A REMARK ON A SUBCLASS OF ANALYTIC FUNCTIONS

S. S. BILLING AND KIMMI MARKAN

ABSTRACT. In the present paper, we investigate a subclass of analytic functions defined by a multiplier transformation. The class is previously studied by Laura Stanciu and Daniel Breaz [6] for $f \in \mathcal{A}$. We here study this class for $f \in \mathcal{A}_p$ and obtained certain results for starlikeness and convexity of analytic functions $f \in \mathcal{A}_p$. We also present correct version of some results of Laura Stanciu and Daniel Breaz [6].

2010 Mathematics Subject Classification: 30C80, 30C45.

Keywords: Analytic function, Univalent function, Multivalent function, Multiplier transformation.

1. INTRODUCTION AND PRELIMINARIES

Let \mathcal{A} be the class of all functions f which are analytic in the open unit disk $\mathbb{E} = \{z \in \mathbb{C} : |z| < 1\}$ and normalized by the conditions that f(0) = f'(0) - 1 = 0. Thus, $f \in \mathcal{A}$ has the Taylor series expansion

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k.$$

Let \mathcal{A}_p denote the class of functions of the form

$$f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k$$
, $p \in \mathbb{N} = \{1, 2, 3 \cdots \},$

analytic and multivalent in the open unit disk \mathbb{E} . Note that $\mathcal{A}_1 = \mathcal{A}$. For $f \in \mathcal{A}_p$, define the multiplier transformation $I_p(n, \lambda)$ on class \mathcal{A}_p as

$$I_p(n,\lambda)f(z) = z^p + \sum_{k=p+1}^{\infty} \left(\frac{k+\lambda}{p+\lambda}\right)^n a_k z^k, \quad (\lambda \ge 0, n \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}).$$

The transformation $I_p(n, \lambda)$ has been recently studied by Aghalary [1], Billing ([2], [3], [4], [5]), Singh et al.[11]. The special case $I_1(n, 0)$ of above defined transformation is the well-known Sălăgean [10] derivative operator D^n , defined for $f \in \mathcal{A}$ as under:

$$D^n f(z) = z + \sum_{k=2}^{\infty} k^n a_k z^k.$$

A function $f \in \mathcal{A}_p$ is said to be p-valent starlike of order α $(0 \leq \alpha < p)$ in \mathbb{E} , if it satisfies the inequality

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > \alpha, \ z \in \mathbb{E}.$$

Let $S_p^*(\alpha)$ denote the class of all p-valent starlike functions of order α $(0 \le \alpha < p)$. A function $f \in A_p$ is said to be p-valent convex of order α $(0 \le \alpha < p)$ in \mathbb{E} if it satisfies the condition

$$\Re\left(1+\frac{zf''(z)}{f'(z)}\right) > \alpha, \ z \in \mathbb{E}.$$

We denote by $\mathcal{K}_p(\alpha)$, the class of all functions $f \in \mathcal{A}_p$ that are p-valent convex of order α $(0 \leq \alpha < p)$ in \mathbb{E} . Note that $\mathcal{S}^*(\alpha) = \mathcal{S}_1^*(\alpha)$ and $\mathcal{K}(\alpha) = \mathcal{K}_1(\alpha)$ are the usual classes of univalent starlike functions (w.r.t. the origin) of order α $(0 \leq \alpha < 1)$ and univalent convex functions of order α $(0 \leq \alpha < 1)$.

A function $f \in \mathcal{A}$ is said to be close-to-convex of order α , $0 \leq \alpha < 1$ in \mathbb{E} if

$$\Re\left(\frac{f'(z)}{g'(z)}\right) > \alpha, \ z \in \mathbb{E},\tag{1}$$

for a convex function g (not necessarily normalized). The class of close-to-convex functions of order α is denoted by $\mathcal{C}(\alpha)$. Let $\mathcal{C} = \mathcal{C}(0)$ denote the class of close-to-convex functions. It is well-known that every close-to-convex function is univalent. In case $\alpha = 0$ and $g(z) \equiv z$, the condition (1) reduces to

$$\Re f'(z) > 0, \ z \in \mathbb{E} \quad \Rightarrow \quad f \in \mathcal{C}.$$

This simple but elegant result was independently proved by Noshiro [8] and Warchawski [12] in 1934/35.

