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1. Introduction

Let D be the unit disk {z : |z| < 1} , A be the class of functions analytic in D,
satisfying the conditions

f(0) = 0 and f ′(0) = 1. (1)

Then each function f in A has the Taylor expansion

f(z) = z +

∞∑
n=2

anz
n (2)

because of the conditions (1) . Let S denote class of analytic and univalent functions
in D with the normalization conditions (1) .

Definition 1. For 0 ≤ α < 1 let S∗ (α) and Sc (α) denote the class of starlike and
convex univalent functions of order α, which are defined as the following, respectively

S∗ (α) =

{
f(z) ∈ S : Re

(
zf ′ (z)

f (z)

)
> α, z ∈ D

}
and

Sc (α) =

{
f(z) ∈ S : Re

(
1 +

zf ′′ (z)

f ′ (z)

)
> α, z ∈ D

}
.
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Observe that S∗ (0) = S∗ represent standard starlike functions. A notation of
α starlikeness and α convexity were generalized onto a complex order α by Nasr and
Aouf [7] . Spaĉek [10] extend the class of starlike functions by introducing the class of
spirallike functions of type β in D and gave the following analytical characterization
of spirallikeness functions of type β in D.

Theorem 1. (Spaĉek [10]) Let the function f(z) be in the normalized analytic func-
tion class A. Also let β ∈

(
−π

2 ,
π
2

)
. Then f(z) is a spirallike function of type β in

D if and only if

Re

(
eiβ

zf ′ (z)

f (z)

)
> 0, z ∈ D. (3)

We denote the the class of spirallike functions of type β in in D by S̃β. Libera [6]
unified and extended the classes S∗ (α) and S̃β by introducing the analytic function

class S̃βα in D as follows.

Definition 2. (Libera [6]) Let the function f(z) ben in the normalized analytic

function class A. Also let β ∈
(
−π

2 ,
π
2

)
and α ∈ [0, 1). We say that f ∈ S̃βα if and

only if

Re

(
eiβ

zf ′ (z)

f (z)

)
> α cosβ (z ∈ D; 0 ≤ α < 1) . (4)

From Definition 1 and 2, we have the following inclusions:

S̃0
α = S∗ (α) and S̃β0 = S̃β.

Libera [6] also proved the following coefficients bounds for the functions in the class

S̃βα.

Theorem 2. (Libera [6]) If the function f ∈ S̃βα is given by (2) , then

|an| ≤
n−2∏
j=0

(∣∣2 (1− α) e−iβ cosβ + j
∣∣

j + 1

)
(n ∈ N\ {1} ; N := {1, 2, 3, · · · }) . (5)

The coefficient estimates in (5) are sharp.

Let f(z) = z+

∞∑
n=2

anz
n and g(z) = z+

∞∑
n=2

bnz
n be analytic functions in D. The

Hadamard product (convolution) of f and g, denoted by f ∗ g is defined by

(f ∗ g) (z) = z +

∞∑
n=2

anbnz
n, z ∈ D.
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Let n ∈ N0 = {0, 1, 2, . . .} . The Ruscheweyh derivative [8] of the nth order of f,
denoted by Dnf (z) , is defined by

Dnf (z) =
z

(1− z)n+1 ∗ f (z) = z +

∞∑
k=2

Γ (n+ k)

Γ (n+ 1) (k − 1)!
akz

k. (6)

The Ruscheweyh derivative gave an impulse for various generalization of well known
classes of functions. Exemplary, for α (0 ≤ α < 1) and n ∈ N0, Ahuja [1, 2] defined
the class of functions, denoted Rn (α) , which consist of univalent functions of the
form (2) that satisfying the condition

Re

(
z (Dnf (z))′

Dnf (z)

)
> α, z ∈ D. (7)

We denote that R0 (α) = S∗ (α) . The class Rn (0) = Rn was studied by Singh and
Singh [9] . With the aid of Ruscheweyh derivative we can generalize the spirallike
functions as follows.

