NON-ARCHIMEDIAN STABILITY OF GENERALIZED JENSEN'S AND QUADRATIC EQUATIONS

A. Charifi, S. Kabbaj and D. Zeglami

Abstract. We use the operatorial approach to provide a proof of the HyersUlam stability for the equations

$$
\begin{aligned}
& \sum_{\lambda \in \Phi} f\left(x+\lambda y+a_{\lambda}\right)=N f(x), x, y \in E \\
& \sum_{\lambda \in \Phi} f\left(x+\lambda y+a_{\lambda}\right)=N f(x)+N f(y), x, y \in E
\end{aligned}
$$

where E is a normed space, F is a non-Archimedean Banach space, Φ is a finite group of automorphisms of $E, N=|\Phi|$ designates the number of its elements, and $\left\{a_{\lambda}, \lambda \in \Phi\right\}$ are arbitrary elements of E. These equations provides a common generalization of many functional equations such as Cauchy's, Φ - Jensens's, Φ-quadratic, Lukasik's equation. Some applications of our results will be illustrated.

2010 Mathematics Subject Classification: Primary 39B72; Secondary 39B82; 39B52.

Keywords: Generalized polynomial function, Jensen's equation, quadratic functional equation, ultrametric space, Hyers-Ulam-Rassias stability.

1. Introduction

In [50], Ulam posed the question of the stability of Cauchy's equation: If a function f approximately satisfies Cauchy's functional equation $f(x+y)=f(x)+f(y)$ when does it has an exact solution which f approximates. The problem has been considered for various equations, also for mappings with many different types of domains and ranges by a number of authors including Hyers [22, 23], Aoki [2], T. M. Rassias [41], J.M. Rassias [39, 40], Gajda [19] Gàvrutà [20] and others. For definitions,
A. Charifi, S. Kabbaj and D. Zeglami - Φ-Jensen and Φ-quadratic ...
approaches, and results on Hyers-Ulam-Rassias stability we refer the reader to, e.g., ([18],[24],[29],,[31],[43],[44],[51]-[53]).

The functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y), \tag{1}
\end{equation*}
$$

is called a quadratic functional equation. The first stability theorem for the Eq. (1) was proved by Skof [46] for mappings f from a normed space X into a Banach space Y. Cholewa [12] extended Skof's theorem by replacing X by an abelian group G. Skof's result was later generalized by Czerwik [14] in the spirit of Hyers-Ulam-Rassias. Since then, a number of stability results have been obtained for quadratic functional equations and Jensen's functional equation ([1],[4],[6]-[10],[26][28],[33],[38]). Informations and applications about the Eq. (1) and its further generalizations can be found e.g. in ([13],[14],[17],[32],[42],[45],[47]-[49]).

The stability problem for the functional equation

$$
\begin{equation*}
\frac{1}{|\Phi|} \sum_{\lambda \in \Lambda} f(x+\lambda y)=f(x)+g(y), x, y \in X \tag{2}
\end{equation*}
$$

where X is an abelian group, Φ is is a finite subgroup of the automorphism group of X and $f, g: X \rightarrow \mathbb{C}$ was posed and solved by Badora in [4]. Equation (2) is a joint generalization of Cauchy's functional equation $(\Phi=\{i d\}, g=f)$, Jensen's equation $(\Phi=\{i d,-i d\}, g=0)$ and the quadratic equation $(\Phi=\{i d,-i d\}, g=f)$. This result was published (with a different proof and $h=f$) by Ait Sibaha et al. in [1] and generalized by Charifi et al. in ([6],[7]).

In [10], the authors gave an explicit description of the solutions $f: S \rightarrow H$ each of the following generalized equations

$$
\begin{gather*}
\sum_{\lambda \in \Phi} f\left(x+\lambda y+a_{\lambda}\right)=N f(x), x, y \in S, \tag{3}\\
\sum_{\lambda \in \Phi} f\left(x+\lambda y+a_{\lambda}\right)=N f(x)+N f(y), x, y \in S, \tag{4}
\end{gather*}
$$

where S is an abelian monoid, H is an abelian group and Φ is a finite subgroup of authomorphisms of S, and $f, g: X \rightarrow H$, which covers the functional equations

$$
\begin{array}{cr}
f(x+y+a)=f(x)+f(y), x, y \in S, & \Phi=\{i d\} \\
f(x+y+a)+f(x+\sigma(y)+b)=2 f(x), x, y \in S, & \Phi=\{i d, \sigma\} \\
f(x+y+a)+f(x+\sigma(y)+b)=2 f(x)+2 f(y), x, y \in S, & \Phi=\{i d, \sigma\} \tag{7}
\end{array}
$$

A. Charifi, S. Kabbaj and D. Zeglami - Φ-Jensen and Φ-quadratic ...
where a, b are fixed elements of S and σ is an involution of S i. e. $\sigma(x+y)=$ $\sigma(y)+\sigma(x)$ and $\sigma(\sigma(x))=x$ for all $x \in S$.

In 1897, Hensel [21] has introduced a normed space which does not have the Archimedean property. Let p be a fixed prime number and x be a non-zero rational number, there exists a unique integer $v_{p}(x) \in \mathbb{Z}$ such that $x=p^{v_{p}(x)} \frac{a}{b}$ where a and b are integers co-prime to p. The function defined in \mathbb{Q} by $|x|_{p}=p^{-v_{p}(x)}, x \in \mathbb{Q}$ is called a p-adic, a ultrametric or simply a non-Archimedean absolute value on \mathbb{Q}. By a non-Archimedean field we mean a field \mathbb{K} equipped with a function (valuation)
 following conditions:
(i) $|x|=0 \Leftrightarrow x=0 \quad, x \in \mathbb{K}$,
(ii) $|x y|=|x||y| \quad, x, y \in \mathbb{K}$,
(iii) $|x+y| \leq \max (|x|,|y|), x, y \in \mathbb{K}$.

We assume, throughout this paper that this value absolute is non-trivial i.e., there exists an element k of \mathbb{K} such that, $|k| \neq 0,1$.

Definition 1. By a non-Archimedean vector space, we mean a vector space E over a non-Archimedean field \mathbb{K} equipped with a function $\|\|:. E \rightarrow[0,+\infty)$ called a non-Archimedean norm on E and satisfying the following properties:
(i) $\|x\|=0 \Leftrightarrow x=0, x \in E$,
(ii) $\|k x\|=|k|\|x\|, \quad(k, x) \in \mathbb{K} \times E$,
(iii) $\|x+y\| \leq \max (\|x\|,\|y\|), x, y \in E$.