For two analytic functions f and g in the unit disk \mathbb{E} , we say that f is subordinate to g in \mathbb{E} and write as $f \prec g$ if there exists a Schwarz function w analytic in \mathbb{E} with w(0) = 0 and |w(z)| < 1, $z \in \mathbb{E}$ such that f(z) = g(w(z)), $z \in \mathbb{E}$. In case the function g is univalent, the above subordination is equivalent to: f(0) = g(0) and $f(\mathbb{E}) \subset g(\mathbb{E})$. *Obradovič* [9] introduced and studied the class $\mathcal{N}(\alpha), 0 < \alpha < 1$ of functions $f \in \mathcal{A}$ satisfying the following inequality

$$\Re\left\{f'(z)\left(\frac{z}{f(z)}\right)^{1+\alpha}\right\} > 0, \ z \in \mathbb{E}.$$

He obtained the starlikeness of members of $\mathcal{N}(\alpha)$. We, here, define below a more general class involving the multiplier transformation $I_p(n, \lambda)$.

A function $f \in \mathcal{A}_p$ is in the class $B_p(n, \lambda, \mu, \alpha)$, $n \in N$, $\mu \ge 0$, $\alpha \in [0, 1)$ if

$$\left|\frac{I_p(n+1,\lambda)f(z)}{z}\left(\frac{z}{I_p(n,\lambda)f(z)}\right)^{\mu}-1\right|<1-\alpha, \ z\in\mathbb{E}.$$

The operator $I_1(n, \lambda)$ is recently studied by Laura Stanciu and Daniel Breaz [6]. They obtained certain sufficient conditions for $f \in \mathcal{A}$ to be a member of the class $B(n, \lambda, \mu, \alpha) = B_1(n, \lambda, \mu, \alpha)$.

The main objective of this paper is to find certain sufficient conditions for $f \in \mathcal{A}_p$ to be a member of $B_p(n, \lambda, \mu, \alpha)$ and consequently, we get certain criteria for starlikeness and convexity of analytic functions $f \in \mathcal{A}_p$. At the same time, we also present the correct version of the results obtained by Laura Stanciu and Daniel Breaz [6]. In fact, we point out the following difficulties while deriving the results of Laura Stanciu and Daniel Breaz [6].

- 1. We could not verified the equality in equation (2) of Laura Stanciu and Daniel Breaz [6].
- 2. We could not understand how to arrive at the condition

$$\Re\left(1+\frac{zu'(z)}{u(z)}\right) > \frac{3\alpha-1}{2\alpha},$$

in the proof of main result Theorem 1 of Laura Stanciu and Daniel Breaz [6].

3. We also notice that

$$\Re\left(\frac{I(n+1,\lambda)f(z)}{z}\left(\frac{z}{I(n,\lambda)f(z)}\right)^{\mu}\right) > \alpha$$

does not imply that $f \in B(n, \lambda, \mu, \alpha)$ because the above condition does not imply

$$\left|\frac{I_p(n+1,\lambda)f(z)}{z}\left(\frac{z}{I_p(n,\lambda)f(z)}\right)^{\mu}-1\right|<1-\alpha.$$

4. We also notice that f should be a member of \mathcal{A} in place of \mathcal{A}_p in both Definition 2 and Theorem 1 of Laura Stanciu and Daniel Breaz [6].

To prove our main result, we shall use the following lemma of Miller and Mocanu [7, page 76].

Lemma 1. Let h be starlike in \mathbb{E} with h(0) = 0. If an analytic function $p(z) \neq 0$ in \mathbb{E} satisfies

$$\frac{zp'(z)}{p(z)} \prec h(z), \ z \in \mathbb{E},$$

then

$$p(z) \prec q(z) = \exp\left[\int_0^z \frac{h(t)}{t} dt\right]$$

and q is the best dominant.

