# COEFFICIENT ESTIMATES FOR SOME SUBCLASSES OF $M$-FOLD SYMMETRIC BI-UNIVALENT FUNCTIONS 

H. M. Srivastava, S. Gaboury, F. Ghanim

Abstract. In the present investigation, we consider two new general subclasses $\mathcal{H}_{\Sigma_{m}}(\tau, \gamma ; \alpha)$ and $\mathcal{H}_{\Sigma_{m}}(\tau, \gamma ; \beta)$ of $\Sigma_{m}$ consisting of analytic and $m$-fold symmetric bi-univalent functions in the open unit disk $\mathbb{U}$. For functions belonging to the two classes introduced here, we derive estimates on the initial coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$. Several related classes are also considered and connections to earlier known results are made.

2010 Mathematics Subject Classification: 30C45, 30C50, 30C80.
Keywords: Analytic functions, Bi-univalent functions, m-Fold symmetric functions, $m$-Fold symmetric bi-univalent functions.

## 1. Introduction, Definitions and Preliminaries

Let $\mathcal{A}$ denote the class of functions $f(z)$ normalized by

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disk

$$
\mathbb{U}=\{z: z \in \mathbb{C} \quad \text { and } \quad|z|<1\} .
$$

We denote by $\mathcal{S}$ the class of all functions $f(z) \in \mathcal{A}$ which are univalent in $\mathbb{U}[3,11,16]$. Some of the important and well-investigated subclasses of the univalent function class $\mathcal{S}$ include the class $\mathcal{S}^{*}(\alpha)$ of starlike functions of order $\alpha$ in $\mathbb{U}$ and the class $\mathcal{K}(\alpha)$ of convex functions of order $\alpha$ in $\mathbb{U}$.

It is well-known that every function $f(z) \in \mathcal{S}$ has an inverse $f^{-1}$, which is defined by

$$
f^{-1}(f(z))=z \quad(z \in \mathbb{U})
$$

and

$$
f^{-1}(f(w))=w \quad\left(|w|<r_{0}(f) ; r_{0}(f) \geqq \frac{1}{4}\right) .
$$

The inverse function $f^{-1}$ may analytically continued to $\mathbb{U}$ as follows:

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots . \tag{2}
\end{equation*}
$$

A function $f \in \mathcal{A}$ is said to be bi-univalent in $\mathbb{U}$ if both $f(z)$ and $f^{-1}(z)$ are univalent in $\mathbb{U}$. We denote by $\Sigma$ the class of bi-univalent functions in $\mathbb{U}$ given by (1).

For each function $f \in \mathcal{S}$, the function

$$
\begin{equation*}
h(z)=\sqrt[m]{f\left(z^{m}\right)} \quad(z \in \mathbb{U} ; m \in \mathbb{N}) \tag{3}
\end{equation*}
$$

is univalent and maps the unit disk $\mathbb{U}$ into a region with $m$-fold symmetry. A function is said to be $m$-fold symmetric (see $[7,10]$ ) if it has the following normalized form:

$$
\begin{equation*}
f(z)=z+\sum_{k=1}^{\infty} a_{m k+1} z^{m k+1} \quad(z \in \mathbb{U} ; m \in \mathbb{N}) . \tag{4}
\end{equation*}
$$

We denote by $S_{m}$ the class of $m$-fold symmetric univalent functions in $\mathbb{U}$, which are normalized by the series expansion (4). The functions in the class $\mathcal{S}$ are said to be one-fold symmetric.

