A REMARK ON A SUBCLASS OF ANALYTIC FUNCTIONS

S. S. Billing and Kimmi Markan

Abstract. In the present paper, we investigate a subclass of analytic functions defined by a multiplier transformation. The class is previously studied by Laura Stanciu and Daniel Breaz [6] for $f \in \mathcal{A}$. We here study this class for $f \in \mathcal{A}_{p}$ and obtained certain results for starlikeness and convexity of analytic functions $f \in \mathcal{A}_{p}$. We also present correct version of some results of Laura Stanciu and Daniel Breaz [6].

2010 Mathematics Subject Classification: 30C80, 30C45.
Keywords: Analytic function, Univalent function, Multivalent function, Multiplier transformation.

1. Introduction and Preliminaries

Let \mathcal{A} be the class of all functions f which are analytic in the open unit disk $\mathbb{E}=$ $\{z \in \mathbb{C}:|z|<1\}$ and normalized by the conditions that $f(0)=f^{\prime}(0)-1=0$. Thus, $f \in \mathcal{A}$ has the Taylor series expansion

$$
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} .
$$

Let \mathcal{A}_{p} denote the class of functions of the form

$$
f(z)=z^{p}+\sum_{k=p+1}^{\infty} a_{k} z^{k}, \quad p \in \mathbb{N}=\{1,2,3 \cdots\}
$$

analytic and multivalent in the open unit disk \mathbb{E}. Note that $\mathcal{A}_{1}=\mathcal{A}$. For $f \in \mathcal{A}_{p}$, define the multiplier transformation $I_{p}(n, \lambda)$ on class \mathcal{A}_{p} as

$$
I_{p}(n, \lambda) f(z)=z^{p}+\sum_{k=p+1}^{\infty}\left(\frac{k+\lambda}{p+\lambda}\right)^{n} a_{k} z^{k}, \quad\left(\lambda \geq 0, n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right) .
$$

The transformation $I_{p}(n, \lambda)$ has been recently studied by Aghalary [1], Billing ([2], [3], [4], [5]), Singh et al.[11]. The special case $I_{1}(n, 0)$ of above defined transformation is the well-known Sălăgean [10] derivative operator D^{n}, defined for $f \in \mathcal{A}$ as under:

$$
D^{n} f(z)=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k}
$$

A function $f \in \mathcal{A}_{p}$ is said to be p-valent starlike of order $\alpha(0 \leq \alpha<p)$ in \mathbb{E}, if it satisfies the inequality

$$
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, z \in \mathbb{E} .
$$

Let $\mathcal{S}_{p}^{*}(\alpha)$ denote the class of all p-valent starlike functions of order $\alpha(0 \leq \alpha<p)$. A function $f \in A_{p}$ is said to be p-valent convex of order $\alpha(0 \leq \alpha<p)$ in \mathbb{E} if it satisfies the condition

$$
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, z \in \mathbb{E} .
$$

We denote by $\mathcal{K}_{p}(\alpha)$, the class of all functions $f \in \mathcal{A}_{p}$ that are p-valent convex of order $\alpha(0 \leq \alpha<p)$ in \mathbb{E}. Note that $\mathcal{S}^{*}(\alpha)=\mathcal{S}_{1}^{*}(\alpha)$ and $\mathcal{K}(\alpha)=\mathcal{K}_{1}(\alpha)$ are the usual classes of univalent starlike functions (w.r.t. the origin) of order $\alpha \quad(0 \leq \alpha<1)$ and univalent convex functions of order $\alpha(0 \leq \alpha<1)$.
A function $f \in \mathcal{A}$ is said to be close-to-convex of order $\alpha, 0 \leq \alpha<1$ in \mathbb{E} if

$$
\begin{equation*}
\Re\left(\frac{f^{\prime}(z)}{g^{\prime}(z)}\right)>\alpha, z \in \mathbb{E}, \tag{1}
\end{equation*}
$$

for a convex function g (not necessarily normalized). The class of close-to-convex functions of order α is denoted by $\mathcal{C}(\alpha)$. Let $\mathcal{C}=\mathcal{C}(0)$ denote the class of close-toconvex functions. It is well-known that every close-to-convex function is univalent. In case $\alpha=0$ and $g(z) \equiv z$, the condition (1) reduces to