2. Main Result

Theorem 2. Let μ be a real number such that $\mu \geq 0$. If $f \in A_p$ satisfies the condition

$$(p+\lambda)\left\{(\mu-1) + \frac{I_p(n+2,\lambda)f(z)}{I_p(n+1,\lambda)f(z)} - \mu \frac{I_p(n+1,\lambda)f(z)}{I_p(n,\lambda)f(z)}\right\} \prec \frac{(1-\alpha)z}{1+(1-\alpha)z}, \ 0 \le \alpha < 1.$$
(2)

then

$$f \in B_p(n,\lambda,\mu,\alpha).$$

Proof. On writing

$$\frac{I_p(n+1,\lambda)f(z)}{z^p}\left(\frac{z^p}{I_p(n,\lambda)f(z)}\right)^{\mu} = u(z), \ z \in \mathbb{E}.$$

Differentiate logarithmically, we obtain:

$$\frac{zI'_p(n+1,\lambda)f(z)}{I_p(n+1,\lambda)f(z)} - \mu \frac{zI'_p(n,\lambda)f(z)}{I_p(n,\lambda)f(z)} + p(\mu-1) = \frac{zu'(z)}{u(z)}.$$
(3)

In view of the equality

$$zI'_p(n,\lambda)f(z) = (p+\lambda)I_p(n+1,\lambda)f(z) - \lambda I_p(n,\lambda)f(z)$$

(3) turns to

$$(p+\lambda)\left\{(\mu-1) + \frac{I_p(n+2,\lambda)f(z)}{I_p(n+1,\lambda)f(z)} - \mu \frac{I_p(n+1,\lambda)f(z)}{I_p(n,\lambda)f(z)}\right\} = \frac{zu'(z)}{u(z)}.$$
 (4)

In view of (2) we get

$$\frac{zu'(z)}{u(z)} \prec \frac{(1-\alpha)z}{1+(1-\alpha)z} = h(z) \quad (say)$$

It is easy to view that h(z) is starlike and h(0) = 0. Therefore in view of Lemma 1, we conclude that

$$u(z) \prec 1 + (1 - \alpha)z.$$

Hence

$$\left|\frac{I_p(n+1,\lambda)f(z)}{z}\left(\frac{z}{I_p(n,\lambda)f(z)}\right)^{\mu} - 1\right| < 1 - \alpha, z \in \mathbb{E}.$$
$$f \in B_p(n,\lambda,\mu,\alpha).$$

or

3. Applications to Starlike and Convex functions

Selecting $\lambda = n = 0$ in Theorem 2, we obtain:

Corollary 3. Assume that μ is real number such that $\mu \ge 0$. If $f \in \mathcal{A}_p$ satisfies the condition

$$1 + \frac{zf''(z)}{f'(z)} - \mu \frac{zf'(z)}{f(z)} + p(\mu - 1) \prec \frac{(1 - \alpha)z}{1 + (1 - \alpha)z}, \quad 0 \le \alpha < 1,$$

then

$$\left|\frac{f'(z)}{p}\left(\frac{z}{f(z)}\right)^{\mu} - 1\right| < 1 - \alpha, \quad z \in \mathbb{E},$$

Putting $\mu = 1$ in above corollary, we get:

Corollary 4. If $f \in A_p$ satisfies the condition

$$1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \prec \frac{(1-\alpha)z}{1+(1-\alpha)z}, \quad 0 \le \alpha < 1,$$

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > 0, \quad z \in \mathbb{E}, \quad i.e. \quad f \in \mathcal{S}_p^*.$$

Writing $\lambda = 1, n = 0$ in Theorem 2, we obtain:

Corollary 5. Assume that μ is real number such that $\mu \geq 0$. If $f \in \mathcal{A}_p$ satisfies the condition

$$\frac{2zf'(z) + z^2f''(z)}{f(z) + zf'(z)} - \mu \frac{zf'(z)}{f(z)} + p(\mu - 1) \prec \frac{(1 - \alpha)z}{1 + (1 - \alpha)z}, \quad 0 \le \alpha < 1,$$

then

$$\left|\frac{f(z) + zf'(z)}{(p+1)z} \left(\frac{z}{f(z)}\right)^{\mu} - 1\right| < 1 - \alpha, \quad z \in \mathbb{E}.$$

