COEFFICIENT ESTIMATES FOR CERTAIN SUBCLASSES OF SPIRALLIKE FUNCTIONS

T. Yavuz

Abstract. In this article, we derive a sharp estimates for the Taylor-Maclaurin coefficients of functions in a certain subclass of spirallike functions. Also, we give several corollaries and consequences of the main results.

2010 Mathematics Subject Classification: 30C45.
Keywords: Univalent Functions, Spirallike Functions, Coefficient Bounds, Ruscheweyh Derivative.

1. Introduction

Let \mathbb{D} be the unit disk $\{z:|z|<1\}, \mathcal{A}$ be the class of functions analytic in \mathbb{D}, satisfying the conditions

$$
\begin{equation*}
f(0)=0 \text { and } f^{\prime}(0)=1 . \tag{1}
\end{equation*}
$$

Then each function f in \mathcal{A} has the Taylor expansion

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{2}
\end{equation*}
$$

because of the conditions (1). Let S denote class of analytic and univalent functions in \mathbb{D} with the normalization conditions (1).

Definition 1. For $0 \leq \alpha<1$ let $S^{*}(\alpha)$ and $S^{c}(\alpha)$ denote the class of starlike and convex univalent functions of order α, which are defined as the following, respectively

$$
S^{*}(\alpha)=\left\{f(z) \in S: \operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha, z \in \mathbb{D}\right\}
$$

and

$$
S^{c}(\alpha)=\left\{f(z) \in S: \operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>\alpha, z \in \mathbb{D}\right\} .
$$

Observe that $S^{*}(0)=S^{*}$ represent standard starlike functions. A notation of $\alpha _$starlikeness and $\alpha_{_}$convexity were generalized onto a complex order α by Nasr and Aouf [7]. Spaceek [10] extend the class of starlike functions by introducing the class of spirallike functions of type β in \mathbb{D} and gave the following analytical characterization of spirallikeness functions of type β in \mathbb{D}.

Theorem 1. (Spaĉek [10]) Let the function $f(z)$ be in the normalized analytic function class \mathcal{A}. Also let $\beta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then $f(z)$ is a spirallike function of type β in \mathbb{D} if and only if

$$
\begin{equation*}
\operatorname{Re}\left(e^{i \beta} \frac{z f^{\prime}(z)}{f(z)}\right)>0, z \in \mathbb{D} \tag{3}
\end{equation*}
$$

We denote the the class of spirallike functions of type β in in \mathbb{D} by \widetilde{S}^{β}. Libera [6] unified and extended the classes $S^{*}(\alpha)$ and \widetilde{S}^{β} by introducing the analytic function class $\widetilde{S}_{\alpha}^{\beta}$ in \mathbb{D} as follows.

Definition 2. (Libera [6]) Let the function $f(z)$ ben in the normalized analytic function class \mathcal{A}. Also let $\beta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\alpha \in[0,1)$. We say that $f \in \widetilde{S}_{\alpha}^{\beta}$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left(e^{i \beta} \frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \cos \beta \quad(z \in \mathbb{D} ; 0 \leq \alpha<1) . \tag{4}
\end{equation*}
$$

From Definition 1 and 2, we have the following inclusions:

$$
\widetilde{S}_{\alpha}^{0}=S^{*}(\alpha) \text { and } \widetilde{S}_{0}^{\beta}=\widetilde{S}^{\beta} .
$$

Libera [6] also proved the following coefficients bounds for the functions in the class $\widetilde{S}_{\alpha}^{\beta}$.