$$
\Re f^{\prime}(z)>0, z \in \mathbb{E} \Rightarrow f \in \mathcal{C}
$$

This simple but elegant result was independently proved by Noshiro [8] and Warchawski [12] in 1934/35.
For two analytic functions f and g in the unit disk \mathbb{E}, we say that f is subordinate to g in \mathbb{E} and write as $f \prec g$ if there exists a Schwarz function w analytic in \mathbb{E} with $w(0)=0$ and $|w(z)|<1, z \in \mathbb{E}$ such that $f(z)=g(w(z)), z \in \mathbb{E}$. In case the function g is univalent, the above subordination is equivalent to: $f(0)=g(0)$ and $f(\mathbb{E}) \subset g(\mathbb{E})$.

Obradovič [9] introduced and studied the class $\mathcal{N}(\alpha), 0<\alpha<1$ of functions $f \in \mathcal{A}$ satisfying the following inequality

$$
\Re\left\{f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{1+\alpha}\right\}>0, \quad z \in \mathbb{E}
$$

He obtained the starlikeness of members of $\mathcal{N}(\alpha)$. We, here, define below a more general class involving the multiplier transformation $I_{p}(n, \lambda)$.
A function $f \in \mathcal{A}_{p}$ is in the class $B_{p}(n, \lambda, \mu, \alpha), \quad n \in N, \quad \mu \geq 0, \quad \alpha \in[0,1)$ if

$$
\left|\frac{I_{p}(n+1, \lambda) f(z)}{z}\left(\frac{z}{I_{p}(n, \lambda) f(z)}\right)^{\mu}-1\right|<1-\alpha, \quad z \in \mathbb{E} .
$$

The operator $I_{1}(n, \lambda)$ is recently studied by Laura Stanciu and Daniel Breaz [6]. They obtained certain sufficient conditions for $f \in \mathcal{A}$ to be a member of the class $B(n, \lambda, \mu, \alpha)=B_{1}(n, \lambda, \mu, \alpha)$.
The main objective of this paper is to find certain sufficient conditions for $f \in$ \mathcal{A}_{p} to be a member of $B_{p}(n, \lambda, \mu, \alpha)$ and consequently, we get certain criteria for starlikeness and convexity of analytic functions $f \in \mathcal{A}_{p}$. At the same time, we also present the correct version of the results obtained by Laura Stanciu and Daniel Breaz [6]. In fact, we point out the following difficulties while deriving the results of Laura Stanciu and Daniel Breaz [6].

1. We could not verified the equality in equation (2) of Laura Stanciu and Daniel Breaz [6].
2. We could not understand how to arrive at the condition

$$
\Re\left(1+\frac{z u^{\prime}(z)}{u(z)}\right)>\frac{3 \alpha-1}{2 \alpha}
$$

in the proof of main result Theorem 1 of Laura Stanciu and Daniel Breaz [6].
3. We also notice that

$$
\Re\left(\frac{I(n+1, \lambda) f(z)}{z}\left(\frac{z}{I(n, \lambda) f(z)}\right)^{\mu}\right)>\alpha
$$

does not imply that $f \in B(n, \lambda, \mu, \alpha)$ because the above condition does not imply

$$
\left|\frac{I_{p}(n+1, \lambda) f(z)}{z}\left(\frac{z}{I_{p}(n, \lambda) f(z)}\right)^{\mu}-1\right|<1-\alpha .
$$

4. We also notice that f should be a member of \mathcal{A} in place of \mathcal{A}_{p} in both Definition 2 and Theorem 1 of Laura Stanciu and Daniel Breaz [6].

To prove our main result, we shall use the following lemma of Miller and Mocanu [7, page 76].

Lemma 1. Let h be starlike in \mathbb{E} with $h(0)=0$. If an analytic function $p(z) \neq 0$ in \mathbb{E} satisfies

$$
\frac{z p^{\prime}(z)}{p(z)} \prec h(z), z \in \mathbb{E},
$$

then

$$
p(z) \prec q(z)=\exp \left[\int_{0}^{z} \frac{h(t)}{t} d t\right]
$$

and q is the best dominant.