Replacing $\mu = 1$ in above corollary, we get:

Corollary 6. If $f \in A_p$ satisfies the condition

$$\frac{2zf'(z) + z^2f''(z)}{f(z) + zf'(z)} - \frac{zf'(z)}{f(z)} + \prec \frac{(1-\alpha)z}{1 + (1-\alpha)z}, \quad 0 \le \alpha < 1,$$

then

$$\left|\frac{1}{p+1}\left(1+\frac{zf'(z)}{f(z)}\right)-1\right|<1-\alpha, \quad z\in\mathbb{E}.$$

For $\alpha = 1/2$, the above corollary reduces to the following criterion of starlikeness. Corollary 7. If $f \in A_p$ satisfies

$$\frac{2zf'(z) + z^2f''(z)}{f(z) + zf'(z)} - \frac{zf'(z)}{f(z)} + \prec \frac{z}{2+z},$$

then

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > 0, \quad z \in \mathbb{E}, \quad i.e. \quad f \in \mathcal{S}_p^*.$$

Selecting $n = \mu = 1, \lambda = 0$ in Theorem 2, we obtain:

Corollary 8. If $f \in A_p$ satisfies the condition

$$\frac{2zf''(z) + z^2f'''(z)}{f'(z) + z^2f''(z)} - \frac{zf''(z)}{f'(z)} \prec \frac{(1-\alpha)z}{1 + (1-\alpha)z}, \quad 0 \le \alpha < 1,$$

$$\left|\frac{1}{p}\left(1+\frac{zf''(z)}{f'(z)}\right)-1\right|<1-\alpha, \quad z\in\mathbb{E}.$$

For $\alpha = 0$ in above corollary, we have the following result.

Corollary 9. If $f \in A_p$ satisfies the condition

$$\Re\left(\frac{2zf''(z)+z^2f'''(z)}{f'(z)+z^2f''(z)}-\frac{zf''(z)}{f'(z)}\right)<\frac{1}{2}, \ z\in\mathbb{E},$$

then $f \in \mathcal{K}_p$.

For p = 1, $\alpha = 1/2$ in Corollary 8, we obtain the correct version of Corollary 1 of Laura Stanciu and Daniel Breaz [6].

Corollary 10. If $f \in A$ satisfies the condition

$$\Re\left(\frac{2zf''(z)+z^2f'''(z)}{f'(z)+z^2f''(z)}-\frac{zf''(z)}{f'(z)}\right) > -1, \ z \in \mathbb{E},$$

then

$$\left|\frac{zf''(z)}{f'(z)}\right| < \frac{1}{2}, \quad i.e. \quad f \in \mathcal{K}.$$

Selecting $n = 1, \mu = \lambda = 0$ in Theorem 2, we obtain:

Corollary 11. If $f \in A_p$ satisfies the condition

$$\frac{f'(z) + 3zf''(z) + z^3f'''(z)}{f'(z) + z^2f''(z)} \prec p + \frac{(1-\alpha)z}{1 + (1-\alpha)z}, \quad 0 \le \alpha < 1,$$

then

$$f'(z) + z f''(z) \prec p^2 \{ 1 + (1 - \alpha)z \}, \ z \in \mathbb{E},.$$

For p = 1, $\alpha = 1/2$ in Corollary 11, we obtain the correct version of Corollary 2 of Laura Stanciu and Daniel Breaz [6].