Theorem 2. (Libera [6]) If the function $f \in \widetilde{S}_{\alpha}^{\beta}$ is given by (2), then

$$
\begin{equation*}
\left|a_{n}\right| \leq \prod_{j=0}^{n-2}\left(\frac{\left|2(1-\alpha) e^{-i \beta} \cos \beta+j\right|}{j+1}\right) \quad(n \in \mathbb{N} \backslash\{1\} ; \mathbb{N}:=\{1,2,3, \cdots\}) \tag{5}
\end{equation*}
$$

The coefficient estimates in (5) are sharp.
Let $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ and $g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n}$ be analytic functions in \mathbb{D}. The Hadamard product (convolution) of f and g, denoted by $f * g$ is defined by

$$
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}, z \in \mathbb{D}
$$

Let $n \in \mathbb{N}_{0}=\{0,1,2, \ldots\}$. The Ruscheweyh derivative [8] of the $n^{\text {th }}$ order of f, denoted by $D^{n} f(z)$, is defined by

$$
\begin{equation*}
D^{n} f(z)=\frac{z}{(1-z)^{n+1}} * f(z)=z+\sum_{k=2}^{\infty} \frac{\Gamma(n+k)}{\Gamma(n+1)(k-1)!} a_{k} z^{k} \tag{6}
\end{equation*}
$$

The Ruscheweyh derivative gave an impulse for various generalization of well known classes of functions. Exemplary, for $\alpha(0 \leq \alpha<1)$ and $n \in \mathbb{N}_{0}$, Ahuja [1,2] defined the class of functions, denoted $R_{n}(\alpha)$, which consist of univalent functions of the form (2) that satisfying the condition

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}\right)>\alpha, z \in \mathbb{D} \tag{7}
\end{equation*}
$$

We denote that $R_{0}(\alpha)=S^{*}(\alpha)$. The class $R_{n}(0)=R_{n}$ was studied by Singh and Singh [9]. With the aid of Ruscheweyh derivative we can generalize the spirallike functions as follows.

Definition 3. Let the function $f(z)$ be in the normalized analytic function class \mathcal{A}. Also let $\beta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. Then $f(z)$ is in the class $\widetilde{R}_{n}^{\beta}$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left(e^{i \beta} \frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}\right)>0, z \in \mathbb{D} . \tag{8}
\end{equation*}
$$

Note that $\widetilde{R}_{0}^{\beta}=\widetilde{S}_{\beta}$.
Definition 4. Let the function $f(z)$ be in the normalized analytic function class \mathcal{A}. Also, let $\beta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and $\alpha \in[0,1)$. Then $f(z)$ is in the class $\widetilde{R}_{n}^{\beta}(\alpha)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left(e^{i \beta} \frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}\right)>\alpha \cos \beta, z \in \mathbb{D} . \tag{9}
\end{equation*}
$$

Also, note that $\widetilde{R}_{0}^{\beta}(\alpha)=\widetilde{S}_{\alpha}^{\beta}, \widetilde{R}_{0}^{\beta}(0)=\widetilde{S}^{\beta}$ and $\widetilde{R}_{0}^{0}(\alpha)=S^{*}(\alpha)$.
Definition 5. Let $\alpha \in[0,1), \beta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and let f be an univalent function of the form (2) such that $D^{n} f(z) \neq 0$ for $z \in \mathbb{D} \backslash\{0\}$. We say that f belongs to $\widetilde{R}_{n}^{\beta}(\alpha, \lambda)$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left(e^{i \beta} \frac{z\left(D^{n} f(z)\right)^{\prime}}{(1-\lambda) D^{n} f(z)+\lambda z\left(D^{n} f(z)\right)^{\prime}}\right)>\alpha \cos \beta, z \in \mathbb{D} . \tag{10}
\end{equation*}
$$

Definition 6. Let $f(z)$ and $g(z)$ are analytic functions in \mathbb{D}. We say that $f(z)$ is subordinate to $g(z)$ in \mathbb{D} and we denote

$$
f(z) \prec g(z) \quad(z \in \mathbb{D})
$$

if there exists a Schwarz function $w(z)$ analytic in \mathbb{D}, with

$$
w(0)=0 \text { and }|w(z)|<1 \quad(z \in \mathbb{D}),
$$

such that

$$
f(z)=g(w(z)) \quad(z \in \mathbb{D}) .
$$

In particular, if the function g is univalent in \mathbb{D}, the above subordination is equivalent to

$$
f(0)=g(0) \text { and } f(\mathbb{D}) \subset g(\mathbb{D}) .
$$

After the proof of the Bieberbach Conjecture [3] (which is also known as de Branges Theorem [4]), many authors were interested in other interesting subclasses of normalized analytic function class \mathcal{A}. In this paper, we obtain sharp coefficient bounds for functions in the class $\widetilde{R}_{n}^{\beta}(\alpha, \lambda)$ and we give a necessary and sufficient condition such that $f \in \mathcal{A}$ belongs to $\widetilde{R}_{n}^{\beta}(\alpha, \lambda)$.