Due to the fact that

$$
\left\|x_{m}-x_{n}\right\| \leq \max \left\{\left\|x_{j}-x_{j-1}\right\|\right\}, n+1 \leq j \leq m \quad, m>n
$$

a sequence $\left(x_{n}\right)_{n}$ is Cauchy if and only if $\left(x_{n+1}-x_{n}\right)_{n}$ converges to zero in a nonArchimedean normed space. By a complete non-Archimedean normed space, we mean one in which every Cauchy sequence is convergent.

The most important examples of non-Archimedean spaces are p-adic numbers. A key property of p-adic numbers is that they do not satisfy the Archimedean axiom: for all x and $y>0$, there exists an integer n such that $x<n y$.

In [3], Arriola and Beyer initiated the stability of Cauchy's functional equation over p-adic fields. Moslehian and T.M. Rassias [37] proved the Hyers Ulam Rassias stability of Cauchy's functional and the quadratic functional equations in non-Archimedean normed space. For various aspects of the theory of stability in non-Archimedean normed space we can refer to ([8], [9],[16],[36],[37]).

Let \mathbb{K} be an ultrametric field of characteristic zero, E be a \mathbb{K}-vector space and F be a complete ultrametric \mathbb{K}-vector space (in particular in the field of p-adic numbers).

As continuation of some previous works, the purpose of the present paper is to prove the Hyers-Ulam stability of the functional equations (3) and (4) for mappings f from a normed space E into a non-Archimedean Banach space F.

2. Preliminaries

To formulate our results we introduce the following notation and assumptions that will be used throughout the paper:

Let \mathbb{K} be an ultrametric field of characteristic zero (in particular in the field of p-adic numbers), E be a \mathbb{K}-vector space, F be a complete ultrametric \mathbb{K}-vector space and let F^{E} denotes the vector space consisting of all maps from E into F. We let Φ denotes a finite group of automorphisms of E, N designates the number of its elements and $\left\{a_{\lambda}, \lambda \in \Phi\right\}$ are arbitrary elements of E.

We now recall the definition and some necessary notions of multi-additive mappings, using the sequel.

A function $\mathcal{A}: E \rightarrow F$ is additive if $\mathcal{A}(x+y)=\mathcal{A}(x)+\mathcal{A}(y)$ for all $x, y \in E$.
Let $k \in \mathbb{N}$, be a function $\mathcal{A}_{k}: E^{k} \rightarrow F$ is k-additive if it is additive in each variable, in addition we say that \mathcal{A}_{k} is symmetric if it satisfies $\mathcal{A}_{k}\left(x_{\pi(1)}, x_{\pi(2)}, \ldots, x_{\pi(k)}\right)=$ $\mathcal{A}_{k}\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ for all $\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in E^{k}$ and all permutations π of k elements. Some informations concerning on such mappings can be found for instance in [31].

Let $\mathcal{A}_{k}: E^{k} \rightarrow F$ be a k-additive and symmetric function and let $\mathcal{A}_{k}^{*}: E \rightarrow F$ defined by $\mathcal{A}_{k}^{*}(x)=\mathcal{A}(x, x, \ldots, x)$ for all $x \in E$. Such a function \mathcal{A}_{k}^{*} will be called a monomial function of degree k (if $\mathcal{A}_{k}^{*} \neq 0$). We note that it is easily seen that $\mathcal{A}_{k}^{*}(r x)=r^{k} \mathcal{A}_{k}^{*}(x)$ for all $x \in E$ and all $r \in \mathbb{Q}$.

A function $P: E \rightarrow F$ is called a GP function (generalized polynomial function) of degree $m \in \mathbb{N}$ iff there exist $\mathcal{A}_{0} \in E$ and symmetric k-additive functions \mathcal{A}_{k} : $E^{k} \rightarrow F$ (for $1 \leq k \leq m$) such that

$$
\mathcal{A}_{m}^{*} \neq 0 \text { and } P(x)=\mathcal{A}_{0}+\sum_{k=1}^{m} \mathcal{A}_{k}^{*}(x) \text { for all } x \in E .
$$

For $h \in E$ we define the linear difference operator Δ_{h} on F^{E} by

$$
\Delta_{h}(f)(x)=f(x+h)-f(x),
$$

for all $f \in F^{E}$ and $x \in E$. Notice that these difference operators commute $\left(\Delta_{h} \Delta_{h^{\prime}}=\right.$ $\Delta_{h^{\prime}} \Delta_{h}$ for all $h, h^{\prime} \in E$) and if $h \in E, n \in \mathbb{N}$ then Δ_{h}^{n} the n-th iterate of Δ_{h} satisfies

$$
\Delta_{h}^{n}(f)(x)=\sum_{k=0}^{n}(-1)^{n-k}\binom{n}{k} f(x+k h), \text { for all } x, h \in E \text { and } f \in F^{E}
$$

A. Charifi, S. Kabbaj and D. Zeglami - Φ-Jensen and Φ-quadratic ...

Now we note some results for later use.
Theorem 1. [5] Let $n \in \mathbb{N}, f \in F^{E}$ and $\delta \in \mathbb{R}^{+}$. Then the following statements are equivalent.
i) $\left\|\Delta_{h}^{n} f(x)\right\| \leq \delta$ for all $x, h \in E$.
ii) There is, up to a constant, a unique GP function P of degree at most $n-1$ such that $\|f(x)-f(0)-P(x)\| \leq \delta$ for all $x \in E$.
Theorem 2. [9] Let $(S,+)$ be an abelian monoid, Φ be a finite subgroup of the group of automorphisms of $S, N=\operatorname{card}(\Phi),(H,+)$ be an abelian group uniquely divisible by $(N+1)$! and $a_{\lambda} \in S(\lambda \in \Phi)$. Then the function $f: S \rightarrow G$ is a solution of equation

$$
\begin{equation*}
\sum_{\lambda \in \Phi} f\left(x+\lambda y+a_{\lambda}\right)=\kappa f(x)+\sum_{\lambda \in \Phi} f(\lambda y), x, y \in S, \tag{8}
\end{equation*}
$$

if and only if f has the following form

$$
\begin{equation*}
f(x)=\mathcal{A}_{0}+\sum_{i=1}^{N} \mathcal{A}_{i}^{*}(x), x \in S, \tag{9}
\end{equation*}
$$

where $\mathcal{A}_{0} \in G$ and $\mathcal{A}_{k}: S^{k} \rightarrow G, k \in\{1,2, \ldots, N\}$ are symmetric and k-additive functions satisfying the two conditions:
i) $\sum_{i=\max }^{N}\binom{i}{j}\binom{i-j}{k} \sum_{\lambda \in \Phi} \mathcal{A}_{i}(\underbrace{x, x, \ldots, x}_{k}, a_{\lambda}, \ldots, a_{\lambda}, \underbrace{\lambda y, \lambda y, \ldots, \lambda y}_{j})=0, x, y \in S$,
$0 \leq k \leq N-1,0 \leq j \leq N-k, 2 \leq \max =\max \{j+1, k+1, k+j\}$ and
ii) $\sum_{\lambda \in \Phi} \sum_{i=1}^{N} \mathcal{A}_{i}^{*}\left(a_{\lambda}\right)=N \mathcal{A}_{0}$.