Each bi-univalent function generates an $m$-fold symmetric bi-univalent function for each integer $m \in \mathbb{N}$. The normalized form of $f$ is given as in (4) and the series expansion for $f^{-1}$, which has been recently proven by Srivastava et al. [17], is given as follows:

$$
\begin{align*}
g(w)= & w-a_{m+1} w^{m+1}+\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right] w^{2 m+1} \\
& -\left[\frac{1}{2}(m+1)(3 m+2) a_{m+1}^{3}-(3 m+2) a_{m+1} a_{2 m+1}+a_{3 m+1}\right] w^{3 m+1}+\cdots, \tag{5}
\end{align*}
$$

where $f^{-1}=g$. We denote by $\Sigma_{m}$ the class of $m$-fold symmetric bi-univalent functions in $\mathbb{U}$. It is easily seen that for $m=1$, the formula (5) coincides with the formula (2). Here are some examples of $m$-fold symmetric bi-univalent functions.

$$
\left(\frac{z^{m}}{1-z^{m}}\right)^{\frac{1}{m}}, \quad\left[\frac{1}{2} \log \left(\frac{1+z^{m}}{1-z^{m}}\right)\right]^{\frac{1}{m}} \quad \text { and } \quad\left[-\log \left(1-z^{m}\right)\right]^{\frac{1}{m}}
$$

H. M. Srivastava, S. Gaboury, F. Ghanim - Coefficient estimates ...
with the corresponding inverse functions

$$
\left(\frac{w^{m}}{1-w^{m}}\right)^{\frac{1}{m}}, \quad\left(\frac{\mathrm{e}^{2 w^{m}}-1}{\mathrm{e}^{2 w^{m}}+1}\right)^{\frac{1}{m}} \quad \text { and } \quad\left(\frac{\mathrm{e}^{w^{m}}-1}{\mathrm{e}^{w^{m}}}\right)^{\frac{1}{m}}
$$

respectively.
In 1967, Lewin [8] investigated the class $\Sigma$ and showed that $\left|a_{2}\right|<1.51$. Subsequently, Brannan and Clunie [1] conjectured that $\left|a_{2}\right| \leqq \sqrt{2}$. Afterwards in 1981, Styer and Wright [18] showed that there exist functions $\bar{f}(z) \in \Sigma$ for which $\left|a_{2}\right|>\frac{4}{3}$. The best known estimate for functions in $\Sigma$ has been obtained in 1984 by Tan [19], that is, $\left|a_{2}\right| \leqq 1.485$. The coefficient estimate problem involving the bound of $\left|a_{n}\right|$ ( $n \in \mathbb{N} \backslash\{1,2\}$ ) for each $f \in \Sigma$ given by (4) is still an open problem.

Recently, many researchers $[5,6,9,13,14,15,17,20,21]$, following the work of Brannan and Taha [2], introduced and investigated a lot of interesting subclasses of the bi-univalent function class $\Sigma$ and they obtained non-sharp estimates of the first two Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$.

In this paper, we derive estimates on the initial coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ for functions belonging to the new general subclasses $\mathcal{H}_{\Sigma_{m}}(\tau, \gamma ; \alpha)$ and $\mathcal{H}_{\Sigma_{m}}(\tau, \gamma ; \beta)$ of $\Sigma_{m}$. Several related classes are also considered and connections to earlier known results are made. These two new subclasses $\mathcal{H}_{\Sigma_{m}}(\tau, \gamma ; \alpha)$ and $\mathcal{H}_{\Sigma_{m}}(\tau, \gamma ; \beta)$ are defined as follows:

Definition 1. A function $f(z) \in \Sigma_{m}$ given by (4) is said to be in the class $\mathcal{H}_{\Sigma_{m}}(\tau, \gamma ; \alpha)$ if the following conditions are satisfied:

$$
\begin{equation*}
\left|\arg \left(1+\frac{1}{\tau}\left[f^{\prime}(z)+\gamma z f^{\prime \prime}(z)-1\right]\right)\right|<\frac{\alpha \pi}{2} \quad(z \in \mathbb{U}) \tag{6}
\end{equation*}
$$

and

$$
\begin{gather*}
\left|\arg \left(1+\frac{1}{\tau}\left[g^{\prime}(w)+\gamma w g^{\prime \prime}(w)-1\right]\right)\right|<\frac{\alpha \pi}{2} \quad(w \in \mathbb{U})  \tag{7}\\
(0<\alpha \leqq 1 ; \tau \in \mathbb{C} \backslash\{0\} ; 0 \leqq \gamma \leqq 1)
\end{gather*}
$$