2. Main Results

In this section, we obtain coefficient conditions for functions in the class given by Definition 5. Also, we get sharp estimates for functions belong to $\widetilde{R}_{n}^{\beta}(\alpha, \lambda)$.

Theorem 3. Let $\alpha \in[0,1)$ and $\beta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and let $f(z)$ is in the form (2) such that $D^{n} f(z) \neq 0$ for $z \in \mathbb{D} \backslash\{0\}$. Then, $f(z)$ belongs to the class $\widetilde{R}_{n}^{\beta}(\alpha, \lambda)$ if and only if

$$
\begin{gathered}
\sum_{k=1}^{\infty}\left\{(k-1)(1-\lambda(\alpha+i \tan \beta))+2 e^{2 i \beta}-\lambda(1-\alpha)\left(1-e^{2 i \beta}\right)(k-1)\right\} A_{k} z^{k} \neq 0 \\
(z \in z \in \mathbb{D} \backslash\{0\})
\end{gathered}
$$

where

$$
A_{k}=(1+(k-1) \lambda) \frac{\Gamma(n+k)}{\Gamma(n+1)(k-1)!} a_{k}, k \in \mathbb{N} \backslash\{1\} .
$$

Proof. Let the function $f \in S$ be defined by (2). Define a function

$$
\begin{equation*}
h(z)=D^{n} f(z)=z+\sum_{k=2}^{\infty} A_{k} z^{k}, z \in \mathbb{D} . \tag{12}
\end{equation*}
$$

Consider the function

$$
p(z)=\frac{e^{i \beta} \sec \beta\left(\frac{h(z)}{(1-\lambda) h(z)+\lambda z h^{\prime}(z)}\right)-i \tan \beta-\alpha}{1-\alpha}
$$

is an analytic function which satisfies $p(0)=1$ and $\operatorname{Re}(p(z))>0$, then $f \in \widetilde{R}_{n}^{\beta}(\alpha, \lambda)$ if and only if

$$
p(z) \neq \frac{1-e^{2 i \beta}}{1+e^{2 i \beta}}
$$

or,

$$
\frac{e^{i \beta} \sec \beta z h^{\prime}(z)-(\alpha+i \tan \beta)\left((1-\lambda) h(z)+\lambda z h^{\prime}(z)\right)}{(1-\alpha)\left((1-\lambda) h(z)+\lambda z h^{\prime}(z)\right)} \neq \frac{1-e^{2 i \beta}}{1+e^{2 i \beta}} .
$$

By using the series expantion of $h(z)$ which is given by (12), we get the following

$$
\begin{aligned}
\left(1+e^{2 i \beta}\right) \sum_{k=1}^{\infty}[(k-1)(1-\alpha \lambda-i \lambda & \tan \beta)+(1-\alpha)] A_{k} z^{k} \\
& \neq(1-\alpha)\left(1-e^{2 i \beta}\right) \sum_{k=1}^{\infty}(1+(k-1) \lambda) A_{k} z^{k}
\end{aligned}
$$

for $z \neq 0$. It is equivalent to

$$
\sum_{k=1}^{\infty}\left\{(k-1)(1-\lambda(\alpha+i \tan \beta))+2 e^{2 i \beta}-(1-\alpha)\left(1-e^{2 i \beta}\right)(k-1) \lambda\right\} A_{k} z^{k} \neq 0
$$

