ON A CERTAIN SUBCLASSES OF BI-UNIVALENT FUNCTIONS

S. Joshi, S. Joshi, H. Pawar

Abstract. In this paper, we introduce and study two new subclasses of biunivalent functions in the open unit disk $U=\{z:|z|<1\}$ and obtain bounds for the Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$. The result presented in this paper generalize the recent work of Srivastava et al. [9].

2010 Mathematics Subject Classification: 30C45.
Keywords: univalent function, coefficient estimates, bi-univalent function.

1. Introduction

Let A denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disc $U=\{z:|z|<1\}$. Let S denote the subclass of A, which consist of functions of the form (1.1) that are univalent and normalized by the conditions $f(0)=0$ and $f^{\prime}(0)=1$ in U .

A function $f \in S$ is said to be starlike of order $\alpha(0 \leq \alpha<1)$ if and only if

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha, z \in U
$$

and convex of order $\alpha(0 \leq \alpha<1)$ if and only if

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha, z \in U
$$

Denote these classes respectively by $S^{*}(\alpha)$ and $K(\alpha)$.

It is well known by the Koebe one quarter theorem [4] that the image of U under every function $f \in S$ contains a disk of radius $\frac{1}{4}$. Thus every univalent function f has an inverse f^{-1} satisfying $f^{-1}[f(z)]=z,(z \in U)$ and $f\left[f^{-1}(w)\right]=$ $w,\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)$.

The inverse of $f(z)$ has a series expansion in some disk about the origin of the form

$$
\begin{equation*}
f^{-1}(w)=w+A_{2} w^{2}+A_{3} w^{3}+A_{4} w^{4}+\cdots \tag{1.2}
\end{equation*}
$$

A function $f(z)$ univalent in a neighborhood of the origin and its inverse satisfy the condition

$$
w=f\left[f^{-1}(w)\right]
$$

Using (1.1), we have

$$
\begin{equation*}
w=f^{-1}(w)+a_{2}\left(f^{-1}(w)\right)^{2}+a_{3}\left(f^{-1}(w)\right)^{3}+a_{4}\left(f^{-1}(w)\right)^{4}+\cdots \tag{1.3}
\end{equation*}
$$

Now using (1.2) we get the following result

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{1.4}
\end{equation*}
$$

A function $f \in A$ is said to be bi-univalent in U if both $f(z)$ and $f^{-1}(z)$ are univalent in U. Let Σ denote the class of bi-univalent functions in U given by (1.1). Examples of functions in the class Σ are

$$
\frac{z}{1-z}, \quad-\log (1-z), \quad \frac{1}{2} \log \left(\frac{1+z}{1-z}\right)
$$

and so on. However, the familiar Koebe function is not bi-univalent. Also functions in S such as

$$
z-\frac{z^{2}}{2} \text { and } \frac{z}{1-z^{2}}
$$

are also not members of Σ (see [9]).
Lewin [6] first investigated the class Σ of bi-univalent functions and showed that $\left|a_{2}\right|<1.51$. Subsequently, Brannan and Clunie [2] conjectured that $\left|a_{2}\right| \leq \sqrt{2}$. Netanyahu [7], on the other hand, showed that $\max _{f \in \Sigma}\left|a_{2}\right|=\frac{4}{3}$. The coefficient problem i.e. bound of $\left|a_{n}\right|(n \in \mathbb{N} \backslash\{1,2\})$ for each $f \in \Sigma$ given by (1.1) is still an open problem.

Brannan and Taha [3] introduced certain subclasses of the bi-univalent function class Σ similar to the familiar subclasses $S^{*}(\alpha)$ and $K(\alpha)$ of the univalent function
S. Joshi, S. Joshi, H. Pawar - On a certain subclasses of bi-univalent ...
class S. Thus following Brannan and Taha [3], a function $f \in A$ of form (1.1) is in the class $S_{\Sigma}^{*}(\alpha)(0<\alpha \leq 1)$ of strongly bi-starlike functions of order α if it satisfies the following conditions:

$$
\begin{gathered}
f \in \Sigma \text { and } \quad\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{\alpha \pi}{2} \quad(z \in U ; 0<\alpha \leq 1) \\
\quad \text { and } \quad\left|\arg \left(\frac{w g^{\prime}(w)}{g(w)}\right)\right|<\frac{\alpha \pi}{2} \quad(w \in U ; 0<\alpha \leq 1),
\end{gathered}
$$

where g is the extension of f^{-1} to U. The classes $S_{\Sigma}^{*}(\alpha)$ and $K_{\Sigma}(\alpha)$ of bi-starlike functions of order α and bi-convex functions of order α, corresponding(respectively) to the function classes $S^{*}(\alpha)$ and $K(\alpha)$, were also introduced analogously. For each of the function classes $S_{\Sigma}^{*}(\alpha)$ and $K_{\Sigma}(\alpha)$, they found non-sharp estimates on the initial coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ (for details see [3]).

Recently, several authors introduced and investigated the various subclasses of bi-univalent functions and obtained bounds for the initial coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ (see, for example, [1, 5, 9, 10].

Srivastava et al. [9] introduced two new subclasses of analytic and bi-univalent functions as follows:

Definition 1. A function $f(z)$ given by (1.1) is said to be in the class $\mathcal{H}_{\Sigma}^{\alpha}$ if the following conditions are satisfied:

$$
\begin{array}{ll}
f \in \Sigma & \\
\text { and } & \left|\arg \left(f^{\prime}(z)\right)\right|<\frac{\alpha \pi}{2} \\
\text { and } & (z \in U ; 0<\alpha \leq 1) \\
\text { arg }\left(g^{\prime}(w)\right) \left\lvert\,<\frac{\alpha \pi}{2}\right. & (w \in U ; 0<\alpha \leq 1),
\end{array}
$$

where the function g is extension of f^{-1} to U, and is given by

$$
g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots .
$$

Definition 2. A function $f(z)$ given by (1.1) is said to be in the class $\mathcal{H}_{\Sigma}(\beta)$ if the following conditions are satisfied:

$$
\begin{array}{ccc}
f \in \Sigma & & \\
\text { and } & \operatorname{Re}\left(f^{\prime}(z)\right)>\beta & (z \in U ; 0 \leq \beta<1) \\
\text { and } & \operatorname{Re}\left(g^{\prime}(w)\right)>\beta & (w \in U ; 0 \leq \beta<1),
\end{array}
$$

S. Joshi, S. Joshi, H. Pawar - On a certain subclasses of bi-univalent ...
where the function g is extension of f^{-1} to U, and is given by

$$
g(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots .
$$

The object of present investigation is to generalize above two subclasses $\mathcal{H}_{\Sigma}^{\alpha}$ and $\mathcal{H}_{\Sigma}(\beta)$ of analytic bi-univalent function class Σ and find estimates on the initial coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$. The techniques used are same as of Srivastava et al. [9].

We begin by setting

$$
\begin{equation*}
F_{\mu}(z)=(1-\mu) f(z)+\mu z f^{\prime}(z), \quad 0 \leq \mu \leq 1, \quad f \in S \tag{1.5}
\end{equation*}
$$

so that

$$
\begin{equation*}
F_{\mu}(z)=z+\sum_{n=2}^{\infty}[1+\mu(n-1)] a_{n} z^{n} . \tag{1.6}
\end{equation*}
$$

Clearly $F_{\mu} \in S$ and has an inverse F_{μ}^{-1}, defined by $F_{\mu}^{-1}\left[F_{\mu}(z)\right]=z,(z \in U)$ and $F_{\mu}^{-1}\left[F_{\mu}(w)\right]=w,\left(|w|<r_{0}(f) ; r_{0}(f) \geq \frac{1}{4}\right)$. In fact, the inverse function F_{μ}^{-1} is given by

$$
F_{\mu}^{-1}(w)=w-a_{2}(1+\mu) w^{2}+\left[2 a_{2}^{2}(1+\mu)^{2}-a_{3}(1+2 \mu)\right] w^{3}+\cdots .
$$

In order to derive our main results, we have to recall here the following lemma.
Lemma 1. [8]. Let $h \in P$ the family of all functions h analytic in U for which $\operatorname{Re}\{h(z)\}>0$ and have the form

$$
h(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots
$$

for $z \in U$. Then $\left|p_{n}\right| \leq 2$, for each n .