and where the function $g=f^{-1}$ is given by (5).
Definition 2. A function $f(z) \in \Sigma_{m}$ given by (4) is said to be in the class $\mathcal{H}_{\Sigma_{m}}(\tau, \gamma ; \beta)$ if the following conditions are satisfied:

$$
\begin{equation*}
\Re\left(1+\frac{1}{\tau}\left[f^{\prime}(z)+\gamma z f^{\prime \prime}(z)-1\right]\right)>\beta \quad(z \in \mathbb{U}) \tag{8}
\end{equation*}
$$

and

$$
\begin{gather*}
\Re\left(1+\frac{1}{\tau}\left[g^{\prime}(w)+\gamma w g^{\prime \prime}(w)-1\right]\right)>\beta \quad(w \in \mathbb{U})  \tag{9}\\
(0 \leqq \beta<1 ; \tau \in \mathbb{C} \backslash\{0\} ; 0 \leqq \gamma \leqq 1)
\end{gather*}
$$

and where the function $g=f^{-1}$ is given by (5).
The following lemma [3] will be required in order to derive our main results.
Lemma 1. If $h \in \mathcal{P}$, then $\left|c_{k}\right| \leqq 2$ for each $k \in \mathbb{N}$, where $\mathcal{P}$ is the family of all functions $h$, analytic in $\mathbb{U}$, for which

$$
\Re(h(z))>0, \quad(z \in \mathbb{U}),
$$

where

$$
h(z)=1+c_{1} z+c_{2} z^{2}+\cdots \quad(z \in \mathbb{U}) .
$$

## 2. Coefficient Bounds for the functions class $\mathcal{H}_{\Sigma_{m}}(\tau, \gamma ; \alpha)$

We begin this section by finding the estimates on the coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ for functions in the class $\mathcal{H}_{\Sigma_{m}}(\tau, \gamma ; \alpha)$.

Theorem 2. Let $f(z) \in \mathcal{H}_{\Sigma_{m}}(\tau, \gamma ; \alpha)(0<\alpha \leqq 1 ; \tau \in \mathbb{C} \backslash\{0\} ; 0 \leqq \gamma \leqq 1)$ be of the form (4). Then

$$
\begin{equation*}
\left|a_{m+1}\right| \leqq \frac{2 \alpha|\tau|}{\sqrt{\left|\tau \alpha(m+1)(2 m+1)(2 \gamma m+1)+(1-\alpha)(m+1)^{2}(\gamma m+1)^{2}\right|}} \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{2 m+1}\right| \leqq \frac{2 \alpha^{2}|\tau|^{2}}{(m+1)(\gamma m+1)^{2}}+\frac{2 \alpha|\tau|}{(2 m+1)(2 \gamma m+1)} \tag{11}
\end{equation*}
$$

Proof. It follows from (6) and (7) that

$$
\begin{equation*}
1+\frac{1}{\tau}\left[f^{\prime}(z)+\gamma z f^{\prime \prime}(z)-1\right]=[p(z)]^{\alpha} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\tau}\left[g^{\prime}(w)+\gamma w g^{\prime \prime}(w)-1\right]=[q(w)]^{\alpha} \tag{13}
\end{equation*}
$$

where the functions $p(z)$ and $q(w)$ are in $\mathcal{P}$ and have the following series representations:

$$
\begin{equation*}
p(z)=1+p_{m} z^{m}+p_{2 m} z^{2 m}+p_{3 m} z^{3 m}+\cdots \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
q(w)=1+q_{m} w^{m}+q_{2 m} w^{2 m}+q_{3 m} w^{3 m}+\cdots . \tag{15}
\end{equation*}
$$