2. Main Result

Theorem 2. Let μ be a real number such that $\mu \geq 0$. If $f \in \mathcal{A}_{p}$ satisfies the condition
$(p+\lambda)\left\{(\mu-1)+\frac{I_{p}(n+2, \lambda) f(z)}{I_{p}(n+1, \lambda) f(z)}-\mu \frac{I_{p}(n+1, \lambda) f(z)}{I_{p}(n, \lambda) f(z)}\right\} \prec \frac{(1-\alpha) z}{1+(1-\alpha) z}, \quad 0 \leq \alpha<1$,
then

$$
\begin{equation*}
f \in B_{p}(n, \lambda, \mu, \alpha) \tag{2}
\end{equation*}
$$

Proof. On writing

$$
\frac{I_{p}(n+1, \lambda) f(z)}{z^{p}}\left(\frac{z^{p}}{I_{p}(n, \lambda) f(z)}\right)^{\mu}=u(z), z \in \mathbb{E} .
$$

Differentiate logarithmically, we obtain:

$$
\begin{equation*}
\frac{z I_{p}^{\prime}(n+1, \lambda) f(z)}{I_{p}(n+1, \lambda) f(z)}-\mu \frac{z I_{p}^{\prime}(n, \lambda) f(z)}{I_{p}(n, \lambda) f(z)}+p(\mu-1)=\frac{z u^{\prime}(z)}{u(z)} . \tag{3}
\end{equation*}
$$

In view of the equality

$$
z I_{p}^{\prime}(n, \lambda) f(z)=(p+\lambda) I_{p}(n+1, \lambda) f(z)-\lambda I_{p}(n, \lambda) f(z)
$$

S. S. Billing and Kimmi Markan - A Remark on a Subclass of Analytic Functions
(3) turns to

$$
\begin{equation*}
(p+\lambda)\left\{(\mu-1)+\frac{I_{p}(n+2, \lambda) f(z)}{I_{p}(n+1, \lambda) f(z)}-\mu \frac{I_{p}(n+1, \lambda) f(z)}{I_{p}(n, \lambda) f(z)}\right\}=\frac{z u^{\prime}(z)}{u(z)} . \tag{4}
\end{equation*}
$$

In view of (2) we get

$$
\frac{z u^{\prime}(z)}{u(z)} \prec \frac{(1-\alpha) z}{1+(1-\alpha) z}=h(z) \quad(\text { say })
$$

It is easy to view that $h(z)$ is starlike and $h(0)=0$. Therefore in view of Lemma 1 , we conclude that

$$
u(z) \prec 1+(1-\alpha) z .
$$

Hence

$$
\left|\frac{I_{p}(n+1, \lambda) f(z)}{z}\left(\frac{z}{I_{p}(n, \lambda) f(z)}\right)^{\mu}-1\right|<1-\alpha, z \in \mathbb{E} .
$$

or

$$
f \in B_{p}(n, \lambda, \mu, \alpha)
$$

3. Applications to Starlike and Convex functions

Selecting $\lambda=n=0$ in Theorem 2, we obtain:
Corollary 3. Assume that μ is real number such that $\mu \geq 0$. If $f \in \mathcal{A}_{p}$ satisfies the condition

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\mu \frac{z f^{\prime}(z)}{f(z)}+p(\mu-1) \prec \frac{(1-\alpha) z}{1+(1-\alpha) z}, \quad 0 \leq \alpha<1,
$$

then

$$
\left|\frac{f^{\prime}(z)}{p}\left(\frac{z}{f(z)}\right)^{\mu}-1\right|<1-\alpha, \quad z \in \mathbb{E},
$$

Putting $\mu=1$ in above corollary, we get:
Corollary 4. If $f \in \mathcal{A}_{p}$ satisfies the condition

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)} \prec \frac{(1-\alpha) z}{1+(1-\alpha) z}, \quad 0 \leq \alpha<1,
$$

then

$$
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0, \quad z \in \mathbb{E}, \quad \text { i.e. } \quad f \in \mathcal{S}_{p}^{*}
$$