Theorem 3. [8] Let Φ be a finite subgroup of the group of automorphisms of E, $N=\operatorname{card}(\Phi),\left\{a_{\lambda}, \lambda \in \Phi\right\}$ are arbitrary elements of E and $f: E \rightarrow F$ satisfying the inequality

$$
\left\|\sum_{\lambda \in \Phi} f\left(x+\lambda y+a_{\lambda}\right)-N f(x)-\sum_{\lambda \in \Phi} f(\lambda y)\right\| \leq \delta
$$

for all $x, y \in E$. Then there exists a unique GP function $P: E \rightarrow F$ of degree at most N solution of the equation

$$
\begin{equation*}
\sum_{\lambda \in \Phi} f\left(x+\lambda y+a_{\lambda}\right)=N f(x)+\sum_{\lambda \in \Phi} f(\lambda y), x, y \in E, \tag{10}
\end{equation*}
$$

such that

$$
\|f(x)-P(x)\| \leq \frac{\delta}{|N|} \text { for all } x \in E
$$

A. Charifi, S. Kabbaj and D. Zeglami - Φ-Jensen and Φ-quadratic ...

Lemma 4. [8] Let Φ be a finite automorphism group of $E, N=\operatorname{card} \Phi, \delta, \delta^{\prime} \in \mathbb{R}^{+}$, $a_{\lambda} \in E(\lambda \in \Phi)$, and $f \in F^{E}$ such that

$$
\begin{equation*}
\left\|\sum_{\lambda \in \Phi} f\left(x+\lambda y+a_{\lambda}\right)-N f(x)-\sum_{\lambda \in \Phi} f(\lambda y)\right\| \leq \delta, \quad x, y \in E . \tag{11}
\end{equation*}
$$

Then, there exists a mapping $h \in F^{E}$ which satisfies

$$
\left\|\Delta_{y}^{N} f(x)-h(y)\right\| \leq \frac{\delta}{|N|}, \quad x, y \in E
$$

and

$$
\begin{equation*}
\left\|\Delta_{y}^{N+1} f(x)\right\| \leq \frac{\delta}{|N|}, \quad x, y \in E \tag{12}
\end{equation*}
$$

Furthermore, if $\left\|\sum_{\lambda \in \Phi}(\lambda y)\right\| \leq \delta^{\prime}, y \in E$, then $\left\|\Delta_{y}^{N} f(x)\right\| \leq \max \left(\frac{\delta}{N}, \frac{\delta^{\prime}}{N}\right), x, y \in$ E.

In the next two theorems the solutions of the functional equations (3) and (4), respectively, will be expressed in terms of $G P$ functions.

Theorem 5. [10] Let $(S,+)$ be an abelian monoid, Φ be a finite subgroup of the group of automorphisms of $S, N=\operatorname{card}(\Phi),(H,+)$ be an abelian group uniquely divisible by N ! and $\left\{a_{\lambda}, \lambda \in \Phi\right\}$ are arbitrary elements of S. Then the function $f: S \rightarrow H$ is a solution of the equation (3) if and only if f has the following form

$$
\begin{equation*}
f(x)=\mathcal{A}_{0}+\sum_{i=1}^{N-1} \mathcal{A}_{i}^{*}(x), x \in S \tag{13}
\end{equation*}
$$

where $A_{0} \in H$ and $\mathcal{A}_{k}: S^{k} \rightarrow H, k \in\{1,2, \ldots, N-1\}$ are k-additive and symmetric functions which satisfy the following conditions

$$
\begin{aligned}
& \sum_{i=\max (k+j, k+1)}^{N-1}\binom{i}{k}\binom{i-k}{j} \sum_{\lambda \in \Phi} \mathcal{A}_{i}(\underbrace{x, \ldots x}_{k}, a_{\lambda}, \ldots, a_{\lambda}, \underbrace{\lambda y, \ldots, \lambda y}_{j})=0 \text { for } x, y \in S, \\
& 0 \leq k \leq N-2,0 \leq j \leq N-k-1 .
\end{aligned}
$$

Theorem 6. [10] Let $(S,+)$ be an abelian semigroup, Φ be a finite subgroup of the group of automorphisms of $S, N=\operatorname{card}(\Phi),(H,+)$ be an abelian group uniquely divisible by $(N+1)$! and $\left\{a_{\lambda}, \lambda \in \Phi\right\}$ are arbitrary elements of S. Then the function $f: S \rightarrow H$ is a solution of the equation (4) if and only if f has the following form

$$
\begin{equation*}
f(x)=\mathcal{A}_{0}+\sum_{i=1}^{N} \mathcal{A}_{i}^{*}(x), x \in S \tag{14}
\end{equation*}
$$

where $\mathcal{A}_{0} \in H$ and $\mathcal{A}_{k}: S^{k} \rightarrow H, k \in\{1,2, \ldots, N\}$ are symmetric and k-additive functions satisfying the three conditions:

$$
\begin{aligned}
& \text { i) } \sum_{\lambda \in \Phi} \sum_{k=1}^{N} \mathcal{A}_{i}^{*}\left(a_{\lambda}\right)=N \mathcal{A}_{0}, \\
& \text { ii) } \sum_{2 \leq i=\max (k+j, k+1)}^{N}\binom{i}{k}\binom{i-k}{j} \sum_{\lambda \in \Phi} \mathcal{A}_{i}(\underbrace{x, \ldots x}_{k}, a_{\lambda}, \ldots, a_{\lambda}, \underbrace{\lambda y, \ldots, \lambda y}_{j})=0, x, y \in S, \\
& 1 \leq k \leq N-1,0 \leq j \leq N-k \text { and } \\
& \text { iii) } \sum_{k=i}^{N}\binom{i}{k} \sum_{\lambda \in \Phi} \mathcal{A}_{k}(\underbrace{\lambda x, \ldots, \lambda x}_{i}, a_{\lambda}, \ldots, a_{\lambda})=N \mathcal{A}_{i}^{*}(x), x \in S, 1 \leq i \leq N .
\end{aligned}
$$

3. Main ReSults

The following lemma will be used in the proof of our main results namely Theorems 8 and 11.