Now, equating the coefficients in (12) and (13), we obtain

$$
\begin{gather*}
\frac{(m+1)(\gamma m+1)}{\tau} a_{m+1}=\alpha p_{m}  \tag{16}\\
\frac{(2 m+1)(2 \gamma m+1)}{\tau} a_{2 m+1}=\alpha p_{2 m}+\frac{1}{2} \alpha(\alpha-1) p_{m}^{2}  \tag{17}\\
-\frac{(m+1)(\gamma m+1)}{\tau} a_{m+1}=\alpha q_{m} \tag{18}
\end{gather*}
$$

and

$$
\begin{equation*}
\frac{(2 m+1)(2 \gamma m+1)}{\tau}\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right]=\alpha q_{2 m}+\frac{1}{2} \alpha(\alpha-1) q_{m}^{2} \tag{19}
\end{equation*}
$$

From (16) and (18), we find

$$
\begin{equation*}
p_{m}=-q_{m} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \frac{(m+1)^{2}(\gamma m+1)^{2}}{\tau^{2}} a_{m+1}^{2}=\alpha^{2}\left(p_{m}^{2}+q_{m}^{2}\right) . \tag{21}
\end{equation*}
$$

From (17), (19) and (21), we get

$$
\begin{aligned}
& \frac{(2 m+1)(2 \gamma m+1)}{\tau}(m+1) a_{m+1}^{2} \\
& \quad=\alpha\left(p_{2 m}+q_{2 m}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{m}^{2}+q_{m}^{2}\right)
\end{aligned}
$$

$$
\begin{equation*}
=\alpha\left(p_{2 m}+q_{2 m}\right)+\frac{(\alpha-1)}{\alpha} \frac{(m+1)^{2}(\gamma m+1)^{2}}{\tau^{2}} a_{m+1}^{2} . \tag{22}
\end{equation*}
$$

Therefore, we have

$$
\begin{equation*}
a_{m+1}^{2}=\frac{\tau^{2} \alpha^{2}\left(p_{2 m}+q_{2 m}\right)}{\left[\tau \alpha(m+1)(2 m+1)(2 \gamma m+1)+(1-\alpha)(m+1)^{2}(\gamma m+1)^{2}\right]} \tag{23}
\end{equation*}
$$

Applying Lemma 1 for the coefficients $p_{2 m}$ and $q_{2 m}$, we have

$$
\begin{equation*}
\left|a_{m+1}\right| \leqq \frac{2 \alpha|\tau|}{\sqrt{\left|\tau \alpha(m+1)(2 m+1)(2 \gamma m+1)+(1-\alpha)(m+1)^{2}(\gamma m+1)^{2}\right|}} \tag{24}
\end{equation*}
$$

This gives the desired bound for $\left|a_{m+1}\right|$ as asserted in (10).
In order to find the bound on $\left|a_{2 m+1}\right|$, by subtracting (19) from (17), we get

$$
\begin{gather*}
2 \frac{(2 m+1)(2 \gamma m+1)}{\tau} a_{2 m+1}-\frac{(2 m+1)(2 \gamma m+1)}{\tau}(m+1) a_{m+1}^{2} \\
=\alpha\left(p_{2 m}-q_{2 m}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{m}^{2}-q_{m}^{2}\right) \tag{25}
\end{gather*}
$$

It follows from (20) and (25) that

$$
\begin{equation*}
a_{2 m+1}=\frac{\alpha^{2} \tau^{2}\left(p_{m}^{2}+q_{m}^{2}\right)}{4(m+1)(\gamma m+1)^{2}}+\frac{\alpha \tau\left(p_{2 m}-q_{2 m}\right)}{2(2 m+1)(2 \gamma m+1)} . \tag{26}
\end{equation*}
$$