Corollary 12. If $f \in A$ satisfies the condition

$$\Re\left(\frac{f'(z) + 3zf''(z) + z^3f'''(z)}{f'(z) + z^2f''(z)}\right) > 0, \quad z \in \mathbb{E},$$

$$|f'(z) + zf''(z) - 1| < \frac{1}{2}, \quad z \in \mathbb{E},.$$

Selecting $n = \lambda = 0, \mu = 1$ in Theorem 2, we obtain:

Corollary 13. If $f \in A_p$ satisfies the condition

$$1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \prec \frac{(1-\alpha)z}{1+(1-\alpha)z}, \quad 0 \leq \alpha < 1,$$

then

$$\frac{zf'(z)}{f(z)} \prec p\{1 + (1-\alpha)z\}, \quad z \in \mathbb{E}.$$

For p = 1, $\alpha = 1/2$ in Corollary 13, we obtain the correct version of Corollary 3 of Laura Stanciu and Daniel Breaz [6].

Corollary 14. If $f \in A$ satisfies the condition

$$1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \prec \frac{z}{2+z}, \ z \in \mathbb{E},$$

then

$$\left|\frac{zf'(z)}{f(z)} - 1\right| < \frac{1}{2}, \quad i.e. \quad f \in \mathcal{S}^*.$$

Selecting $n = \lambda = \mu = 0$ in Theorem 2, we obtain:

Corollary 15. If $f \in A_p$ satisfies the condition

$$1 + \frac{zf''(z)}{f'(z)} \prec p + \frac{(1-\alpha)z}{1+(1-\alpha)z}, \quad 0 \le \alpha < 1,$$

then

$$\left|\frac{f'(z)}{p} - 1\right| < 1 - \alpha.$$

For p = 1, $\alpha = 1/2$ in Corollary 15, we obtain the correct version of Corollary 4 of Laura Stanciu and Daniel Breaz [6].

Corollary 16. If $f \in A$ satisfies the condition

$$\Re\left(1+\frac{zf''(z)}{f'(z)}\right) > 0, \quad z \in \mathbb{E},$$

$$\left|f'(z)-1\right| < \frac{1}{2}$$
 i.e. $f \in \mathcal{C}$.

References

[1] Aghalary, R., Ali, R. M., Joshi, S. B. and Ravichandran, V., *Inequalities for analytic functions defined by certain linear operators*, Int. J. Math. Sci., 4(2005), 267-274.

[2] Billing, S. S., *Differential inequalities implying starlikeness and convexity*, Acta Universitatis Matthiae Belii, series Mathematics, 20(2012), 3-8.

[3] Billing, S. S., A multiplier transformation and conditions for starlike and convex functions, Mathematical Sciences Research Journal, 17, 9(2013), 239-244.

[4] Billing, S. S., A subordination theorem involving a multiplier transformation, International Journal of Analysis and Applications, 1, 2(2013), 100-105.

[5] Billing, S. S., Differential inequalities and criteria for starlike and convex functions, Stud. Univ. Babes-Bolyai Math., 59, 2(2014), 191-198.

[6] Laura Stanciu and Daniel Breaz, A subclass of analytic functions defined by multiplier transformation, Acta Universitatis Apulensis, 27(2011), 225-228.

[7] Miller, S. S. and Mocanu, P.T., *Differential Subristications : Theory and Applications*, Marcel Dekker, New York and Basel, No. 225(2000).

[8] Noshiro, K., On the theory of schlicht functions, J. Fac. Sci., Hokkaido Univ., 2(1934-35), 129-155.

[9] Obradovič, M., A class of univalent functions, Hokkaido Mathematical Journal, 27, (2)(1998), 329-335.

[10] Sălăgean, G. S., *Subclasses of univalent functions*, Lecture Notes in Math. (Springer-Verlag, Heideberg), 1013(1983), 362-372.

[11] Singh, S., Gupta, S. and Singh, S., On a class of multivalent functions defined by a multiplier transformation, Matematicki Vesnik, 60, (2)(2008), 87-94.

[12] Warchawski, S. E., On the higher derivatives at the boundary in conformal mappings, Trans. Amer. Math. Soc., 38(1935), 310-340.

Sukhwinder Singh Billing Department of Mathematics Sri Guru Granth Sahib World University Fatehgarh Sahib-140 407, Punjab, India email: *ssbilling@gmail.com*

Kimmi Markan Department of Mathematics Sri Guru Granth Sahib World University Fatehgarh Sahib-140 407, Punjab, India email: markankimmi93@gmail.com