2. Main Results

2.1. Coefficient bounds for the function class $\mathcal{G} \mathcal{H}_{\Sigma}^{\alpha, \mu}$

Definition 3. A function $F_{\mu}(z)$ given by (1.6) is said to be in the class $\mathcal{G} \mathcal{H}_{\Sigma}^{\alpha, \mu}$ if the following conditions are satisfied:

$$
\begin{array}{ll}
F_{\mu} \in \Sigma & \\
\text { and } & \left|\arg \left(F_{\mu}^{\prime}(z)\right)\right|<\frac{\alpha \pi}{2} \\
\text { and } & (z \in U ; 0<\alpha \leq 1) \tag{2.2}\\
\text { arg }\left(G_{\mu}^{\prime}(w)\right) \left\lvert\,<\frac{\alpha \pi}{2}\right. & (w \in U ; 0<\alpha \leq 1),
\end{array}
$$

S. Joshi, S. Joshi, H. Pawar - On a certain subclasses of bi-univalent ...
where the function G_{μ} is extension of F_{μ}^{-1} to U, and is given by

$$
G_{\mu}(w)=w-a_{2}(1+\mu) w^{2}+\left[2 a_{2}^{2}(1+\mu)^{2}-a_{3}(1+2 \mu)\right] w^{3}+\cdots .
$$

We begin by finding the estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for the function class $\mathcal{G} \mathcal{H}_{\Sigma}^{\alpha, \mu}$.
Theorem 1. . Let $F_{\mu}(z)$ given by (1.6) be in the class $\mathcal{G} \mathcal{H}_{\Sigma}^{\alpha, \mu}$ Then

$$
\begin{align*}
& \left|a_{2}\right| \leq \frac{\alpha}{(1+\mu)} \sqrt{\frac{2}{\alpha+2}} \tag{2.3}\\
& \left|a_{3}\right| \leq \frac{\alpha(3 \alpha+2)}{3(1+2 \mu)} \tag{2.4}
\end{align*}
$$

Proof. Clearly, conditions (2.1) and (2.2) can be written as

$$
\begin{equation*}
F_{\mu}^{\prime}(z)=[p(z)]^{\alpha} \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{\mu}^{\prime}(w)=[q(w)]^{\alpha} \tag{2.6}
\end{equation*}
$$

respectively.
Where $p(z), q(w) \in P$ and have the forms

$$
p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots
$$

and $q(w)=1+q_{1} w+q_{2} w^{2}+q_{3} w^{3}+\cdots$.
Clearly,

$$
\begin{aligned}
& {[p(z)]^{\alpha}=1+\alpha p_{1} z+\left(\alpha p_{2}+\frac{\alpha(\alpha-1)}{2} p_{1}^{2}\right) z^{2}+\cdots } \\
& \text { and }[q(w)]^{\alpha}=1+\alpha q_{1} w+\left(\alpha q_{2}+\frac{\alpha(\alpha-1)}{2} q_{1}^{2}\right) w^{2}+\cdots .
\end{aligned}
$$

Also

$$
F_{\mu}^{\prime}(z)=1+(1+\mu) 2 a_{2} z+(1+2 \mu) 3 a_{3} z^{2}+\cdots
$$

and

$$
G_{\mu}^{\prime}(w)=1-a_{2}(1+\mu) 2 w+\left[2 a_{2}^{2}(1+\mu)^{2}-a_{3}(1+2 \mu)\right] 3 w^{2}+\cdots .
$$

S. Joshi, S. Joshi, H. Pawar - On a certain subclasses of bi-univalent ...

Now, equating the coefficients in (2.5) and (2.6), we get

$$
\begin{align*}
(1+\mu) 2 a_{2} & =\alpha p_{1}, \tag{2.7}\\
(1+2 \mu) 3 a_{3} & =\alpha p_{2}+\frac{\alpha(\alpha-1)}{2} p_{1}^{2}, \tag{2.8}\\
-(1+\mu) 2 a_{2} & =\alpha q_{1}, \tag{2.9}\\
{\left[2 a_{2}^{2}(1+\mu)^{2}-a_{3}(1+2 \mu)\right] 3 } & =\alpha q_{2}+\frac{\alpha(\alpha-1)}{2} q_{1}^{2} . \tag{2.10}
\end{align*}
$$