which completes the proof of Theorem 3.
Now, we prove our coefficient estimates for functions which belong to the class $\widetilde{R}_{n}^{\beta}(\alpha, \lambda)$.
Theorem 4. Let $\alpha \in[0,1)$ and $\beta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ and let $f(z)$ is in the form (2) such that $D^{n} f(z) \neq 0$ for $z \in \mathbb{D} \backslash\{0\}$. If $f(z)$ belongs to the class $\widetilde{R}_{n}^{\beta}(\alpha, \lambda)$ then

$$
\begin{gather*}
\left|a_{k}\right| \leq \frac{\Gamma(n+1)}{\Gamma(n+k)(1-\lambda)^{k-1}} \prod_{j=0}^{k-2}\left|j(1-\lambda)+2(1-\alpha) e^{i \beta} \cos \beta(1+\lambda j)\right| \tag{13}\\
(n \in \mathbb{N} \backslash\{1\} ; \mathbb{N}:=\{1,2,3, \cdots\}) .
\end{gather*}
$$

This result is sharp.

Proof. Since $f \in \widetilde{R}_{n}^{\beta}(\alpha, \lambda)$ there exists a Schwarz function $w(z)$, which is already introduced in Definition 6, such that

$$
e^{i \beta} \sec \beta\left(\frac{z\left(D^{n} f(z)\right)^{\prime}}{(1-\lambda) D^{n} f(z)+\lambda z\left(D^{n} f(z)\right)^{\prime}}\right)-i \tan \beta=\frac{1+(1-2 \alpha) w(z)}{1-w(z)} .
$$

Consider the function $h(z)$ defined by (12). Then, we get

$$
\begin{align*}
& \sum_{k=2}^{\infty}\left[k e^{i \beta} \sec \beta-(1+i \tan \beta)(1-(k-1) \lambda)\right] A_{k} z^{k} \\
& \quad=\left(\sum_{k=1}^{\infty}\left[k e^{i \beta} \sec \beta+(1-2 \alpha-i \tan \beta)(1+(k-1) \lambda)\right] A_{k} z^{k}\right) w(z) . \tag{14}
\end{align*}
$$

The last equation (14) may be written (for $n \in \mathbb{N}$) as follows:

$$
\begin{align*}
& \sum_{k=2}^{m}\left[k e^{i \beta} \sec \beta-(1+i \tan \beta)(1-(k-1) \lambda)\right] A_{k} z^{k}+\sum_{k=m+1}^{\infty} b_{k} z^{k} \\
& \quad=\left(\sum_{k=1}^{m-1}\left[k e^{i \beta} \sec \beta+(1-2 \alpha-i \tan \beta)(1+(k-1) \lambda)\right] A_{k} z^{k}\right) w(z) . \tag{15}
\end{align*}
$$

The last sum on the left-hand side of (15) is convergent in \mathbb{D} for $m=2,3, \cdots$.
Since, by hypothesis, $|w(z)|<1(z \in \mathbb{D})$, it is not difficult to find by appealing to Parseval's Theorem that

$$
\begin{aligned}
\sum_{k=1}^{m-1} \mid k e^{i \beta} \sec \beta(1-2 \alpha- & i \tan \beta)\left.(1+(k-1) \lambda)\right|^{2}\left|A_{k}\right|^{2} \\
& \geq \sum_{k=2}^{m}\left|k e^{i \beta} \sec \beta-(1+i \tan \beta)(1-(k-1) \lambda)\right|^{2}\left|A_{k}\right|^{2}
\end{aligned}
$$

or

$$
\begin{equation*}
\sum_{k=1}^{m-1} 4(1-\alpha)(k-\alpha(1+(k-1) \lambda))\left|A_{k}\right|^{2} \geq \frac{(m-1)^{2}(1-\lambda)^{2}}{\cos ^{2} \beta}\left|A_{m}\right|^{2} \tag{16}
\end{equation*}
$$

where $A_{1}=1$.
We claim that

$$
\begin{equation*}
\left|A_{m}\right| \leq \frac{1}{(m-1)!(1-\lambda)^{m-1}} \prod_{j=0}^{m-2}\left|j(1-\lambda)+2(1-\alpha) \cos \beta e^{i \beta}(1+j \lambda)\right| \tag{17}
\end{equation*}
$$

For $m=2$, we get from (16)

$$
\left|A_{2}\right| \leq \frac{2(1-\alpha) \cos \beta}{1-\lambda}
$$

which is equivalent to (17) . (17) is obtained for larger m from inequality (16) by the principle of the mathematical induction.

