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1. Introduction

The speciality of this paper is that we discuss the existence of T -periodic solutions
for Liénard-type p(t)-Laplacian equation (such an equation that can be derived from
many fields, such as fluid mechanics and nonlinear elastic mechanics) of the from(∣∣x′(t)∣∣p(t)−2

x′(t)
)′

+ x′(t) + g (t, x (t− τ(t))) = e(t), (1.1)

where p, τ, e : R → R and g : R × R → R are continuous functions, p, τ, e are
T -periodic, g is T -periodic in its first argument and T > 0.

In recent years, the problem of the existence of periodic solutions of Duffing type,
Liénard-type and Rayleigh type p-Laplacian equations with deviating argument has
received much attention. We refer the reader to (see, for example, [10, 11, 12, 13])
and the references there in. These papers were studied when p > 1 constant number.
However, when p = p(t) is a function, i.e. p is not a constant, the situation is very
crucial, and therefore, the equation like (1.1) become a very challenging problem. As
a consequence, one needs additional and different approaches to deal such problems.
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Motivated by the ideas in [2], we will make some a priori estimates and use
topological degree theory to obtain the existence of positive periodic solutions for
(1.1).

This work is organized as follows. In Section 1, we introduce some necessary and
preliminary results. In Section 2, we give the statement of our main result and its
proof.

Definition 1. We denote CT = {x : x ∈ C (R,R) , x(t+ T ) ≡ x(t)} with the norm

‖x‖0 = max
t∈[0,T ]

|x(t)|,

and C1
T = {x : x ∈ C1 (R,R) , x(t+ T ) ≡ x(t)} with the norm

‖x‖1 = ‖x‖0 +
∥∥x′∥∥

0
.

Clearly, (CT , ‖.‖0) and
(
C1
T , ‖.‖1

)
are two Banach spaces.

Let p ∈ C([0, T ] ,R) with

1 < min
t∈[0,T ]

p(t) = p− ≤ p(t) ≤ p+ = max
t∈[0,T ]

p(t) <∞.

Define

Lp(t) ([0, T ] ,R) =

{
x ∈ L1 ([0, T ] ,R) :

∫ T

0
|x(t)|p(t) dt <∞

}
.

The variable exponent space L
p(t)
T ([0, T ] ,R) denotes the Banach space of T -periodic

functions on [0, T ] with values in R under the norm

‖x‖Lp(t) := ‖x‖p(t) = inf

{
δ > 0 :

∫ T

0

∣∣∣∣x(t)

δ

∣∣∣∣p(t) dt ≤ 1

}
.

Define

W 1,p(t) ([0, T ] ,R) =
{
x ∈ Lp(t) ([0, T ] ,R) : x′ ∈ Lp(t) ([0, T ] ,R)

}
with the norm

‖x‖W 1,p(t) := ‖x‖1,p(t) = ‖x‖p(t) +
∥∥x′∥∥

p(t)
.

The spaceW
1,p(t)
0 ([0, T ] ,R) is denoted by the closure of C∞0 ([0, T ] ,R) inW

1,p(t)
T ([0, T ] ,R),

where

W
1,p(t)
T ([0, T ] ,R) :=

{
x : x ∈W 1,p(t) ([0, T ] ,R) , x(t+ T ) ≡ x(t)

}
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for all x ∈W 1,p(t) ([0, T ] ,R). We will use ‖x‖1,p(t) and ‖x′‖p(t) for x ∈W 1,p(t)
0 ([0, T ] ,R)

in the following discussions. Moreover, if 1 < p− ≤ p(t) ≤ p+ < ∞ the spaces

Lp(t) ([0, T ] ,R) ,W 1,p(t) ([0, T ] ,R) and W
1,p(t)
0 ([0, T ] ,R) are separable and reflexive

Banach spaces (see [1],[3]).

Proposition 1. [1, 3, 5] If we denote ρp(x)(u) =
∫

Ω |u(x)|p(x) dx, ∀u ∈ Lp(x) (Ω),
then

i) ‖u‖p(x) < 1(= 1;> 1)⇔ ρp(x)(u) < 1(= 1;> 1);

ii) ‖u‖p(x) > 1 ⇒ ‖u‖p
−

p(x) ≤ ρp(x)(u) ≤ ‖u‖p
+

p(x) , ‖u‖p(x) < 1 ⇒ ‖u‖p
+

p(x) ≤

ρp(x)(u) ≤ ‖u‖p
−

p(x) ;

iii) ρp(x)(u) ≤ max
{
‖u‖p

−

p(x) , ‖u‖
p+

p(x)

}
≤ ‖u‖p

−

p(x) + ‖u‖p
+

p(x) .