S. S. Billing and Kimmi Markan - A Remark on a Subclass of Analytic Functions

Writing $\lambda=1, n=0$ in Theorem 2, we obtain:
Corollary 5. Assume that μ is real number such that $\mu \geq 0$. If $f \in \mathcal{A}_{p}$ satisfies the condition

$$
\frac{2 z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}{f(z)+z f^{\prime}(z)}-\mu \frac{z f^{\prime}(z)}{f(z)}+p(\mu-1) \prec \frac{(1-\alpha) z}{1+(1-\alpha) z}, \quad 0 \leq \alpha<1,
$$

then

$$
\left|\frac{f(z)+z f^{\prime}(z)}{(p+1) z}\left(\frac{z}{f(z)}\right)^{\mu}-1\right|<1-\alpha, \quad z \in \mathbb{E} .
$$

Replacing $\mu=1$ in above corollary, we get:
Corollary 6. If $f \in \mathcal{A}_{p}$ satisfies the condition

$$
\frac{2 z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}{f(z)+z f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}+\prec \frac{(1-\alpha) z}{1+(1-\alpha) z}, \quad 0 \leq \alpha<1
$$

then

$$
\left|\frac{1}{p+1}\left(1+\frac{z f^{\prime}(z)}{f(z)}\right)-1\right|<1-\alpha, \quad z \in \mathbb{E} .
$$

For $\alpha=1 / 2$, the above corollary reduces to the following criterion of starlikeness.
Corollary 7. If $f \in \mathcal{A}_{p}$ satisfies

$$
\frac{2 z f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}{f(z)+z f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}+\prec \frac{z}{2+z}
$$

then

$$
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>0, \quad z \in \mathbb{E}, \quad \text { i.e. } f \in \mathcal{S}_{p}^{*}
$$

Selecting $n=\mu=1, \lambda=0$ in Theorem 2, we obtain:
Corollary 8. If $f \in \mathcal{A}_{p}$ satisfies the condition

$$
\frac{2 z f^{\prime \prime}(z)+z^{2} f^{\prime \prime \prime}(z)}{f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \frac{(1-\alpha) z}{1+(1-\alpha) z}, \quad 0 \leq \alpha<1
$$

then

$$
\left|\frac{1}{p}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)-1\right|<1-\alpha, \quad z \in \mathbb{E}
$$

S. S. Billing and Kimmi Markan - A Remark on a Subclass of Analytic Functions

For $\alpha=0$ in above corollary, we have the following result.
Corollary 9. If $f \in \mathcal{A}_{p}$ satisfies the condition

$$
\Re\left(\frac{2 z f^{\prime \prime}(z)+z^{2} f^{\prime \prime \prime}(z)}{f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)<\frac{1}{2}, \quad z \in \mathbb{E},
$$

then $f \in \mathcal{K}_{p}$.
For $p=1, \alpha=1 / 2$ in Corollary 8, we obtain the correct version of Corollary 1 of Laura Stanciu and Daniel Breaz [6].

Corollary 10. If $f \in \mathcal{A}$ satisfies the condition

$$
\Re\left(\frac{2 z f^{\prime \prime}(z)+z^{2} f^{\prime \prime \prime}(z)}{f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>-1, \quad z \in \mathbb{E},
$$

then

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|<\frac{1}{2}, \quad \text { i.e. } \quad f \in \mathcal{K} .
$$

Selecting $n=1, \mu=\lambda=0$ in Theorem 2, we obtain:
Corollary 11. If $f \in \mathcal{A}_{p}$ satisfies the condition

$$
\frac{f^{\prime}(z)+3 z f^{\prime \prime}(z)+z^{3} f^{\prime \prime \prime}(z)}{f^{\prime}(z)+z^{2} f^{\prime \prime}(z)} \prec p+\frac{(1-\alpha) z}{1+(1-\alpha) z}, \quad 0 \leq \alpha<1,
$$

then

$$
f^{\prime}(z)+z f^{\prime \prime}(z) \prec p^{2}\{1+(1-\alpha) z\}, \quad z \in \mathbb{E}, .
$$

For $p=1, \alpha=1 / 2$ in Corollary 11, we obtain the correct version of Corollary 2 of Laura Stanciu and Daniel Breaz [6].