From (2.7) and (2.9), we get

$$
\begin{align*}
p_{1} & =-q_{1} \tag{2.11}\\
\text { and } 8 a_{2}^{2}(1+\mu)^{2} & =\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{2.12}
\end{align*}
$$

Now by adding equation (2.10) and equation (2.8) , we get

$$
6 a_{2}^{2}(1+\mu)^{2}=\alpha\left(p_{2}+q_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{1}^{2}+q_{1}^{2}\right),
$$

by using (2.12), we get

$$
\begin{aligned}
6 a_{2}^{2}(1+\mu)^{2} & =\alpha\left(p_{2}+q_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(\frac{8 a_{2}^{2}(1+\mu)^{2}}{\alpha^{2}}\right) \\
\Rightarrow \quad a_{2}^{2} & =\frac{\alpha^{2}\left(p_{2}+q_{2}\right)}{2(\alpha+2)(1+\mu)^{2}} .
\end{aligned}
$$

Applying Lemma 1 for the coefficients p_{2} and q_{2}, we immediately have

$$
\left|a_{2}\right| \leq \frac{\alpha}{(1+\mu)} \sqrt{\frac{2}{\alpha+2}} .
$$

This gives the bound on $\left|a_{2}\right|$ as asserted in (2.3).
Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting equation (2.10) from equation (2.8), we get

$$
6 a_{3}(1+2 \mu)-6 a_{2}^{2}(1+\mu)^{2}=\alpha\left(p_{2}-q_{2}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{1}^{2}-q_{1}^{2}\right) .
$$

From (2.11) we get $p_{1}^{2}=q_{1}^{2}$ and also using (2.12), we have

$$
\begin{aligned}
6 a_{3}-6\left(\frac{\alpha^{2}\left(p_{1}^{2}+q_{1}^{2}\right)}{8(1+\mu)^{2}}\right) & =\alpha\left(p_{2}-q_{2}\right) \\
6 a_{3}-6\left(\frac{\alpha^{2}\left(2 p_{1}^{2}\right)}{8(1+\mu)^{2}}\right) & =\alpha\left(p_{2}-q_{2}\right) \quad\left(\text { by using } p_{1}^{2}=q_{1}^{2}\right) \\
\Rightarrow \quad a_{3} & =\frac{\alpha^{2} p_{1}^{2}}{4(1+2 \mu)}+\frac{\alpha\left(p_{2}-q_{2}\right)}{6(1+2 \mu)} .
\end{aligned}
$$

S. Joshi, S. Joshi, H. Pawar - On a certain subclasses of bi-univalent ...

Applying Lemma 1 once again for the coefficients p_{1}, q_{1}, p_{2} and q_{2}, we get

$$
\left|a_{3}\right| \leq \frac{\alpha^{2}(4)}{4(1+2 \mu)}+\frac{\alpha(4)}{6(1+2 \mu)}
$$

Which yields

$$
\left|a_{3}\right| \leq \frac{\alpha(3 \alpha+2)}{3(1+2 \mu)}
$$

This completes the proof of Theorem 1.

3. Coefficient bounds for the function class $\mathcal{G H}_{\Sigma}(\beta, \mu)$

Definition 4. A function $F_{\mu}(z)$ given by (1.6) is said to be in the class $\mathcal{G} \mathcal{H}_{\Sigma}(\beta, \mu)$ if the following conditions are satisfied:

$$
\begin{align*}
& F_{\mu} \in \Sigma \\
& \tag{3.1}\\
& \begin{array}{rr}
\text { and } & \operatorname{Re}\left(F_{\mu}^{\prime}(z)\right)>\beta \\
\text { and } & \operatorname{Re}\left(G_{\mu}^{\prime}(w)\right)>\beta
\end{array} \quad(w \in U ; 0 \leq \beta<1) \tag{3.2}\\
& \quad(w \in U ; 0 \leq \beta<1)
\end{align*}
$$

where the function G_{μ} is extension of F_{μ}^{-1} to U, and is given by

$$
G_{\mu}(w)=w-a_{2}(1+\mu) w^{2}+\left[2 a_{2}^{2}(1+\mu)^{2}-a_{3}(1+2 \mu)\right] w^{3}+\cdots
$$