Proposition 2. [6] Assume that r ∈ L∞+ (Ω) and p ∈ C+ (Ω). If |u|r(x) ∈ Lp(x) (Ω),
then we have

min
{
‖u‖r

+

r(x)p(x) , ‖u‖
r−

r(x)p(x)

}
≤
∥∥∥|u|r(x)

∥∥∥
p(x)
≤ max

{
‖u‖r

+

r(x)p(x) , ‖u‖
r−

r(x)p(x)

}
.

Proposition 3. [1, 4] If p and q ∈ L1 (Ω) satisfy 1 < p(x) ≤ q(x) < p∗(x) ={
Np(x)
N−p(x) , p(x) < N ;

+∞, p(x) ≥ N,
which satisfies for all x ∈ Ω, then there is a continuous em-

bedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω) and then there exists a positive constant C such
that

‖u‖q(x) ≤ C ‖u‖1,p(x) .

Theorem 1. [4] If G maps Lp1(x) (Ω) into Lp2(x) (Ω), then G is continuous and
bounded, and there is a constant b ≥ 0 and a non-negative function a ∈ Lp2(x) (Ω)
such that

|f(x, u)| ≤ a(x) + b |u|
p1(x)
p2(x)

, (1.2)

for x ∈ Ω and u ∈ R. On the other hand, if f satisfies (1.2), then G maps Lp1(x) (Ω)
into Lp2(x) (Ω), and thus G is continuous and bounded.

Remark 1. Nf (u, υ) ∈ Lq′(t) ([0, T ] ,R) if and only if
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i) a ∈ Lq′(t) ([0, T ] ,R),a(t) ≥ 0 and there are constants c1, c2 ≥ 0 such that

|f(t, u, υ)| ≤ a(t) + c1 |u|
q(t)

q′(t) + c2 |υ|
s(t)

q′(t)

for ∀u ∈ Lq(t) ([0, T ] ,R) and ∀υ ∈ Ls(t) ([0, T ] ,R).

ii) if i) is satisfied, Nf continuous and bounded from Lq(t) ([0, T ] ,R)×Ls(t) ([0, T ] ,R)
into Lq

′(t) ([0, T ] ,R).

Lemma 2. [2] Assume that Ω is an open bounded set in C1
T such that the following

conditions hold.

(1) For each λ ∈ (0, 1) the problem

(
Φp(x

′)
)′

= λf̃(t, x, x′), x(0) = x(T ), x′(0) = x′(T ) (1.3)

has no solution on ∂Ω, where f̃(t, x, x′) is a continuous function and T -periodic in
the first variable.

(2) The equation

F (a) =
1

T

∫ T

0
f̃(t, a, 0)dt = 0.

has no solution on Ω ∩ RN .

(3) The Brouwer degree

deg
(
F,Ω ∩ RN , 0

)
6= 0.

Then the perodic boundary value problem (1.3) has at least one T -periodic solution
in Ω.

2. Main result and its proof

We denote
f(t, x, x′) := e(t)− x′(t)− g (t, x (t− τ(t))) .

Assume that f and g satisfies the following conditions:
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(F1) f : R×R×R→ R, a ∈ Lq′(t) (R,R) , a(t) ≥ 0 and s, q : R→ R are continuous
functions with s (t) , q (t) < p(t) < p∗(t) and there are constants c1, c2 ≥ 0 such
that

|f(t, u, υ)| ≤ a(t) + c1 |u|
q(t)

q′(t) + c2 |υ|
s(t)

q′(t) .

(F2) There exist a constant M > 0 for any |D| ≥M such that

g (t,D) > e(t)

or
g (t,D) < e(t)

for all t ∈ R.

(F3) There exist a constant L > 0 such that

|g(t, x1)− g(t, x2)| ≤ L |x1 − x2|2

for all t, x1, x2 ∈ R.

Consequently, we obtain the auxiliary result.
For simplicity of natation, we write

X = W
1,p(t)
0 ([0, T ] ,R) , X∗ = W

−1,p′(t)
0 ([0, T ] ,R) ,

Yq(t),s(t) = Lq(t) ([0, T ] ,R)× Ls(t) ([0, T ] ,R) , Y ∗q(t) = Lq
′(t) ([0, T ] ,R) .