Applying Lemma 1 once again for the coefficients $p_{m}, p_{2 m}, q_{m}$ and $q_{2 m}$, we readily obtain

$$
\begin{equation*}
\left|a_{2 m+1}\right| \leqq \frac{2 \alpha^{2}|\tau|^{2}}{(m+1)(\gamma m+1)^{2}}+\frac{2 \alpha|\tau|}{(2 m+1)(2 \gamma m+1)} \tag{27}
\end{equation*}
$$

## 3. Coefficient Bounds for the functions Class $\mathcal{H}_{\Sigma_{m}}(\tau, \gamma ; \beta)$

This section is devoted to find the estimates on the coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ for functions in the class $\mathcal{H}_{\Sigma_{m}}(\tau, \gamma ; \beta)$.
H. M. Srivastava, S. Gaboury, F. Ghanim - Coefficient estimates ...

Theorem 3. Let $f(z) \in \mathcal{H}_{\Sigma_{m}}(\tau, \gamma ; \beta)(0 \leqq \beta \leqq 1 ; \tau \in \mathbb{C} \backslash\{0\} ; 0 \leqq \gamma \leqq 1)$ be of the form (4). Then

$$
\begin{equation*}
\left|a_{m+1}\right| \leqq \sqrt{\frac{4|\tau|(1-\beta)}{(m+1)(2 m+1)(2 \gamma m+1)}} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{2 m+1}\right| \leqq \frac{2|\tau|^{2}(1-\beta)^{2}}{(m+1)(\gamma m+1)^{2}}+\frac{2|\tau|(1-\beta)}{(2 m+1)(2 \gamma m+1)} \tag{29}
\end{equation*}
$$

Proof. It follows from (8) and (9) that there exist $p, q \in \mathcal{P}$ such that

$$
\begin{equation*}
1+\frac{1}{\tau}\left[f^{\prime}(z)+\gamma z f^{\prime \prime}(z)-1\right]=\beta+(1-\beta) p(z) \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
1+\frac{1}{\tau}\left[g^{\prime}(w)+\gamma w g^{\prime \prime}(w)-1\right]=\beta+(1-\beta) q(w) \tag{31}
\end{equation*}
$$

where $p(z)$ and $q(w)$ have the forms (14) and (15), respectively. By suitably comparing coefficients in (30) and (31), we get

$$
\begin{equation*}
\frac{(m+1)(\gamma m+1)}{\tau} a_{m+1}=(1-\beta) p_{m}, \tag{32}
\end{equation*}
$$

$$
\begin{equation*}
\frac{(2 m+1)(2 \gamma m+1)}{\tau} a_{2 m+1}=(1-\beta) p_{2 m} \tag{33}
\end{equation*}
$$

$$
\begin{equation*}
-\frac{(m+1)(\gamma m+1)}{\tau} a_{m+1}=(1-\beta) q_{m} \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{(2 m+1)(2 \gamma m+1)}{\tau}\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right]=(1-\beta) q_{2 m} . \tag{35}
\end{equation*}
$$

From (32) and (34), we find

$$
\begin{equation*}
p_{m}=-q_{m} \tag{36}
\end{equation*}
$$

and

$$
\begin{equation*}
2 \frac{(m+1)^{2}(\gamma m+1)^{2}}{\tau^{2}} a_{m+1}^{2}=(1-\beta)^{2}\left(p_{m}^{2}+q_{m}^{2}\right) . \tag{37}
\end{equation*}
$$

Adding (33) and (35), we have

$$
\begin{equation*}
\frac{(2 m+1)(2 \gamma m+1)}{\tau}(m+1) a_{m+1}^{2}=(1-\beta)\left(p_{2 m}+q_{2 m}\right) . \tag{38}
\end{equation*}
$$

Applying Lemma 1, we obtain

$$
\begin{equation*}
\left|a_{m+1}\right| \leqq \sqrt{\frac{4|\tau|(1-\beta)}{(m+1)(2 m+1)(2 \gamma m+1)}} . \tag{39}
\end{equation*}
$$