Definition 3. Let the function f(z) be in the normalized analytic function class A.

Also let β ∈
(
−π

2 ,
π
2

)
. Then f(z) is in the class R̃βn if and only if

Re

(
eiβ

z (Dnf (z))′

Dnf (z)

)
> 0, z ∈ D. (8)

Note that R̃β0 = S̃β.

Definition 4. Let the function f(z) be in the normalized analytic function class A.

Also, let β ∈
(
−π

2 ,
π
2

)
and α ∈ [0, 1) . Then f(z) is in the class R̃βn (α) if and only if

Re

(
eiβ

z (Dnf (z))′

Dnf (z)

)
> α cosβ, z ∈ D. (9)

Also, note that R̃β0 (α) = S̃βα, R̃
β
0 (0) = S̃β and R̃0

0 (α) = S∗ (α) .

Definition 5. Let α ∈ [0, 1), β ∈
(
−π

2 ,
π
2

)
and let f be an univalent function of the

form (2) such that Dnf (z) 6= 0 for z ∈ D\ {0} . We say that f belongs to R̃βn (α, λ)
if and only if

Re

(
eiβ

z (Dnf (z))′

(1− λ)Dnf (z) + λz (Dnf (z))′

)
> α cosβ, z ∈ D. (10)

117



T. Yavuz – Spirallike Functions

Definition 6. Let f (z) and g (z) are analytic functions in D. We say that f (z) is
subordinate to g (z) in D and we denote

f (z) ≺ g (z) (z ∈ D) ,

if there exists a Schwarz function w (z) analytic in D, with

w (0) = 0 and |w (z)| < 1 (z ∈ D) ,

such that
f (z) = g (w (z)) (z ∈ D) .

In particular, if the function g is univalent in D, the above subordination is equivalent
to

f (0) = g (0) and f (D) ⊂ g (D) .

After the proof of the Bieberbach Conjecture [3] (which is also known as de
Branges Theorem [4]), many authors were interested in other interesting subclasses
of normalized analytic function class A. In this paper, we obtain sharp coefficient
bounds for functions in the class R̃βn (α, λ) and we give a necessary and sufficient

condition such that f ∈ A belongs to R̃βn (α, λ) .

2. Main Results

In this section, we obtain coefficient conditions for functions in the class given by
Definition 5. Also, we get sharp estimates for functions belong to R̃βn (α, λ) .

Theorem 3. Let α ∈ [0, 1) and β ∈
(
−π

2 ,
π
2

)
and let f(z) is in the form (2) such

that Dnf (z) 6= 0 for z ∈ D\ {0} . Then, f (z) belongs to the class R̃βn (α, λ) if and
only if

∞∑
k=1

{
(k − 1) (1− λ (α+ i tanβ)) + 2e2iβ − λ (1− α)

(
1− e2iβ

)
(k − 1)

}
Akz

k 6= 0

(11)

(z ∈ z ∈ D\ {0}) ,

where

Ak = (1 + (k − 1)λ)
Γ (n+ k)

Γ (n+ 1) (k − 1)!
ak, k ∈ N\ {1} .
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Proof. Let the function f ∈ S be defined by (2) . Define a function

h(z) = Dnf (z) = z +
∞∑
k=2

Akz
k, z ∈ D. (12)

Consider the function

p (z) =
eiβ secβ

(
h(z)

(1−λ)h(z)+λzh′(z)

)
− i tanβ − α

1− α

is an analytic function which satisfies p(0) = 1 and Re (p(z)) > 0, then f ∈ R̃βn (α, λ)
if and only if

p (z) 6= 1− e2iβ

1 + e2iβ

or,
eiβ secβzh′(z)− (α+ i tanβ) ((1− λ)h(z) + λzh′(z))

(1− α) ((1− λ)h(z) + λzh′(z))
6= 1− e2iβ

1 + e2iβ
.