For functions in the class $\mathcal{G} \mathcal{H}_{\Sigma}(\beta, \mu)$, the following coefficient estimates hold.
Theorem 2. . Let $F_{\mu}(z)$ given by (1.6) be in the class $\mathcal{G} \mathcal{H}_{\Sigma}(\beta, \mu)$ Then

$$
\begin{align*}
& \left|a_{2}\right| \leq \frac{1}{(1+\mu)} \sqrt{\frac{2(1-\beta)}{3}} \tag{3.3}\\
& \left|a_{3}\right| \leq \frac{(1-\beta)(5-3 \beta)}{3(1+2 \mu)} \tag{3.4}
\end{align*}
$$

Proof. Clearly, conditions (3.1) and (3.2) can be written as

$$
\begin{equation*}
F_{\mu}^{\prime}(z)=\beta+(1-\beta) p(z) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{\mu}^{\prime}(w)=\beta+(1-\beta) q(w) \tag{3.6}
\end{equation*}
$$

S. Joshi, S. Joshi, H. Pawar - On a certain subclasses of bi-univalent ...
respectively.
Where $p(z), q(w) \in P$ and have the forms

$$
p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots
$$

$$
\text { and } q(w)=1+q_{1} w+q_{2} w^{2}+q_{3} w^{3}+\cdots
$$

Clearly,

$$
\beta+(1-\beta) p(z)=1+(1-\beta) p_{1} z+(1-\beta) p_{2} z^{2}+\cdots
$$

and $\beta+(1-\beta) q(w)=1+(1-\beta) q_{1} w+(1-\beta) q_{2} w^{2}+\cdots$
Also

$$
F_{\mu}^{\prime}(z)=1+(1+\mu) 2 a_{2} z+(1+2 \mu) 3 a_{3} z^{2}+\cdots
$$

and $\quad G_{\mu}^{\prime}(w)=1-a_{2}(1+\mu) 2 w+\left[2 a_{2}^{2}(1+\mu)^{2}-a_{3}(1+2 \mu)\right] 3 w^{2}+\cdots$.
Now, equating the coefficients in (3.5) and (3.6), we get

$$
\begin{align*}
(1+\mu) 2 a_{2} & =(1-\beta) p_{1}, \tag{3.7}\\
(1+2 \mu) 3 a_{3} & =(1-\beta) p_{2}, \tag{3.8}\\
-(1+\mu) 2 a_{2} & =(1-\beta) q_{1}, \tag{3.9}\\
{\left[2 a_{2}^{2}(1+\mu)^{2}-a_{3}(1+2 \mu)\right] 3 } & =(1-\beta) q_{2} . \tag{3.10}
\end{align*}
$$

From (3.7) and (3.9), we get

$$
\begin{align*}
p_{1} & =-q_{1} \tag{3.11}\\
\text { and }(1+\mu)^{2} 8 a_{2}^{2} & =(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{3.12}
\end{align*}
$$

Now by adding equation (3.10) and equation (3.8) , we get

$$
\begin{gathered}
6 a_{2}^{2}(1+\mu)^{2}=(1-\beta)\left(p_{2}+q_{2}\right) \\
a_{2}^{2}=\frac{(1-\beta)}{6(1+\mu)^{2}}\left(p_{2}+q_{2}\right)
\end{gathered}
$$

Thus, we have

$$
\left|a_{2}^{2}\right| \leq \frac{(1-\beta)}{6(1+\mu)^{2}}\left(\left|p_{2}\right|+\left|q_{2}\right|\right)
$$

S. Joshi, S. Joshi, H. Pawar - On a certain subclasses of bi-univalent ...

Applying Lemma 1 for the coefficients p_{2} and q_{2}, we have

$$
\left|a_{2}\right| \leq \frac{1}{(1+\mu)} \sqrt{\frac{2(1-\beta)}{3}}
$$

Which is the bound on $\left|a_{2}\right|$ as given in (3.3).
Next, in order to find the bound on $\left|a_{3}\right|$, by subtracting equation (3.10) from equation (3.8), we get

$$
\begin{aligned}
6 a_{3}(1+2 \mu)-6 a_{2}^{2}(1+\mu)^{2} & =(1-\beta)\left(p_{2}-q_{2}\right) \\
6 a_{3}(1+2 \mu) & =6 a_{2}^{2}(1+\mu)^{2}+(1-\beta)\left(p_{2}-q_{2}\right)
\end{aligned}
$$