Corollary 12. If $f \in \mathcal{A}$ satisfies the condition

$$
\Re\left(\frac{f^{\prime}(z)+3 z f^{\prime \prime}(z)+z^{3} f^{\prime \prime \prime}(z)}{f^{\prime}(z)+z^{2} f^{\prime \prime}(z)}\right)>0, \quad z \in \mathbb{E},
$$

then

$$
\left|f^{\prime}(z)+z f^{\prime \prime}(z)-1\right|<\frac{1}{2}, \quad z \in \mathbb{E},
$$

S. S. Billing and Kimmi Markan - A Remark on a Subclass of Analytic Functions

Selecting $n=\lambda=0, \mu=1$ in Theorem 2, we obtain:
Corollary 13. If $f \in \mathcal{A}_{p}$ satisfies the condition

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)} \prec \frac{(1-\alpha) z}{1+(1-\alpha) z}, \quad 0 \leq \alpha<1,
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec p\{1+(1-\alpha) z\}, \quad z \in \mathbb{E} .
$$

For $p=1, \alpha=1 / 2$ in Corollary 13, we obtain the correct version of Corollary 3 of Laura Stanciu and Daniel Breaz [6].
Corollary 14. If $f \in \mathcal{A}$ satisfies the condition

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)} \prec \frac{z}{2+z}, \quad z \in \mathbb{E},
$$

then

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<\frac{1}{2}, \quad \text { i.e. } \quad f \in \mathcal{S}^{*} .
$$

Selecting $n=\lambda=\mu=0$ in Theorem 2, we obtain:
Corollary 15. If $f \in \mathcal{A}_{p}$ satisfies the condition

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec p+\frac{(1-\alpha) z}{1+(1-\alpha) z}, \quad 0 \leq \alpha<1,
$$

then

$$
\left|\frac{f^{\prime}(z)}{p}-1\right|<1-\alpha
$$

For $p=1, \alpha=1 / 2$ in Corollary 15, we obtain the correct version of Corollary 4 of Laura Stanciu and Daniel Breaz [6].
Corollary 16. If $f \in \mathcal{A}$ satisfies the condition

$$
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0, \quad z \in \mathbb{E}
$$

then

$$
\left|f^{\prime}(z)-1\right|<\frac{1}{2} \quad \text { i.e. } f \in \mathcal{C}
$$

References

[1] Aghalary, R., Ali, R. M., Joshi, S. B. and Ravichandran, V., Inequalities for analytic functions defined by certain linear operators, Int. J. Math. Sci., 4(2005), 267274.
[2] Billing, S. S., Differential inequalities implying starlikeness and convexity, Acta Universitatis Matthiae Belii, series Mathematics, 20(2012), 3-8.
[3] Billing, S. S., A multiplier transformation and conditions for starlike and convex functions, Mathematical Sciences Research Journal, 17, 9(2013), 239-244.
[4] Billing, S. S., A subordination theorem involving a multiplier transformation, International Journal of Analysis and Applications, 1, 2(2013), 100-105.
[5] Billing, S. S., Differential inequalities and criteria for starlike and convex functions, Stud. Univ. Babes-Bolyai Math., 59, 2(2014), 191-198.
[6] Laura Stanciu and Daniel Breaz, A subclass of analytic functions defined by multiplier transformation, Acta Universitatis Apulensis, 27(2011), 225-228.
[7] Miller, S. S. and Mocanu, P.T., Differential Suordinations : Theory and Applications, Marcel Dekker, New York and Basel, No. 225(2000).
[8] Noshiro, K., On the theory of schlicht functions, J. Fac. Sci., Hokkaido Univ., 2(1934-35), 129-155.
[9] Obradovič, M., A class of univalent functions, Hokkaido Mathematical Journal, 27, (2)(1998), 329-335.
[10] Sălăgean, G. S., Subclasses of univalent functions, Lecture Notes in Math. (Springer-Verlag, Heideberg), 1013(1983), 362-372.
[11] Singh, S., Gupta, S. and Singh, S., On a class of multivalent functions defined by a multiplier transformation, Matematicki Vesnik, 60, (2)(2008), 87-94.
[12] Warchawski, S. E., On the higher derivatives at the boundary in conformal mappings, Trans. Amer. Math. Soc., 38(1935), 310-340.

Sukhwinder Singh Billing
Department of Mathematics
Sri Guru Granth Sahib World University
Fatehgarh Sahib-140 407, Punjab, India
email: ssbilling@gmail.com
Kimmi Markan
Department of Mathematics
Sri Guru Granth Sahib World University
Fatehgarh Sahib-140 407, Punjab, India
email: markankimmi93@gmail.com