This is the bound on $\left|a_{m+1}\right|$ asserted in (28).
In order to find the bound on $\left|a_{2 m+1}\right|$, by subtracting (35) from (33), we get

$$
\begin{gathered}
2 \frac{(2 m+1)(2 \gamma m+1)}{\tau}
\end{gathered} a_{2 m+1}-\frac{(2 m+1)(2 \gamma m+1)}{\tau}(m+1) a_{m+1}^{2}, ~(1-\beta)\left(p_{2 m}-q_{2 m}\right) .
$$

or, equivalently,

$$
\begin{equation*}
a_{2 m+1}=\frac{(m+1)}{2} a_{m+1}^{2}+\frac{\tau(1-\beta)\left(p_{2 m}-q_{2 m}\right)}{2(2 m+1)(2 \gamma m+1)} . \tag{40}
\end{equation*}
$$

It follows from (36) and (37) that

$$
\begin{equation*}
a_{2 m+1}=\frac{\tau^{2}(1-\beta)^{2}\left(p_{m}^{2}+q_{m}^{2}\right)}{4(m+1)(\gamma m+1)^{2}}+\frac{\tau(1-\beta)\left(p_{2 m}-q_{2 m}\right)}{2(2 m+1)(2 \gamma m+1)} . \tag{41}
\end{equation*}
$$

Applying Lemma 1 once again for the coefficients $p_{m}, p_{2 m}, q_{m}$ and $q_{2 m}$, we easily obtain

$$
\begin{equation*}
\left|a_{2 m+1}\right| \leqq \frac{2|\tau|^{2}(1-\beta)^{2}}{(m+1)(\gamma m+1)^{2}}+\frac{2|\tau|(1-\beta)}{(2 m+1)(2 \gamma m+1)} . \tag{42}
\end{equation*}
$$

## 4. Applications of the main results

For one-fold symmetric bi-univalent functions and for $\tau=1$, Theorem 1 and Theorem 2 reduce to Corollary 1 and Corollary 2, respectively, which were proven very recently by Frasin [4] (see also [12]).

Corollary 4. Let $f(z) \in \mathcal{H}_{\Sigma}(\alpha, \gamma)(0<\alpha \leqq 1 ; 0 \leqq \gamma \leqq 1)$ be of the form (1). Then

$$
\begin{equation*}
\left|a_{2}\right| \leqq \frac{2 \alpha}{\sqrt{2(\alpha+2)+4 \gamma(\alpha+\gamma+2-\alpha \gamma)}} \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leqq \frac{\alpha^{2}}{(\gamma+1)^{2}}+\frac{2 \alpha}{3(2 \gamma+1)} \tag{44}
\end{equation*}
$$

Corollary 5. Let $f(z) \in \mathcal{H}_{\Sigma}(\beta, \gamma)(0<\alpha \leqq 1 ; 0 \leqq \gamma \leqq 1)$ be of the form (1). Then

$$
\begin{equation*}
\left|a_{2}\right| \leqq \sqrt{\frac{2(1-\beta)}{3(2 \gamma+1)}} \tag{45}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leqq \frac{(1-\beta)^{2}}{(\gamma+1)^{2}}+\frac{2(1-\beta)}{3(2 \gamma+1)} . \tag{46}
\end{equation*}
$$

The classes $\mathcal{H}_{\Sigma}(\alpha, \gamma)$ and $\mathcal{H}_{\Sigma}(\beta, \gamma)$ are defined in the following way:
Definition 3. A function $f(z) \in \Sigma$ given by (1) is said to be in the class $\mathcal{H}_{\Sigma}(\alpha, \gamma)$ if the following conditions are satisfied:

$$
\begin{equation*}
\left|\arg \left(f^{\prime}(z)+\gamma z f^{\prime \prime}(z)\right)\right|<\frac{\alpha \pi}{2} \quad(z \in \mathbb{U}) \tag{47}
\end{equation*}
$$