Let us recall some results borrowed from [3, 7, 9] about p (t)-Laplacian and
Nemytskii operator Nf . Firstly, since s (t) , q (t) < p (t) < p∗ (t) for all t ∈ [0, T ], X
is compactly embedded in Yq(t),s(t) (see [3, 7, 9]). Denote by i the compact injection
of X in Yq(t),s(t) and by i∗ : Y ∗q(t) → X∗, i∗ϕ = ϕ ◦ i for all ϕ ∈ Y ∗q(t), its adjoint.

Since the Caratheodory function f satisfies (CAR), the Nemytskii operator Nf

generated by f , Nf (x, x′) (t) = f(t, x (t) , x′ (t)), is well defined from Yq(t),s(t) into
Y ∗q(t), continuous, and bounded (by Remark 1). To prove that Eq. (1.1) has a
solution is sufficient to prove that the equation

(
Φp(t)(x

′)
)′

=
(∣∣x′(t)∣∣p(t)−2

x′(t)
)′

= (i∗Nf i) (x, x′) (2.1)

has a solution in X.
If x ∈ X satisfies (2.1) then, for all ϕ ∈ X, one has〈(
Φp(t)(x

′)
)′
, ϕ
〉
X,X∗

=
〈
(i∗Nf i) (x, x′), ϕ

〉
X,X∗

=
〈
Nf

(
(ix, ix′)

)
, iϕ
〉
Y(t),s(t),Y

∗
q(t)

.
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Since −Φp(t) is a homeomorphism of X onto X∗, (2.1) may be equivalently written
as

x =
(
−Φp(t)

)−1 [
(i∗Nf i) (x, x′)

]
. (2.2)

Thus, compact operator

Λ =
(
−Φp(t)

)−1
(i∗Nf i) : X → X

has a fixed point. According to the classical result of Leray, Schauder and Schaefer,
a sufficient condition for Λ to have a fixed point is that a constant R > 0 exists such
that

S =
{
x ∈ X : x = λΛ(x, x′) for some λ ∈ [0, 1]

}
⊂ B (0, R) .

Since, for λ = 0, the only solution of equation x = λΛ(x, x′) is x = 0, it is enough
to show that there exists a constant R > 0 such that, any x ∈ X which satisfies

x = λ
(
−Φp(t)

)−1 [
(i∗Nf i) (x, x′)

]
(2.3)

for some λ ∈ (0, 1], belongs to B(0, R). So〈
−Φp(t)

(
x′

λ

)
,

(
x′

λ

)〉
X,X∗

=

∫ T

0

∣∣∣∣x′(t)λ

∣∣∣∣p(t) dt
≥ 1

λp−

∫ T

0

∣∣x′(t)∣∣p(t) dt
=

1

λp−
ρp(t)

(
x′(t)

)
.

Then, we obtain ∫ T

0

∣∣x′(t)∣∣p(x)
dt ≤ λp−−1

〈
(i∗Nf i)

(
x, x′

)
, x
〉
X,X∗

≤ ‖i∗‖Y ∗
q(t)
→X∗

∥∥Nf (ix, ix′)
∥∥
Y ∗
q(t)

‖x‖X . (2.4)

Consider the homotopic equation of Eq. (1.1) as follows:(
Φp(t)(x

′ (t))
)′

= λe(t)− λx′(t)− λg (t, x (t− τ(t))) , λ ∈ (0, 1) . (2.5λ)

The main result of the present paper is:

Theorem 3. If the assumptions (F1), (F2), (F3) hold and p− > 2, then the Eq.(1.1)
admits at least one positive periodic solution.
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First, let’s give some lemmas and proofs that are necessary to prove the Theorem
3. We will prove the following lemma based on Shiping Lu and Weigao Ge’s article
[8].

Lemma 4. Let p− > 2 and 0 ≤ α ≤ T be a constant, s ∈ C1
T with ‖s‖0 ≤ α. Then

for ∀x ∈ C1
T , we have∫ T

0
|x (t− s (t))− x (t)|2 dt ≤ 4α2

p−

∫ T

0

∣∣x′ (t)∣∣p(t) dt+
2α2T (p+ − 2)

p−
.