Lemma 7. Let \mathbb{K} be an ultrametric field of characteristic zero and $\overline{\mathbb{K}}$ its completion, F be a complete ultrametric \mathbb{K}-vector space, $\delta \in \mathbb{R}^{+}$and P be a polynomial function of degree n, $n \geq 1$, with rational variable and with coefficients in F. Suppose that

$$
\begin{equation*}
\|P(z)\| \leq \delta \text { for all } z \in \mathbb{Q} \tag{15}
\end{equation*}
$$

Then, there exists a prime number p such that $\mathbb{Q}_{p} \subset \overline{\mathbb{K}}$ and

$$
P(z)=P(0) \text { for all } z \in \mathbb{Q}_{p}
$$

i.e. all non-constant coefficients of P are zero.

Proof. There exist $a_{0}, a_{1}, \ldots, a_{n} \in F$ such that

$$
P(z)=\sum_{i=0}^{n} a_{i} z^{i}, z \in \mathbb{Q} .
$$

The theorem of Ostrowski shows that there exists a prime number p for which $\mathbb{Q}_{p} \subset \overline{\mathbb{K}}$. An extension by continuity of the external law of F from \mathbb{K} to $\overline{\mathbb{K}}$ allows us to write,

$$
\|P(z)\| \leq \delta \text { for } z \in \mathbb{Q}_{p}
$$

Let $\varphi: F \rightarrow \mathbb{Q}_{p}$ be a continuous \mathbb{Q}_{p}-linear functional. Taking into account the previous inequality we have for all $z \in \mathbb{Q}_{p}$:

$$
\|\varphi(P(z))\| \leq \delta\|\varphi\| \text { for } z \in \mathbb{Q}_{p}
$$

wich means that

$$
\left\|\sum_{i=0}^{n} \varphi\left(a_{i}\right) z^{i}\right\| \leq \delta\|\varphi\| \text { for } z \in \mathbb{Q}_{p}
$$

It results, since a polynomial function is bounded if and only if it is constant, that $\varphi\left(a_{i}\right)=0$ for $1 \leq i \leq n$ and for any continuous \mathbb{Q}_{p}-linear functional $\varphi: F \rightarrow \mathbb{Q}_{p}$. Thus ultrametric version Hahn Banach Theorem gives $a_{i}=0,1 \leq i \leq n$ i.e. $P(z)=P(0)$ for all $z \in \mathbb{Q}_{p}$.

In the following theorem, using the operatorial approach we obtain the nonArchimedean stability in the sense of Hyers-Ulam of the generalised Φ-Jensen functional equation.
Theorem 8. Assume that Φ is a finite subgroup of the group of automorphisms of $E, N=\operatorname{card}(\Phi),\left\{a_{\lambda}, \lambda \in \Phi\right\}$ are arbitrary elements of E and $f: E \rightarrow F$ satisfying the following inequality:

$$
\begin{equation*}
\left\|\sum_{\lambda \in \Phi} f\left(x+\lambda y+a_{\lambda}\right)-N f(x)\right\| \leq \delta \tag{16}
\end{equation*}
$$

for all $x, y \in E$. Then there exists, up to a constant, a unique GP function $P: E \rightarrow$ F solution of the equation (3), of degree at most $N-1$, such that

$$
\|f(x)-f(0)-P(x)\| \leq \frac{\delta}{|N|^{2}} \quad \text { for all } x \in E
$$

Proof. Suppose that f satisfies the inequality (16). Letting $y=0$ and $x=0$ in (16), respectively, we get

$$
\left\|\sum_{\lambda \in \Phi} f\left(x+a_{\lambda}\right)-N f(x)\right\| \leq \delta, \quad x \in E
$$

and

$$
\left\|\sum_{\lambda \in \Phi} f\left(\lambda y+a_{\lambda}\right)-N f(0)\right\| \leq \delta, \quad y \in E .
$$

By replacing, in the last inequality, y by μy we obtain

$$
\begin{align*}
& \left\|N^{2} f(0)-N \sum_{\nu \in \Phi} f(\nu y)\right\| \\
& \quad \leq \max \left\{\left\|N^{2} f(0)-\sum_{\mu \in \Phi} \sum_{\lambda \in \Phi} f\left(\mu \lambda y+a_{\lambda}\right)\right\|,\left\|\sum_{\nu \in \Phi} \sum_{\lambda \in \Phi} f\left(\nu y+a_{\lambda}\right)-N \sum_{\nu \in \Phi} f(\nu y)\right\|\right\} \\
& \quad \leq \delta, \tag{17}
\end{align*}
$$

for all $y \in E$. It follows, by taking $g:=f-f(0)$ and the use of (16) and (17) that

$$
\begin{aligned}
& \left\|\sum_{\lambda \in \Phi} g\left(x+\lambda y+a_{\lambda}\right)-N g(x)-\sum_{\lambda \in \Phi} g(\lambda y)\right\| \\
= & \left\|\sum_{\lambda \in \Phi} f\left(x+\lambda y+a_{\lambda}\right)-N f(x)+N f(0)-\sum_{\lambda \in \Phi} f(\lambda y)\right\| \\
\leq & \max \left\{\left\|\sum_{\lambda \in \Phi} f\left(x+\lambda y+a_{\lambda}\right)-N f(x)\right\|,\left\|N f(0)-\sum_{\lambda \in \Phi} f(\lambda y)\right\|\right\} \\
\leq & \frac{\delta}{|N|},
\end{aligned}
$$

for all $x, y \in E$. In virtue of Theorem 3, there exists, in the class of function $g: E \rightarrow$ F with $g(0)=0$, a GP function P of degree at most N solution of the functional equation

$$
\begin{equation*}
\sum_{\lambda \in \Phi} g\left(x+\lambda y+a_{\lambda}\right)=N g(x)+\sum_{\lambda \in \Phi} g(\lambda y) \tag{18}
\end{equation*}
$$

such that

$$
\begin{equation*}
\|g(x)-P(x)\| \leq \frac{\delta}{|N|^{2}} \text { for all } x \in E \tag{19}
\end{equation*}
$$

