2m+1 =
(m+ 1)

2
a2
m+1 +

τ(1− β)(p2m − q2m)

2(2m+ 1)(2γm+ 1)
. (40)

It follows from (36) and (37) that

a2m+1 =
τ2(1− β)2(p2

m + q2
m)

4(m+ 1)(γm+ 1)2
+
τ(1− β)(p2m − q2m)

2(2m+ 1)(2γm+ 1)
. (41)

Applying Lemma 1 once again for the coefficients pm, p2m, qm and q2m, we easily
obtain

|a2m+1| 5
2|τ |2(1− β)2

(m+ 1)(γm+ 1)2
+

2|τ |(1− β)

(2m+ 1)(2γm+ 1)
. (42)

4. Applications of the main results

For one-fold symmetric bi-univalent functions and for τ = 1, Theorem 1 and Theo-
rem 2 reduce to Corollary 1 and Corollary 2, respectively, which were proven very
recently by Frasin [4] (see also [12]).
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Corollary 4. Let f(z) ∈ HΣ(α, γ) (0 < α 5 1; 0 5 γ 5 1) be of the form (1). Then

|a2| 5
2α√

2(α+ 2) + 4γ(α+ γ + 2− αγ)
(43)

and

|a3| 5
α2

(γ + 1)2
+

2α

3(2γ + 1)
. (44)

Corollary 5. Let f(z) ∈ HΣ(β, γ) (0 < α 5 1; 0 5 γ 5 1) be of the form (1). Then

|a2| 5

√
2(1− β)

3(2γ + 1)
(45)

and

|a3| 5
(1− β)2

(γ + 1)2
+

2(1− β)

3(2γ + 1)
. (46)

The classes HΣ(α, γ) and HΣ(β, γ) are defined in the following way:

Definition 3. A function f(z) ∈ Σ given by (1) is said to be in the class HΣ(α, γ)
if the following conditions are satisfied:∣∣arg

(
f ′(z) + γzf ′′(z)

)∣∣ < απ

2
(z ∈ U) (47)

and ∣∣arg
(
g′(w) + γwg′′(w)

)∣∣ < απ

2
(w ∈ U) (48)(

0 < α 5 1; 0 5 γ 5 1

)
,

and where the function g = f−1 is given by (2).

Definition 4. A function f(z) ∈ Σ given by (1) is said to be in the class HΣ(β, γ)
if the following conditions are satisfied:

<
(
f ′(z) + γzf ′′(z)

)
> β (z ∈ U) (49)

and

<
(
g′(w) + γwg′′(w)

)
> β (w ∈ U) (50)(

0 5 β < 1; 0 5 γ 5 1

)
,

and where the function g = f−1 is given by (2).
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If we set γ = 0 and τ = 1 in Theorem 1 and Theorem 2, then the classes
HΣm(τ, γ;α) and HΣm(τ, γ;β) reduce to the classes HαΣm

and HβΣm
investigated

recently by Srivastava et al. [17] and thus, we obtain the following corollaries:

Corollary 6. Let f(z) ∈ HαΣm
(0 < α 5 1) be of the form (4). Then

|am+1| 5
2α√

(m+ 1)(αm+m+ 1)
(51)

and

|a2m+1| 5
2α(2αm+ α+m+ 1)

(m+ 1)(2m+ 1)
. (52)

Corollary 7. Let f(z) ∈ HβΣm
(0 5 β 5 1) be of the form (4). Then

|am+1| 5 2

√
(1− β)

(m+ 1)(2m+ 1)
(53)

and

|a2m+1| 5 2(1− β)

(
(1− β)(2m+ 1) +m+ 1

(m+ 1)(2m+ 1)

)
. (54)

The classes HαΣm
and HβΣm

are respectively defined as follows:

Definition 5. A function f(z) ∈ Σm given by (4) is said to be in the class HαΣm
if

the following conditions are satisfied:∣∣arg
{
f ′(z)

}∣∣ < απ

2
(z ∈ U) (55)

and ∣∣arg
{
g′(w)

}∣∣ < απ

2
(w ∈ U) (56)

(0 < α 5 1),

and where the function g is given by (5).

Definition 6. A function f(z) ∈ Σm given by (4) is said to be in the class HβΣm
if

the following conditions are satisfied:

<
(
f ′(z)

)
> β (z ∈ U) (57)

and

<
(
g′(w)

)
> β (w ∈ U) (58)

(0 5 β < 1),

and where the function g is given by (5).
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Chicoutimi, Québec G7H 2B1, Canada
email: s1gabour@uqac.ca

Firas Ghanim
Department of Mathematics, College of Sciences,
University of Sharjah,
Sharjah, United Arab Emirates
email: fgahmed@sharjah.ac.ae

164


	Introduction, Definitions and Preliminaries
	Coefficient Bounds for the functions class Hm(, ; )
	Coefficient Bounds for the functions class Hm(, ; )
	Applications of the main results