Proof. By using the Lemma 1 given in [8], and the Young’s inequality, we obtain
the inequality as follows:∫ T

0
|x (t− s (t))− x (t)|2 dt ≤ 2α2

∫ T

0

∣∣x′ (t)∣∣2 dt
≤ 4α2

p−

∫ T

0

∣∣x′ (t)∣∣p(t) dt+
2α2T (p+ − 2)

p−
. (2.6)

This completes the proof of Lemma 4. �
Next, we will show that the x(t) must be uniform bounded in C1

T for any
λ ∈ [0, 1]. In order to make this we use (F1), (2.4), Propositions 1, 2 and 3, we have

∫ T

0

∣∣x′(t)∣∣p(t) dt
≤ ‖i∗‖Y ∗

q(t)
→X∗

∥∥Nf

((
ix, ix′

))∥∥
Y ∗
q(t)

‖x‖X

≤ k1

∥∥∥∥∥∥a(t) + c1 |ix|
q(t)
q′(t)

+ c2

∣∣ix′∣∣ s(t)
q′(t)

∥∥∥∥∥∥
Y ∗
q(t)

‖x‖X

≤ k1

‖a(t)‖Y ∗
q(t)

+ c1

∥∥∥∥∥∥|ix|
q(t)
q′(t)

∥∥∥∥∥∥
Y ∗
q(t)

+ c2

∥∥∥∥∥∥∣∣ix′∣∣
s(t)
q′(t)

∥∥∥∥∥∥
Y ∗
q(t)

 ‖x‖X
≤

(
k1 ‖a(t)‖Y ∗

q(t)
+ c1k1 max

{
‖ix‖q

+−1
Yq(t)

, ‖ix‖q
−−1
Yq(t)

})
‖x‖X

+c2k1

{∥∥ix′∥∥s+−1

Yq(t)
,
∥∥ix′∥∥s−−1

Yq(t)

}
‖x‖X
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≤
(
k1M1 + c1k1k2C1 max

{
‖x‖q

+−1
X , ‖x‖q

−−1
X

})
‖x‖X

+c2k1k3C2 max
{
‖x‖s

+−1
X , ‖x‖s

−−1
X

}
‖x‖X

= k1M1 ‖x‖X + c1k1k2C1 max
{
‖x‖q

+

X , ‖x‖q
−

X

}
+ c2k1k3C2 max

{
‖x‖s

+

X , ‖x‖s
−

X

}
, (2.7)

where k1 = ‖i∗‖Y ∗
q(t)
→X∗ , k2 = max

{
‖i‖q

+−1
Yq(t)

, ‖i‖q
−−1
Yq(t)

}
, k3 = max

{
‖i‖s

+−1
Yq(t)

, ‖i‖s
−−1
Yq(t)

}
and M1 = ‖a‖Y ∗

q(t)
. Since s+,q+ < p− in particular, if x ∈ X satisfies (2.3) for some

λ ∈ (0, 1], we derive from (2.7) the set S. Consequently, for x ∈ X we obtain∫ T

0

∣∣x′(t)∣∣p(t) dt ≤ K. (2.8)

Let x(t) be a T -periodic solution of Eq.(2.5λ). Then, integrating Eq.(2.5λ) from
0 to T , and noticing that x′(0) = x′(T ) = 0, we have∫ T

0
|g (t, x (t− τ(t)))− e(t)| dt = 0. (2.9)

This implies that there exists ξ ∈ [0, T ] such that

g(ξ, x(ξ − τ(ξ))− e(ξ) = 0.

Thus, taking this together with (2.9), we have

|x(ξ − τ(ξ))| < M.

Since x(t) is a T -periodic function, then there is an integer k and a constant
ξ∗ ∈ [0, T ] such that ξ − τ(ξ) = kT + ξ∗. According to the Young’s inequality, we
have

‖x‖0 ≤ |x (ξ∗)|+
∫ T

0

∣∣x′ (t)∣∣ dt ≤M +

∫ T

0

∣∣x′ (t)∣∣ dt
≤ 1

p−

∫ T

0

∣∣x′(t)∣∣p(t) dt+
p+ − 1

p−
T +M.

If we take into account the inequality of (2.8), then we get

‖x‖0 ≤
K

p−
+
p+ − 1

p−
T +M := K1. (2.10)
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By the boundary condition x(0) = x(T ), it is easy to see that there exists
t∗ ∈ [0, T ], such that x′ (t∗) = 0. Integrating (2.5λ) from t∗i to t, and from (F3),
Lemma 2 and Young’s inequality, we obtain∣∣∣∣∫ t

t∗

(
x′(t)p(t)−2x′(t)

)′
dt

∣∣∣∣ =
∣∣∣x′(t)p(t)−2x′(t)