Fix $m, m \geq 3$, and suppose that (13) holds for $k=2,3, \cdots, m-1$. Then from (16) we get the following inequality

$$
\begin{equation*}
\left|A_{m}\right|^{2} \leq \frac{4(1-\alpha) \cos ^{2} \beta}{(m-1)^{2}(1-\lambda)^{2}}\left\{1-\alpha+\sum_{k=2}^{m-1} B(k, j, \alpha)\right\} \tag{18}
\end{equation*}
$$

where
$B(k, j, \alpha)=\frac{(1+(k-1) \lambda)(k-\alpha(k-1) \lambda)}{\left((k-1)!(1-\lambda)^{k-1}\right)^{2}} \prod_{j=0}^{k-2}\left|j(1-\lambda)+2(1-\alpha) \cos \beta e^{i \beta}(1+j \lambda)\right|^{2}$.
We must show that the square of the right side of (17) is equal to the right side of (18) ; that is

$$
\begin{align*}
& \frac{\prod_{j=0}^{m-2}\left|j(1-\lambda)+2(1-\alpha) \cos \beta e^{i \beta}(1+j \lambda)\right|^{2}}{\left[(m-1)!(1-\lambda)^{m-1}\right]^{2}} \\
& \quad=\frac{4(1-\alpha) \cos ^{2} \beta}{(m-1)^{2}(1-\lambda)^{2}}\left\{1-\alpha+\sum_{k=2}^{m-1} B(k, j, \alpha)\right\} \tag{19}
\end{align*}
$$

for $m=3,4, \cdots$. After necessary calculations we can show that (19) is true for $m=3$ and proves our claim for $m=3$. Assume that (19) is valid for all $k, 3<k \leq m-1$; then from (16) and (18) we obtain

$$
\left|A_{m}\right|^{2} \leq \frac{4(1-\alpha) \cos ^{2} \beta}{(m-1)^{2}(1-\lambda)^{2}}\left\{1-\alpha+\sum_{k=2}^{m-2} B(k, j, \alpha)+B(m-1, j, \alpha)\right\}
$$

$$
\begin{aligned}
&\left|A_{m}\right|^{2} \leq \frac{4(1-\alpha) \cos ^{2} \beta}{(m-1)^{2}(1-\lambda)^{2}}\{1-\alpha \\
&+\sum_{k=2}^{m-2} \frac{(1+(k-1) \lambda)(k-\alpha(k-1) \lambda)}{\left((k-1)!(1-\lambda)^{k-1}\right)^{2}} \prod_{j=0}^{k-2}\left|j(1-\lambda)+2(1-\alpha) \cos \beta e^{i \beta}(1+j \lambda)\right|^{2} \\
&\left.+\frac{(1+(m-2) \lambda)(m-1-\alpha(m-2) \lambda)}{\left((m-2)!(1-\lambda)^{m-2}\right)^{2}} \prod_{j=0}^{m-3}\left|j(1-\lambda)+2(1-\alpha) \cos \beta e^{i \beta}(1+j \lambda)\right|^{2}\right\} \\
&= \frac{\prod_{j=0}^{m-3}\left|j(1-\lambda)+2(1-\alpha) \cos \beta e^{i \beta}(1+j \lambda)\right|^{2}}{\left((m-2)!(1-\lambda)^{m-2}\right)^{2}}\left\{\frac{(m-2)^{2}}{(m-1)^{2}}\right. \\
&\left.\quad+4(1-\alpha) \cos ^{2} \beta \frac{(1+(m-2) \lambda)(m-1-\alpha(m-2) \lambda)}{(m-1)^{2}(1-\lambda)^{2}}\right\} \\
&= \frac{\prod_{j=0}^{m-3}\left|j(1-\lambda)+2(1-\alpha) \cos \beta e^{i \beta}(1+j \lambda)\right|^{2}}{\left((m-1)!(1-\lambda)^{m-1}\right)^{2}}\left\{(m-2)^{2}(1-\lambda)^{2}\right. \\
&\left.+4(1-\alpha) \cos ^{2} \beta(1+(m-2) \lambda)(m-1-\alpha(m-2) \lambda)\right\} \\
&=\frac{1}{\left((m-1)!(1-\lambda)^{m-1}\right)^{2} \prod_{j=0}^{m-2}\left|j(1-\lambda)+2(1-\alpha) \cos \beta e^{i \beta}(1+j \lambda)\right|^{2}}
\end{aligned}
$$