According to Theorem 2, $P(x)=\sum_{i=1}^{N} \mathcal{A}_{i}^{*}(x)$ with

$$
\begin{equation*}
\sum_{\lambda \in \Phi} \sum_{i=1}^{N} \mathcal{A}_{i}^{*}\left(a_{\lambda}\right)=0 \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=\max }^{N}\binom{i}{k}\binom{i-k}{j} \sum_{\lambda \in \Phi} \mathcal{A}_{i}(\underbrace{x, \ldots, x}_{k}, a_{\lambda}, \ldots, a_{\lambda}, \underbrace{\lambda y, \ldots, \lambda y}_{j})=0 \tag{21}
\end{equation*}
$$

for all $x, y \in E, 0 \leq k \leq N-1,0 \leq j \leq N-k$ and $2 \leq \max =\max (k+1, j+1, k+j)$. In addition by (17),

$$
\begin{aligned}
\left\|\sum_{\lambda \in \Phi} P(\lambda y)\right\| & \leq \max \left\{\left\|\sum_{\lambda \in \Phi}(P(\lambda y)-g(\lambda y))\right\|,\left\|\sum_{\lambda \in \Phi} g(\lambda y)\right\|\right\} \\
& \leq \frac{\delta}{|N|^{2}}
\end{aligned}
$$

for all $y \in E$. In view of Lemma 4, Theorem 1 and Lemma 7, we have

$$
\begin{equation*}
\mathcal{A}_{N}=0 \tag{22}
\end{equation*}
$$

and by Lemma 7,

$$
\begin{equation*}
\sum_{\lambda \in \Phi} \mathcal{A}_{i}^{*}(\lambda y)=0, y \in E, 1 \leq i \leq N-1 . \tag{23}
\end{equation*}
$$

Taking into account of (20) (21), (22) and (23) we get

$$
\sum_{i=\max (k+j, k+1)}^{N-1}\binom{i}{k}\binom{i-k}{j} \sum_{\lambda \in \Phi} \mathcal{A}_{i}(\underbrace{x, \ldots, x}_{k}, a_{\lambda}, \ldots, a_{\lambda}, \underbrace{\lambda y, \ldots, \lambda y}_{j})=0, x, y \in E,
$$

$0 \leq k \leq N-2,0 \leq j \leq N-k-1$. This shows, using Theorem 5, that P is a solution of the Eq. (3).
The uniqueness is giving by Lemma 7. In fact, let Q be another GP function of degree at most $N-1$, solution of Eq. (3) and satisfying the inequality (19) then we get

$$
\begin{aligned}
\|P(x)-Q(x)\| & \leq \max (\|P(x)-g(x)\|,\|g(x)-Q(x)\|) \\
& \leq \frac{\delta}{|N|^{2}}, x \in E
\end{aligned}
$$

According to Lemma 7 we get $P-Q$ is constant. This completes the proof.
Corollary 9. Assume that a, b are arbitrary elements of E and $f: E \rightarrow F$ satisfying the following inequality:

$$
\begin{equation*}
\|f(x+y+a)+f(x+\sigma(y)+b)-2 f(x)\| \leq \delta \tag{24}
\end{equation*}
$$

for all $x, y \in E$. Then there exists, up to a constant, a unique $G P$ function $P: E \rightarrow$ F solution of the equation (6), of degree at most 1, such that

$$
\|f(x)-f(0)-P(x)\| \leq \frac{\delta}{|4|} \quad \text { for all } x \in E .
$$

Proof. The proof follows on putting $\Phi=\{I, \sigma\}$ in Theorem 8 .
Corollary 10. Let p be a prime number, $\mathbb{C}_{p}=\mathbb{Q}_{p}+i \mathbb{Q}_{p},\left(i^{2}=-1\right)$, j be a primitive cube root of unity, a be a nonzero complex number and $f: \mathbb{C}_{p} \rightarrow \mathbb{C}_{p}$, be a continuous function satisfying the following inequality

$$
\begin{equation*}
\left\|f(x+y+j a)+f\left(x+j y+j^{2} a\right)+f\left(x+j^{2} y+a\right)-3 f(x)\right\| \leq \delta, \quad x, y \in \mathbb{C}_{p} \tag{25}
\end{equation*}
$$

for all $x, y \in \mathbb{C}_{p}$. Then there exists, up to a constant, a unique $G P$ function P : $\mathbb{C}_{p} \rightarrow \mathbb{C}_{p}$ of degree at most 2, solution of the equation

$$
\begin{equation*}
f(x+y+j a)+f\left(x+j y+j^{2} a\right)+f\left(x+j^{2} y+a\right)=3 f(x), x, y \in \mathbb{C}_{p}, \tag{26}
\end{equation*}
$$

A. Charifi, S. Kabbaj and D. Zeglami - Φ-Jensen and Φ-quadratic ...
such that

$$
\|f(x)-P(x)\| \leq \frac{\delta}{|9|}, x \in E
$$

Now we investigate the non-Archimedean stability, in the sense of Hyers-Ulam, of the equation (4).
Theorem 11. Assume that Φ is a finite subgroup of the group of automorphisms of $E, N=\operatorname{card}(\Phi),\left\{a_{\lambda}, \lambda \in \Phi\right\}$ are arbitrary elements of E and $f: E \rightarrow F$ satisfying the following inequality:

$$
\begin{equation*}
\left\|\sum_{\lambda \in \Phi} f\left(x+\lambda y+a_{\lambda}\right)-N f(x)-N f(y)\right\| \leq \delta, \tag{27}
\end{equation*}
$$

for all $x, y \in E$. Then there exists a unique $G P$ function $P: E \rightarrow F$ solution of the equation (4), of degree at most N, such that

$$
\|f(x)-P(x)\| \leq \frac{\delta}{|N|^{2}} \quad \text { for } x \in E
$$

Proof. Suppose that f satisfies the inequality (27). Letting $x=y=0, y=0$ and $x=0$, respectively, in (27) we obtain

$$
\begin{gathered}
\left\|\sum_{\lambda \in \Phi} f\left(a_{\lambda}\right)-2 N f(0)\right\| \leq \delta \\
\left\|\sum_{\lambda \in \Phi} f\left(x+a_{\lambda}\right)-N f(x)-N f(0)\right\| \leq \delta \\
\left\|\sum_{\lambda \in \Phi} f\left(\lambda x+a_{\lambda}\right)-N f(x)-N f(0)\right\| \leq \delta,
\end{gathered}
$$

for all $x, y \in E$. Taking into account the above inequalities and (27) we get that