By using the series expantion of h(z) which is given by (12) , we get the following(
1 + e2iβ

) ∞∑
k=1

[(k − 1) (1− αλ− iλ tanβ) + (1− α)]Akz
k

6= (1− α)
(

1− e2iβ
) ∞∑
k=1

(1 + (k − 1)λ)Akz
k

for z 6= 0. It is equivalent to

∞∑
k=1

{
(k − 1) (1− λ (α+ i tanβ)) + 2e2iβ − (1− α)

(
1− e2iβ

)
(k − 1)λ

}
Akz

k 6= 0,

which completes the proof of Theorem 3.

Now, we prove our coefficient estimates for functions which belong to the class
R̃βn (α, λ) .

Theorem 4. Let α ∈ [0, 1) and β ∈
(
−π

2 ,
π
2

)
and let f(z) is in the form (2) such

that Dnf (z) 6= 0 for z ∈ D\ {0} . If f (z) belongs to the class R̃βn (α, λ) then

|ak| ≤
Γ (n+ 1)

Γ (n+ k) (1− λ)k−1

k−2∏
j=0

∣∣∣j (1− λ) + 2 (1− α) eiβ cosβ (1 + λj)
∣∣∣ (13)

(n ∈ N\ {1} ; N := {1, 2, 3, · · · }) .

This result is sharp.
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Proof. Since f ∈ R̃βn (α, λ) there exists a Schwarz function w(z), which is already
introduced in Definition 6, such that

eiβ secβ

(
z (Dnf (z))′

(1− λ)Dnf (z) + λz (Dnf (z))′

)
− i tanβ =

1 + (1− 2α)w(z)

1− w(z)
.

Consider the function h(z) defined by (12) . Then, we get

∞∑
k=2

[
keiβ secβ − (1 + i tanβ) (1− (k − 1)λ)

]
Akz

k

=

( ∞∑
k=1

[
keiβ secβ + (1− 2α− i tanβ) (1 + (k − 1)λ)

]
Akz

k

)
w(z). (14)

The last equation (14) may be written (for n ∈ N) as follows:

m∑
k=2

[
keiβ secβ − (1 + i tanβ) (1− (k − 1)λ)

]
Akz

k +

∞∑
k=m+1

bkz
k

=

(
m−1∑
k=1

[
keiβ secβ + (1− 2α− i tanβ) (1 + (k − 1)λ)

]
Akz

k

)
w(z). (15)

The last sum on the left-hand side of (15) is convergent in D for m = 2, 3, · · · .
Since, by hypothesis, |w (z)| < 1 (z ∈ D) , it is not difficult to find by appealing

to Parseval’s Theorem that

m−1∑
k=1

∣∣∣keiβ secβ (1− 2α− i tanβ) (1 + (k − 1)λ)
∣∣∣2 |Ak|2

≥
m∑
k=2

∣∣∣keiβ secβ − (1 + i tanβ) (1− (k − 1)λ)
∣∣∣2 |Ak|2

or

m−1∑
k=1

4 (1− α) (k − α (1 + (k − 1)λ)) |Ak|2 ≥
(m− 1)2 (1− λ)2

cos2 β
|Am|2 (16)

where A1 = 1.
We claim that

|Am| ≤
1

(m− 1)! (1− λ)m−1

m−2∏
j=0

∣∣∣j (1− λ) + 2 (1− α) cosβeiβ (1 + jλ)
∣∣∣ . (17)
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For m = 2, we get from (16)

|A2| ≤
2 (1− α) cosβ

1− λ
,

which is equivalent to (17) . (17) is obtained for larger m from inequality (16) by the
principle of the mathematical induction.

Fix m, m ≥ 3, and suppose that (13) holds for k = 2, 3, · · · ,m − 1. Then from
(16) we get the following inequality

|Am|2 ≤
4 (1− α) cos2 β

(m− 1)2 (1− λ)2

{
1− α+

m−1∑
k=2

B (k, j, α)

}
(18)

where

B (k, j, α) =
(1 + (k − 1)λ) (k − α (k − 1)λ)(

(k − 1)! (1− λ)k−1
)2 k−2∏

j=0

∣∣∣j (1− λ) + 2 (1− α) cosβeiβ (1 + jλ)
∣∣∣2 .