∣∣∣ =
∣∣∣x′(t)p(t)−1

∣∣∣
≤

∣∣∣∣∫ t

t∗

(
e(t)− x′(t)− g (t, x (t− τ(t)))

)
dt

∣∣∣∣
≤

∫ t

t∗

∣∣x′(t)∣∣ dt+

∫ t

t∗
|g (t, x (t− τ(t)))| dt+

∫ t

t∗
|e(t)| dt

≤ 1

p−

∫ T

0

∣∣x′(t)∣∣p(t) dt+
p+ − 1

p−
T

+

∫ T

0
|g (t, x (t− τ(t)))− g (t, x)| dt+

∫ T

0
|g (t, x)| dt+

∫ T

0
|e(t)| dt

≤ 1

p−

∫ T

0

∣∣x′(t)∣∣p(t) dt+
p+ − 1

p−
T + L

∫ T

0
|x (t− τ(t))− x(t)|2 dt

+Tgd + T ‖e‖0

≤ 1

p−

∫ T

0

∣∣x′(t)∣∣p(t) dt+
p+ − 1

p−
T +

4α2L

p−

∫ T

0

∣∣x′ (t)∣∣p(t) dt+
2α2TL (p+ − 2)

p−

+Tgd + T ‖e‖0

≤
(
1 + 4α2L

)
K

p−
+

(
‖e‖0 + gd +

2α2L (p+ − 2) + p+ − 1

p−

)
T := K2, (2.11)

where gd = max {|g(s, x)| : s ∈ [0, T ] , x ∈ [−M,M ]}. So from (2.11), we obtain

|x′(t)| ≤ max

{
K

1
p−−1

2 ,K
1

p+−1

2

}
:= K3.

That is, ∥∥x′∥∥
0
≤ K3.

Combining this inequality with (2.10), we obtain

‖x‖1 ≤ K1 +K3 := K4.

Thus, we obtain that x(t) is uniform bounded in C1
T for any λ ∈ [0, 1].

Let Ω =
{
x ∈W 1,p(t)

0 ([0, T ] ,R) : x(0) = x(T ), x′(0) = x′(T )
}

and let us define

the set

Ω1 = {x ∈ Ω ∩ R : F (x) = 0, F (x) =

∫ T

0
|g (t, x (t− τ(t)))− e(t)| dt}.
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We will prove that for any D ∈ Ω1, it holds |D| ≤M .
For any D ∈ Ω1, by F (D) = 0, we have∫ T

0
|g (t,D)− e(t)| dt = 0. (2.12)

We can confirm that |D| ≤M . Otherwise, by (F2)

g(t,D)− e(t) > 0 (2.13)

or

g(t,D)− e(t) < 0 (2.14)

which implies that F (D) < 0 or F (D) > 0. That is a condradiction to (2.12).
Finally we will prove that the condition (3) of Lemma 2 is also satisfied.
For any x ∈ Ω∩R, from (F2) we know that if |D| > M , such that g(t,D)−e(t) >

0 or g(t,D)− e(t) < 0. In the following, we assume (2.13). As for the case of (2.14),
the proof is similar, so we omit it. Let us define

Ω2 = {x ∈ Ω ∩ R : λ(D − ζ) + (1− λ)F (D) = 0, λ ∈ [0, 1]},

where ζ ∈ R with 0 < |ζ| < M . Our aim is to show that Ω2 is bounded by
M . Argue by contrary; there exists ζ ∈ Ω2 with |D| > M . Moreover, we have
λ(D− ζ) + (1−λ)F (D) > 0, which contradicts the definition of Ω2. That is for any
D ∈ Ω2, we always have |D| ≤ M . From the definition of F , it is easy to see that
F : R→ R is completely continuous. Let

hλ(D) = λ(D − ζ) + (1− λ)F (D),

and define Ω∗ = {x ∈ Ω : ‖x‖1 < K4 + M}. Then clearly hλ(∂Ω∗ ∩ R) 6= 0 for any
λ ∈ [0, 1]. By virtue of the invariance property of homotopy, we obtain

deg (F, ∂Ω∗ ∩ R, 0) = deg (h0, ∂Ω∗ ∩ R, 0)

= deg (h1, ∂Ω∗ ∩ R, 0) = deg ([0, T ] , ∂Ω∗ ∩ R, ζ) = 1.

Hitherto, we have proved that the conditions (1)-(3) in Lemma 2 are all satisfied.
Therefore, by Lemma 2, the Eq. (1.1) admits a solution in Ω∗. This completes the
proof of Theorem 3. �
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