$$
\begin{aligned}
& \left\|N^{2} f(x)+N \sum_{\mu \in \Phi} f(\mu y)-N^{2} f(0)-N \sum_{\nu \in \Phi} f(x+\nu y)\right\| \\
\leq & \max \left\{\left\|N^{2} f(x)+N \sum_{\mu \in \Phi} f(\mu y)-\sum_{\lambda \in \Phi} \sum_{\mu \in \Phi} f\left(x+\lambda \mu y+a_{\lambda}\right)\right\|,\right. \\
\leq & \left.\left\|_{\nu \in \Phi} \sum_{\lambda \in \Phi} f\left(x+\nu y+a_{\lambda}\right)-N^{2} f(0)-N \sum_{\nu \in \Phi} f(x+\nu y)\right\|\right\}
\end{aligned}
$$

for all $x, y \in E$. With the notation $g:=f-f(0)$ we can reformulate the previous inequality to

$$
\left\|\sum_{\mu \in \Phi} g(x+\mu y)-N g(x)-\sum_{\mu \in \Phi} g(\mu y)\right\| \leq \frac{\delta}{|N|},
$$

for all $x, y \in E$. Theorem 3 shows that there exists a GP function $Q: E \rightarrow F$ of degree at most N solution of the equation

$$
\sum_{\mu \in \Phi} g(x+\mu y)=N g(x)+\sum_{\mu \in \Phi} g(\mu y), x, y \in E
$$

such that

$$
\begin{equation*}
\|g(x)-Q(x)\| \leq \frac{\delta}{|N|^{2}}, \mathrm{x} \in E \tag{28}
\end{equation*}
$$

Then there exist k-additive and symmetric functions $\mathcal{A}_{k}: E^{k} \rightarrow F, k \in\{1,2, \ldots, N\}$ such that $Q(x)=\sum_{i=1}^{N} \mathcal{A}_{i}^{*}(x), x \in E$ and we have

$$
\sum_{\mu \in \Phi} Q(x+\mu y)=N Q(x)+\sum_{\mu \in \Phi} Q(\mu y), x, y \in E .
$$

Let P be the GP function defined by

$$
P(x)=Q(x)+\frac{1}{N} \sum_{\lambda \in \Phi} \sum_{i=1}^{N} \mathcal{A}_{i}^{*}\left(a_{\lambda}\right), x \in E,
$$

so we have the following inequality

$$
\begin{aligned}
\|f(x)-P(x)\|=\| & \left\|(x)-Q(x)-\frac{1}{N}\left(\sum_{\lambda \in \Phi} f\left(a_{\lambda}\right)+2 N f(0)\right)\right\| \\
& \leq \max \left(\frac{\delta}{|N|^{2}}, \frac{\delta}{|N|}\right) \\
& \leq \frac{\delta}{|N|^{2}}
\end{aligned}
$$

for all $x \in E$. To prove that P is a solution of the equation (4) we define the functions $I_{P}, J_{P}: E \times E \rightarrow F$ by the formulas

$$
I_{P}(x, y)=\sum_{\nu \in \Phi} P\left(x+\nu y+a_{\nu}\right)-N P(x)-N P(y), x, y \in E
$$

and

$$
J_{P}(x, y)=I_{P}(x, y)-I_{P}(0, y), x, y \in E .
$$

We have therefore

$$
\begin{aligned}
I_{P}(0,0) & =\sum_{\nu \in \Phi} P\left(a_{\nu}\right)-2 N P(0) \\
& =\left\{\sum_{\nu \in \Phi} Q\left(a_{\nu}\right)+\sum_{\nu \in \Phi} \sum_{i=1}^{N} A_{i}^{*}\left(a_{\nu}\right)\right\}-2\left\{\sum_{\nu \in \Phi} \sum_{i=1}^{N} A_{i}^{*}\left(a_{\nu}\right)\right\} \\
& =0 .
\end{aligned}
$$

Furthermore we have,

$$
\begin{aligned}
\left\|I_{P}(x, y)\right\| \leq & \max \left\{\left\|\sum_{\lambda \in \Phi} P\left(x+\lambda y+a_{\lambda}\right)-f\left(x+\lambda y+a_{\lambda}\right)\right\|\right. \\
& \|N P(x)-N f(x)\|,\|N P(y)-N f(y)\|, \delta\} \\
\leq & \max \left(\frac{\delta}{|N|^{2}}, \delta\right) \\
\leq & \frac{\delta}{|N|^{2}}
\end{aligned}
$$

for all $x, y \in E$. Replacing P by its expression (as a GP function) in $I_{P}(0, y), I_{P}(x, y)$ we get, that for all $x, y \in E$

$$
\begin{aligned}
I_{P}(0, y) & =\sum_{\lambda \in \Phi} P\left(\lambda y+a_{\lambda}\right)-N P(0)-N P(y) \\
& =\sum_{\lambda \in \Phi} \sum_{i=1}^{N} \mathcal{A}_{i}^{*}\left(\lambda y+a_{\lambda}\right)-N \sum_{i=1}^{N} \mathcal{A}_{i}^{*}(y)-N P(0) \\
& =\sum_{i=1}^{N} \sum_{j=0}^{i}\binom{i}{j} \sum_{\lambda \in \Phi} \mathcal{A}_{i}(\underbrace{\lambda y, \ldots, \lambda y}_{j}, a_{\lambda}, \ldots, a_{\lambda})-N \sum_{i=1}^{N} \mathcal{A}_{i}^{*}(y)-N P(0) \\
& =\sum_{j=1}^{N}(\sum_{i=j}^{N}\binom{i}{j} \sum_{\lambda \in \Phi} \mathcal{A}_{i}(\underbrace{(\lambda y, \ldots, \lambda y}_{j}, a_{\lambda}, \ldots, a_{\lambda})-N \mathcal{A}_{j}^{*}(y))
\end{aligned}
$$

and
$J_{P}(x, y)=\sum_{\lambda \in \Phi} \sum_{j=0}^{N-k} \sum_{k=1}^{N-1} \sum_{i=\max (k+j, k+1) \leq N}\binom{i}{j}\binom{i-j}{k} \mathcal{A}_{i}(\underbrace{x, \ldots x}_{k}, a_{\lambda}, \ldots, a_{\lambda}, \underbrace{\lambda y, \ldots, \lambda y}_{j})$.
A. Charifi, S. Kabbaj and D. Zeglami - Φ-Jensen and Φ-quadratic ...