From equality (6) we get the desired result.

3. Corollaries and Consequences

By choosing appropriate values of values of n, λ, β and α in Theorem 4, we obtain the corresponding results for several subclasses of S.
Corollary 5. If $\lambda=0$, we get the following result for function $f \in \widetilde{R}_{n}^{\beta}(\alpha)$

$$
\left|a_{k}\right| \leq \frac{\Gamma(n+1)}{\Gamma(n+k)} \prod_{j=0}^{k-2}\left|j+2(1-\alpha) e^{i \beta} \cos \beta\right| .
$$

Corollary 6. If $n=0$ and $\lambda=0$, we obtain (5) which is stated in Theorem 2.
Corollary 7. If $n=0, \beta=0$ and $\lambda=0$, we obtain the following result for functions belong to $S^{*}(\alpha)$

$$
\left|a_{k}\right| \leq \prod_{j=0}^{k-2} \frac{|j+2(1-\alpha)|}{j+1}
$$

Corollary 8. If $\lambda=0$ and $\alpha=0$, we get the following result for function $f \in \widetilde{R}_{n}^{\beta}$

$$
\left|a_{k}\right| \leq \frac{\Gamma(n+1)}{\Gamma(n+k)} \prod_{j=0}^{k-2}\left|j+2 e^{i \beta} \cos \beta\right| .
$$

Corollary 9. If $n=0, \lambda=0$ and $\alpha=0$, we get the following result for spirallike functions of type β in \mathbb{D}

$$
\left|a_{k}\right| \leq \prod_{j=0}^{k-2} \frac{\left|j+2 e^{i \beta} \cos \beta\right|}{j+1} .
$$

References

[1] O. P. Ajuha, Integral operator of certain univalent functions, Int. J. Math. Sci. 8, 4 (1985), 653-662.
[2] O. P. Ajuha, On the radius problems of certain analytic functions, Bull. Korean Math. Soc. 22, 1 (1985), 31-36.
[3] L. Biebrbach, Über die Koeffizienten der einigen Potenzreihen welche eine schlichte Abbildung des Einheitskreises vermitten, S. B. Preuss. Akad. Wiss. 1: Sitzungsb. Berlin 38, (1916), 940-955.
[4] L. de Branges, A proof of the Bieberbach conjecture, Acta Math. 154, (1985), 137-152.
[5] V. Kumar, S. L. Shukla, A. M. Chaudhary, On a class of certain analytic functions of complex order, Tamkang J. Math. 21, 2 (1990), 101-109.
[6] R. J. Libera, Univalent α-spiral functions, Canad. J. Math. 19, (1967), 449-456.
[7] M. A. Nasr, M. K. Aouf, Radius of convexity for the class of starlike functions of complex order, Bull. Fac. Sci. Assiut Univ. Sect. A 12, (1983), 153-159.
[8] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49, (1975,) 109-115.
[9] R. Sing, S. Sing, Integrals of certain univalent functions, Proc. Amer. Math. Soc. 77, (1979,) 336-340.
[10] L. Spacek, Contribution à la théorie des fonctions univalentes, Časopis Pĕst. Mat. 62, (1932), 12-19.

Tugba YAVUZ
Gebze Technical University, Faculty of Natural Sciences, Department of Mathematics, Kocaeli, TURKEY
email: tyavuz@gtu.edu.tr