From (3.11) we get $p_{1}^{2}=q_{1}^{2}$ and also using (3.12), we have

$$
\begin{aligned}
6 a_{3}(1+2 \mu) & =6 \frac{1}{8}(1-\beta)^{2}\left(p_{1}^{2}+q_{1}^{2}\right)+(1-\beta)\left(p_{2}-q_{2}\right) \\
6 a_{3}(1+2 \mu) & =\frac{3}{4}(1-\beta)^{2}\left(2 p_{1}^{2}\right)+(1-\beta)\left(p_{2}-q_{2}\right) \quad\left(\text { by using } p_{1}^{2}=q_{1}^{2}\right) \\
a_{3} & =\frac{(1-\beta)^{2} p_{1}^{2}}{4(1+2 \mu)}+\frac{(1-\beta)\left(p_{2}-q_{2}\right)}{6(1+2 \mu)}
\end{aligned}
$$

Applying Lemma 1 for the coefficients p_{1}, q_{1}, p_{2} and q_{2}, we get

$$
\begin{aligned}
\left|a_{3}\right| & \leq \frac{(1-\beta)^{2} 4}{4(1+2 \mu)}+\frac{(1-\beta)(4)}{6(1+2 \mu)} \\
\Rightarrow \quad\left|a_{3}\right| & \leq \frac{(1-\beta)(5-3 \beta)}{3(1+2 \mu)} .
\end{aligned}
$$

This completes the proof of Theorem 2.

References

[1] D. Bansal, J. Sokol, Coefficient bound for a new class of analytic and biunivalent functions, J. of Fract. Calc. Appl., 5(1), (2014), 122-128.
[2] D. A. Brannan, J. Clunie, Aspects of contemporary complex analysis, Academic Prss, New York London, (1980).
[3] D.A. Brannan, T.S. Taha, On some classes of bi-univalent functions, in: S.M. Mazhar, A. Hamoui, N.S. Faour (Eds.), Mathematical Analysis and its Applications, Kuwait; February 18 -21, 1985, in: KFAS Proceedings Series, vol. 3, Pergamon Press, Elsevier Science Limited, Oxford, 1988, pp. 53 60; see also Studia Univ. Babe-Bolyai Math., 31 (2), (1986), 70-77.
[4] P.L. Duren, Univalent functions, Grundlehren der Mathematischen Wissenschaften, Springer, New York, 259, (1983).
[5] B.A. Frasin, M.K. Aouf, New subclasses of bi-univalent functions, Appl. Math. Lett., 24(9), (2011), 1569-1573.
[6] M. Lewin, On a coefficient problem for bi-univalent functions, Proc. Amer. Math. Soc, 18, (1967), 63-68.
[7] E. Netanyahu, The minimal distance of the image boundary from the origin and the second coefficient of a univalent function in $|z|<1$, Arch. Rational Mech. Anal., 32, (1969), 100-112.
[8] Ch. Pommerenke, Univalent Functions, Vandenhoeck and Rupercht, Gttingen, (1975).
[9] H.M. Srivastava, A.K. Mishra, P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23, (2010), 1188-1192.
[10] H.M. Srivastava, D. Bansal, Coefficient estimates for a subclass of analytic and bi-univalent functions, J. of Egypt. Math. Soc., (2014), 1-4.

Santosh Joshi

Department of Mathematics,
Walchand College of Engineering,
Sangli 416415, India
email: joshisb@hotmail.com
Sayali Joshi
Department of Mathematics,
Sanjay Bhokare Group of Institutes, Miraj,
Miraj 416410, India
email: joshiss@sbgimiraj.org
Haridas Pawar
Department of Mathematics,
SVERI's College of Engineering Pandharpur,
Pandharpur 413304, India
email: haridas_pawar007@yahoo.co.in