Making the substitution y by $Z y, Z \in \mathbb{Q}$ in $I_{P}(0, y)$ we obtain a polynomial function $R(Z)$ with rational variable and with coefficients in F,

$$
\begin{equation*}
R(Z)=\sum_{j=1}^{N} Z^{j}(\sum_{i=j}^{N}\binom{i}{j} \sum_{\lambda \in \Phi} \mathcal{A}_{i}(\underbrace{\lambda y, \ldots, \lambda y}_{j}, a_{\lambda}, \ldots, a_{\lambda})-N \mathcal{A}_{j}^{*}(y)), y \in E, Z \in \mathbb{Q} . \tag{29}
\end{equation*}
$$

It satisfies

$$
\|R(Z)\| \leq \frac{\delta}{|N|^{2}}, Z \in \mathbb{Q}
$$

In view of Lemma $7, R(Z)=0, Z \in \mathbb{Q}_{p}$. Consequently $J_{P}(x, y)=I_{P}(x, y), x, y \in E$. In addition, a similar reasoning, making the substitution x by $Z x, Z \in \mathbb{Q}$ in $J_{P}(x, y)$, we can show that $I_{P}(x, y)=0, x, y \in E$ which means that (p, q) is a solution of the equation (4).

It is left to prove the uniqueness statement. Let T be another $G P$ function of degree at most N, solution of the Eq. (4) such that

$$
\begin{equation*}
\|g(x)-T(x)\| \leq \frac{\delta}{|N|^{2}}, x \in E \tag{30}
\end{equation*}
$$

From (28) and (30) we infer that we have

$$
\begin{aligned}
\|P(x)-T(x)\| & =\|P(x)-g(x)+g(x)-T(x)\| \\
& \leq \max \{\|P(x)-g(x)\|,\|g(x)-T(x)\|\} \\
& \leq \frac{\delta}{|N|^{2}}
\end{aligned}
$$

for all $x \in E$. So, by Lemma 7 we conclude that $T-P$ is a constant, and by the fact that T and P are solution of the Eq. (4) we get $T=P$. This completes the proof of Theorem 11.

Corollary 12. Assume that a, b are arbitrary elements of E and $f: E \rightarrow F$ satisfying the following inequality:

$$
\begin{equation*}
\|f(x+y+a)+f(x+\sigma(y)+b)-2 f(x)-2 f(y)\| \leq \delta \tag{31}
\end{equation*}
$$

for all $x, y \in E$. Then there exists a unique GP function $P: E \rightarrow F$ solution of the equation (7), of degree at most 2 , such that

$$
\|f(x)-P(x)\| \leq \frac{\delta}{|4|} \quad \text { for all } x \in E
$$

A. Charifi, S. Kabbaj and D. Zeglami - Φ-Jensen and Φ-quadratic ...

Proof. The proof follows on putting $\Phi=\{I, \sigma\}$ in Theorem 11 .
Corollary 13. Let w be a primitive $N^{\text {th }}$ root of unity, $N \geq 2$, let a be a complex constant, p be a prime number, $\mathbb{C}_{p}=\mathbb{Q}_{p}+i \mathbb{Q}_{p}, i^{2}=-1$ and $f: \mathbb{C}_{p} \rightarrow \mathbb{C}_{p}$ be a continuous function satisfying the inequality

$$
\left\|\sum_{n=0}^{N-1} f\left(x+w^{n} y+\bar{w}^{n+1} a\right)-N f(x)-N f(y)\right\| \leq \delta, \quad x, y \in \mathbb{C}_{p}
$$

Then there exist a unique GP function $P: \mathbb{C}_{p} \rightarrow \mathbb{C}_{p}$, of degree at most N, solution of the equation,

$$
\sum_{n=0}^{N-1} f\left(x+w^{n} y+\bar{w}^{n+1} a\right)=N f(x)+N f(y), \quad x, y \in \mathbb{C}_{p}
$$