We must show that the square of the right side of (17) is equal to the right side of
(18) ; that is

m−2∏
j=0

∣∣j (1− λ) + 2 (1− α) cosβeiβ (1 + jλ)
∣∣2

[
(m− 1)! (1− λ)m−1

]2
=

4 (1− α) cos2 β

(m− 1)2 (1− λ)2

{
1− α+

m−1∑
k=2

B (k, j, α)

}
(19)

for m = 3, 4, · · · . After necessary calculations we can show that (19) is true for m = 3
and proves our claim for m = 3. Assume that (19) is valid for all k, 3 < k ≤ m− 1;
then from (16) and (18) we obtain

|Am|2 ≤
4 (1− α) cos2 β

(m− 1)2 (1− λ)2

{
1− α+

m−2∑
k=2

B (k, j, α) +B (m− 1, j, α)

}
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|Am|2 ≤
4 (1− α) cos2 β

(m− 1)2 (1− λ)2
{1− α

+
m−2∑
k=2

(1 + (k − 1)λ) (k − α (k − 1)λ)(
(k − 1)! (1− λ)k−1

)2 k−2∏
j=0

∣∣∣j (1− λ) + 2 (1− α) cosβeiβ (1 + jλ)
∣∣∣2

+
(1 + (m− 2)λ) (m− 1− α (m− 2)λ)(

(m− 2)! (1− λ)m−2
)2 m−3∏

j=0

∣∣∣j (1− λ) + 2 (1− α) cosβeiβ (1 + jλ)
∣∣∣2


=

m−3∏
j=0

∣∣j (1− λ) + 2 (1− α) cosβeiβ (1 + jλ)
∣∣2

(
(m− 2)! (1− λ)m−2

)2
{

(m− 2)2

(m− 1)2

+4 (1− α) cos2 β
(1 + (m− 2)λ) (m− 1− α (m− 2)λ)

(m− 1)2 (1− λ)2

}

=

m−3∏
j=0

∣∣j (1− λ) + 2 (1− α) cosβeiβ (1 + jλ)
∣∣2

(
(m− 1)! (1− λ)m−1

)2 {
(m− 2)2 (1− λ)2

+4 (1− α) cos2 β (1 + (m− 2)λ) (m− 1− α (m− 2)λ)
}

=
1(

(m− 1)! (1− λ)m−1
)2 m−2∏

j=0

∣∣∣j (1− λ) + 2 (1− α) cosβeiβ (1 + jλ)
∣∣∣2 .

From equality (6) we get the desired result.

3. Corollaries and Consequences

By choosing appropriate values of values of n, λ, β and α in Theorem 4, we obtain
the corresponding results for several subclasses of S.

Corollary 5. If λ = 0, we get the following result for function f ∈ R̃βn (α)

|ak| ≤
Γ (n+ 1)

Γ (n+ k)

k−2∏
j=0

∣∣∣j + 2 (1− α) eiβ cosβ
∣∣∣ .
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Corollary 6. If n = 0 and λ = 0, we obtain (5) which is stated in Theorem 2.

Corollary 7. If n = 0, β = 0 and λ = 0, we obtain the following result for functions
belong to S∗ (α)

|ak| ≤
k−2∏
j=0

|j + 2 (1− α)|
j + 1

.

Corollary 8. If λ = 0 and α = 0, we get the following result for function f ∈ R̃βn

|ak| ≤
Γ (n+ 1)

Γ (n+ k)

k−2∏
j=0

∣∣∣j + 2eiβ cosβ
∣∣∣ .

Corollary 9. If n = 0, λ = 0 and α = 0, we get the following result for spirallike
functions of type β in D

|ak| ≤
k−2∏
j=0

∣∣j + 2eiβ cosβ
∣∣

j + 1
.
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