and

$$
\begin{gather*}
\left|\arg \left(g^{\prime}(w)+\gamma w g^{\prime \prime}(w)\right)\right|<\frac{\alpha \pi}{2} \quad(w \in \mathbb{U})  \tag{48}\\
(0<\alpha \leqq 1 ; 0 \leqq \gamma \leqq 1),
\end{gather*}
$$

and where the function $g=f^{-1}$ is given by (2).
Definition 4. A function $f(z) \in \Sigma$ given by (1) is said to be in the class $\mathcal{H}_{\Sigma}(\beta, \gamma)$ if the following conditions are satisfied:

$$
\begin{equation*}
\Re\left(f^{\prime}(z)+\gamma z f^{\prime \prime}(z)\right)>\beta \quad(z \in \mathbb{U}) \tag{49}
\end{equation*}
$$

and

$$
\begin{gather*}
\Re\left(g^{\prime}(w)+\gamma w g^{\prime \prime}(w)\right)>\beta \quad(w \in \mathbb{U})  \tag{50}\\
(0 \leqq \beta<1 ; 0 \leqq \gamma \leqq 1)
\end{gather*}
$$

and where the function $g=f^{-1}$ is given by (2).

If we set $\gamma=0$ and $\tau=1$ in Theorem 1 and Theorem 2, then the classes $\mathcal{H}_{\Sigma_{m}}(\tau, \gamma ; \alpha)$ and $\mathcal{H}_{\Sigma_{m}}(\tau, \gamma ; \beta)$ reduce to the classes $\mathcal{H}_{\Sigma_{m}}^{\alpha}$ and $\mathcal{H}_{\Sigma_{m}}^{\beta}$ investigated recently by Srivastava et al. [17] and thus, we obtain the following corollaries:
Corollary 6. Let $f(z) \in \mathcal{H}_{\Sigma_{m}}^{\alpha}(0<\alpha \leqq 1)$ be of the form (4). Then

$$
\begin{equation*}
\left|a_{m+1}\right| \leqq \frac{2 \alpha}{\sqrt{(m+1)(\alpha m+m+1)}} \tag{51}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{2 m+1}\right| \leqq \frac{2 \alpha(2 \alpha m+\alpha+m+1)}{(m+1)(2 m+1)} \tag{52}
\end{equation*}
$$

Corollary 7. Let $f(z) \in \mathcal{H}_{\Sigma_{m}}^{\beta}(0 \leqq \beta \leqq 1)$ be of the form (4). Then

$$
\begin{equation*}
\left|a_{m+1}\right| \leqq 2 \sqrt{\frac{(1-\beta)}{(m+1)(2 m+1)}} \tag{53}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{2 m+1}\right| \leqq 2(1-\beta)\left(\frac{(1-\beta)(2 m+1)+m+1}{(m+1)(2 m+1)}\right) \tag{54}
\end{equation*}
$$

The classes $\mathcal{H}_{\Sigma_{m}}^{\alpha}$ and $\mathcal{H}_{\Sigma_{m}}^{\beta}$ are respectively defined as follows:
Definition 5. A function $f(z) \in \Sigma_{m}$ given by (4) is said to be in the class $\mathcal{H}_{\Sigma_{m}}^{\alpha}$ if the following conditions are satisfied:

$$
\begin{equation*}
\left|\arg \left\{f^{\prime}(z)\right\}\right|<\frac{\alpha \pi}{2} \quad(z \in \mathbb{U}) \tag{55}
\end{equation*}
$$

and

$$
\begin{gather*}
\left|\arg \left\{g^{\prime}(w)\right\}\right|<\frac{\alpha \pi}{2} \quad(w \in \mathbb{U})  \tag{56}\\
(0<\alpha \leqq 1)
\end{gather*}
$$

and where the function $g$ is given by (5).
Definition 6. A function $f(z) \in \Sigma_{m}$ given by (4) is said to be in the class $\mathcal{H}_{\Sigma_{m}}^{\beta}$ if the following conditions are satisfied:

$$
\begin{equation*}
\Re\left(f^{\prime}(z)\right)>\beta \quad(z \in \mathbb{U}) \tag{57}
\end{equation*}
$$

and

$$
\begin{gather*}
\Re\left(g^{\prime}(w)\right)>\beta \quad(w \in \mathbb{U})  \tag{58}\\
(0 \leqq \beta<1),
\end{gather*}
$$

and where the function $g$ is given by (5).