such that

$$
\|f(z)-P(z)\| \leq \frac{\delta}{|N|^{2}}, \quad z \in \mathbb{C}_{p}
$$

References

[1] M. Ait Sibaha, B. Bouikhalene, and E. Elqorachi, Hyers-Ulam-Rassias stability of the K-quadratic functional equation, J. Ineq. Pure and appl. Math.8(2007), article 89.
[2] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950) 64-66.
[3] L.M. Arriola, and W.A. Beyer: Stability of the Cauchy functional equation over p-adic fields, Real Analysis Exchange, 31(2005/2006), 125-132.
[4] R. Badora, Stability Properties of Some Functional Equations, equations in mathematical analysis. Springer Optimization 398 and Its Applications vol. 52, p. 26. doi:10.1007/978-1-4614-0055-4.
[5] J. A. Baker: A general functional equation and its stability, Proc. Amer. Math. Soc. 133(2005), no 6, 1657-1664.
[6] A. Charifi, B. Bouikhalene, E. Elqorachi: Hyers-Ulam-Rassias stability of a generalized Pexider functional equation, Banach J. Math. Anal. 1 (2007), no. 2, 176185.
[7] A. Charifi, B. Bouikhalene, E. Elqorachi, A. Redouani: Hyers Ulam Rassias stability of a generalized Jensen functional equation, The Australian J. of Math. Analysis and App., 6(2009), no 1, Article 19, 1-16.
[8] A. Charifi, JM. Rassias, M. Almahalebi, S. Kabbaj, A Ultrametric approximations of Drygas functional equation, (Submited).
[9] A. Charifi, M. Almahalebi, S. Kabbaj, A generalization of Drygas functional equation on groups, (Submited).
[10] A. Charifi, D. Zeglami, S. Kabbaj, Solution of generalized Jensen and quadratic functional equations, (Submited).
[11] A. Chehbi, A. Charifi, B. Bouikhalene, S. Kabbaj: Operatorial approach to the non-Archimedean stability of a Pexider K-quadratic functional equation, Arab J Math Sci 21(1) (2015), 67-83.
[12] P. W. Cholewa: Remarks on the stability of functional equations, Aequationes Math. 27 (1984), 76-86.
[13] J.K. Chung, B.R. Ebanks, C.T. Ng, P.K. Sahoo: On a quadratic trigonometric functional equation and some applications. Trans. Amer. Math. Soc. 347 (1995), 11311161.
[14] S. Czerwik: On the stability of the quadratic mapping in normed spaces. Abh. Math. Sem. Univ. Hamburg, 62 (1992), 59-64.
[15] B.R. Ebanks, PL. Kannappan and P.K. Sahoo: A common generalization of functional equations characterizing normed and quasi-inner-product spaces, Canad. Math. Bull. 35 (1992), 321-327.
[16] M. Eshaghi Gordji, M.B. Savadkouhi: Stability of a mixed type cubic quartic functional equation in non-Archimedean spaces, Applied Math. Letters 23 (2010) 11981202.
[17] B. Fadli, D. Zeglami, S. Kabbaj: On a Gajda's type quadratic equation on a locally compact abelian group, Indagationes Math. (2015) DOI: 10.1016/j.indag.2015.05.001.
[18] G.L. Forti: Hyers-Ulam stability of functional equations in several variables, Aequationes Math. 50 (1995), 143-190.
[19] Z. Gajda: On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431-434. 15.
[20] P. Gàvruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184 (1994), 431-436. K.
[21] K. Hensel: Uber eine neue Begrundung der Theorie der algebraischen Zahlen, Jahresber. Deutsch. Math. Verein, 6(1897), 83-88.
[22] D.H. Hyers: On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224.
[23] D.H. Hyers: Transformations with bounded n-th differences, Pacific J. Math. 11 (1961), 591-602.
A. Charifi, S. Kabbaj and D. Zeglami - Φ-Jensen and Φ-quadratic ...
[24] D.H. Hyers, G.I. Isac, and Th. M. Rassias, Th.M.: Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998.
[25] K. W. Jun, and Y. H. Lee: A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), 305-315.
[26] S. M. Jung: Stability of the quadratic equation of Pexider type, Abh. Math. Sem. Univ. Hamburg, 70 (2000), 175-190.
[27] S. M. Jung and P. K. Sahoo: Hyers-Ulam stability of the quadratic equation of Pexider type, J. Korean Math. Soc., 38 (2001), No. 3, 645-656.
[28] S. M. Jung and P. K. Sahoo: Stability of a functional equation of Drygas, Aequati. Math. 64 (2002), No. 3, 263-273.
[29] S. M. Jung: Hyers-Ulam-Rassias Stability of Functional Equations in Nonlinear Analysis, Springer, New York, 2011.
[30] P. Kannappan: Quadratic functional equation and inner product spaces, Results Math. 27(1995), no. 3-4, 368-372.
[31] M. Kuczma: An introduction to the theory of functional equations and inequalities. Cauchy's equation and Jensen's inequality. Birkhäuser, Basel (2009).
[32] R. Łukasik: Some generalization of Cauchys and the quadratic functional equations, Aequat. Math. 83 (2012), 75-86.
[33] R. Łukasik: The solution and the stability of the Pexiderized K-quardratic functional equation, 12th Debrecen-Katowice Winter Seminar on Functional Equationsand Inequalities, Hajdùszoboszlò, Hungary, January 25-28, 2012.
[34] S. Mazur, and W. Orlicz: Grundlegende Eigenschaften der Polynomischen Operationen, Erst Mitteilung, Studia Math. 5 (1934), 50-68.
[35] S. Mazur, and W. Orlicz: Grundlegende Eigenschaften der Polynomischen Operationen, Zweite Mitteilung, ibidem 5 (1934), 179-189.
[36] A. K. Mirmostafaee: Non-Archimedean stability of quadratic equations, Fixed Point Theory, 11(2010), No. 1, 67-75.
[37] M.S. Moslehian, Th. M. Rassias: Stability of functional equations in nonArchimedea spaces, Applicable Analysis and Discrete Math., 1 (2007), 325-334.
[38] C. Park: On the stability of the quadratic mapping in Banach modules. J. Math. Anal. Appl., 276 (2002), 135-144.
[39] J. M. Rassias, On the Ulam stability of mixed type mappings on restricted domains, J. Math. Anal. Appl. 281 (2002) 747-762. 16
[40] J.M. Rassias: Solution of a problem of Ulam. J. Approx. Theory 57 (1989), 268-273.
[41] Th. M. Rassias: On the stability of linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297-300.
A. Charifi, S. Kabbaj and D. Zeglami - Φ-Jensen and Φ-quadratic ...
[42] Th. M. Rassias: Inner Product Spaces and Applications, Pitman Research Notes in Mathematics Series, Addison Wesley Longman Ltd, No. 376, 1997.
[43] Th. M. Rassias and J. Tabor: Stability of Mappings of Hyers-Ulam Type, Hardronic Press, Inc., Palm Harbor, Florida, 1994.
[44] Th. M. Rassias: Handbook of Functional Equations: Stability Theory, Springer Optimization and Its Applications 96 (2014), DOI 10.1007/978-1-4939-1286-5_17.
[45] P. Sinopoulos: Functional equations on semigroups. Aequationes Math. 59(2000) no.3, , 255-261.
[46] S. Skof: Local properties and approximations of operators, Rend. Sem. mat. Fis. Milano, 53(1983), 113-129.
[47] H. Stetkær: Functional equations on abelian groups with involution, Aequat. Math. 54 (1997), 144-172.
[48] H. Stetkær: Functional equations involving means of functions on the complex plane. Aequat. Math. 55 (1998), 47-62.
[49] H. Stetkær: Functional equations and matrix-valued spherical functions. Aequat. Math. 69(2005), 271-292.
[50] S. M. Ulam: A Collection of Mathematical Problems, Interscience Publ. New York, 1961. Problems in Modern Mathematics, Wiley, New York 1964. 1.
[51] D. Zeglami, A. Charifi, S. Kabbaj: On the superstability of the pexider type generalized trigonometric functional equations. Acta Math. Sci. 34(6), 1749-1760 (2014).
[52] D. Zeglami, S. Kabbaj, A. Charifi: On the stability of the generalized mixed trigonometric functional equations. Adv. Pure Appl. Math. 5(4), 209-222 (01/2014).
[53] D. Zeglami, A. Charifi, S. Kabbaj: Superstability problem for a large class of functional equations, Afr. Math. (2015), DOI: 10.1007/s13370-015-0353-4.

Ahmed Charifi
Department of Mathematics, Faculty of Science, University of Ibn Tofail, Kenitra, Morocco email: charifi2000@yahoo.fr

Samir Kabbaj
Department of Mathematics, Faculty of Science, University of Ibn Tofail,
Kenitra, Morocco
email: samkabbaj@yahoo.fr
A. Charifi, S. Kabbaj and D. Zeglami - Φ-Jensen and Φ-quadratic ...

Driss Zeglami
Department of Mathematics, E.N.S.A.M, Moulay Ismail University,
Meknes, Morocco
email: zeglamidriss@yahoo.fr