## References

[1] D. A. Brannan and J. G. Clunie (Eds.), Aspects of Contemporary Complex Analysis (Proceedings of the NATO Advanced Study Institute held at the University of Durham, Durham; July 1-20,1979), Academic Press, New York and London, 1980.
[2] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Studia Univ. Babess-Bolyai Math. 31 (2) (1986), 70-77.
[3] P. L. Duren, Univalent Functions, Grundlehren der MathematischenWissenschaften, Bd. 259, Springer-Verlag, Berlin, Heidelberg, New York and Tokyo, 1983.
[4] B. A. Frasin, Coefficcient bounds for certain classes of bi-univalent functions, Hacet. J. Math. Stat. 43 (3) (2014), 383-389.
[5] B. A. Frasin and M. K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569-1573.
[6] T. Hayami and S. Owa, Coefficient bounds for bi-univalent functions, Pan Amer. Math. J. 22 (4) (2012), 15-26.
[7] W. Koepf, Coefficients of symmetric functions of bounded boundary rotations, Proc. Amer. Math. Soc. 105 (1989), 324-329.
[8] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc. 18 (1967), 63-68.
[9] X.-F. Li and A.-P. Wang, Two new subclasses of bi-univalent functions, Internat. Math. Forum 7 (2012), 1495-1504.
[10] C. Pommerenke, On the coefficients of close-to-convex functions, Michigan Math. J. 9 (1962), 259-269.
[11] C. Pommerenke, Univalent Functions (with a Chapter on Quadratic Differentials by Gerd Jensen), Vandenhoeck and Ruprecht, Göttingen, 1975.
[12] H. M. Srivastava and D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egypt. Math. Soc. In press (2014), 1-5.
[13] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for some general subclasses of analytic and bi-univalent functions, Preprint (2015), 1-13.
[14] H. M. Srivastava, S. Gaboury and F. Ghanim, Coefficient estimates for an unification of some subclasses of analytic and bi-univalent functions of Ma-Minda type, Preprint (2015), 1-9.
[15] H. M. Srivastava, A. K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188-1192.
[16] H. M. Srivastava and S. Owa (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.
[17] H. M. Srivastava, S. Sivasubramanian and R. Sivakumar, Initial coefficient bounds for a subclass of $m$-fold symmetric bi-univalent functions, Tbilisi Math. J. 7 (2) (2014), 1-10.
[18] D. Styer and J. Wright, Result on bi-univalent functions, Proc. Amer. Math. Soc. 82 (1981), 243-248.
[19] D.-L. Tan, Coefficicent estimates for bi-univalent functions, Chinese Ann. Math. Ser. A 5 (1984), 559-568.
[20] Q.-H. Xu, Y.-C. Gui and H. M. Srivastava, Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), 990-994.
[21] Q.-H. Xu, H.-G. Xiao and H. M. Srivastava, A certain general subclass of analytic and bi-univalent functions and associated coefficient estimates problems, Appl. Math. Comput. 218 (2012), 11461-11465.

Hari M. Srivastava
Department of Mathematics and Statistics, University of Victoria,
Victoria, British Columbia V8W 3R4, Canada
email: harimsri@math.uvic.ca
Sébastien Gaboury
Department of Mathematics and Computer Science, University of Québec at Chicoutimi, Chicoutimi, Québec G7H 2B1, Canada
email: s1gabour@uqac.ca
Firas Ghanim
Department of Mathematics, College of Sciences, University of Sharjah,
Sharjah, United Arab Emirates
email: fgahmed@sharjah.ac.ae

