THIRD HANKEL DETERMINANT FOR CERTAIN SUBCLASS OF P-VALENT FUNCTIONS WHOSE RECIPROCAL DERIVATIVE HAS A POSITIVE REAL PART

B. Venkateswarlu, D. Vamshee Krishna, N. Rani

Abstract. The objective of this paper is to obtain an upper bound to the $H_{3}(p)$ Hankel determinant for certain subclass of p-valent functions, using Toeplitz determinants.

2010 Mathematics Subject Classification: 30C45; 30C50.
Keywords: keywords, phrases. p-valent function, upper bound, function whose reciprocal derivative has a positive real part, Hankel determinant, Toeplitz determinants.

1. Introduction

Let A_{p} (p is a fixed integer ≥ 1) denote the class of functions f of the form

$$
\begin{equation*}
f(z)=z^{p}+a_{p+1} z^{p+1}+\cdots \tag{1.1}
\end{equation*}
$$

in the open unit disc $E=\{z:|z|<1\}$ with $p \in N=\{1,2,3, \ldots\}$. Let S be the subclass of $A_{1}=A$, consisting of univalent functions. The Hankel determinant of f for $q \geq 1$ and $n \geq 1$ was defined by Pommerenke [12] as

$$
H_{q}(n)=\left|\begin{array}{cccc}
a_{n} & a_{n+1} & \cdots & a_{n+q-1} \tag{1.2}\\
a_{n+1} & a_{n+2} & \cdots & a_{n+q} \\
\vdots & \vdots & \vdots & \vdots \\
a_{n+q-1} & a_{n+q} & \cdots & a_{n+2 q-2}
\end{array}\right| .
$$

This determinant has been considered by several authors in the literature. One can easily observe that the Fekete-Szegö functional is $H_{2}(1)$. Fekete-Szegö then further generalized the estimate $\left|a_{3}-\mu a_{2}^{2}\right|$ with μ real and $f \in S$. Further sharp bounds for
the functional $\left|a_{2} a_{4}-a_{3}^{2}\right|$ represents the Hankel determinant in the case of $q=2$ and $n=2$, known as the second Hankel determinant (functional), given by

$$
H_{2}(2)=\left|\begin{array}{ll}
a_{2} & a_{3} \tag{1.3}\\
a_{3} & a_{4}
\end{array}\right|=a_{2} a_{4}-a_{3}^{2},
$$

were obtained, for various subclasses of univalent and multivalent functions. Noonan et.al [9] was studied determined growth rate of second Hankel determinant of an a really mean p-valent function. For our discussion in this paper, we consider the Hankel determinant in the case of $q=3$ and $n=p$, denoted by $H_{3}(p)$, given by

$$
H_{3}(p)=\left|\begin{array}{ccc}
a_{p} & a_{p+1} & a_{p+2} \tag{1.4}\\
a_{p+1} & a_{p+2} & a_{p+3} \\
a_{p+2} & a_{p+3} & a_{p+4}
\end{array}\right| .
$$

For $f \in A_{p}, a_{p}=1$, so that, we have

$$
H_{3}(p)=a_{p+2}\left(a_{p+1} a_{p+3}-a_{p+2}^{2}\right)-a_{p+3}\left(a_{p+3}-a_{p+1} a_{p+2}\right)+a_{p+4}\left(a_{p+2}-a_{p+1}^{2}\right)
$$

and by applying triangle inequality, we obtain

$$
\begin{equation*}
\left|H_{3}(p)\right| \leq\left|a_{p+2}\right|\left|a_{p+1} a_{p+3}-a_{p+2}^{2}\right|+\left|a_{p+3}\right|\left|a_{p+1} a_{p+2}-a_{p+3}\right|+\left|a_{p+4}\right|\left|a_{p+2}-a_{p+1}^{2}\right| . \tag{1.5}
\end{equation*}
$$

The sharp upper bound to the second Hankel functional, $H_{2}(2)$, for the subclass $R T$ of S consisting of functions whose derivative has a real part, studied by Mac Gregor [8] was obtained by Janteng et al. [6]. For $f \in R T_{p}$, the sharp upper bound to $H_{3}(p)$ was obtained by Vamshee Krishna et al. [14]. For $f \in \widetilde{R T} p$, $\left|a_{p+1} a_{p+3}-a_{p+2}^{2}\right| \leq\left[\frac{2 p}{(p+2)}\right]^{2}$ was obtained by Venkateswarlu et al. [16]. DVK et al. [15] was obtained $\left|a_{p+1} a_{p+3}-a_{p+2}^{2}\right| \leq\left[\frac{2 p}{(p+2)}\right]^{2}$ for $f \in \widetilde{R T p}$.

Motivated by the result obtained by Babalola [2] in finding the sharp upper bound to the Hankel determinant in this paper, we obtain an upper bound to the functional $\left|a_{p+1} a_{p+2}-a_{p+3}\right|$ and hence for $\left|H_{3}(p)\right|$, for the function f given in (1.1), belonging to the class $\widetilde{R T_{p}}$, defined as follows.
Definition 1. A function $f \in A_{p}$ is said to be function whose reciprocal derivative has a positive real part (also called reciprocal of bounded turning functions), denoted by $f \in \widetilde{R T_{p}}$, if and only if

$$
\begin{equation*}
\operatorname{Re}\left[\frac{p z^{p-1}}{f^{\prime}(z)}\right]>0, \quad \forall z \in E . \tag{1.6}
\end{equation*}
$$

For choice if $p=1$, we obtain $\widetilde{R T_{1}}=\widetilde{R T}$. Some preliminary lemmas required for proving our result are as follows:
B. Venkateswarlu, D. Vamshee Krishna, N. Rani - Third Hankel determinant ...

2. Preliminary Results

Let \mathscr{P} denote the class of functions consisting of p, such that

$$
\begin{equation*}
p(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots=\left[1+\sum_{n=1}^{\infty} c_{n} z^{n}\right], \tag{2.1}
\end{equation*}
$$

which are regular in the open unit disc E and satisfy $\operatorname{Re}\{p(z)\}>0$ for any $z \in E$. Here $p(z)$ is called the Caratheòdory function [3].

Lemma 1. [11,13] If $p \in \mathscr{P}$, then $\left|c_{k}\right| \leq 2$, for each $k \geq 1$ and the inequality is sharp for the function $\frac{1+z}{1-z}$.
Lemma 2. [5] The power series for $p(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}$ given in (2.1) converges in the open unit disc E to a function in \mathscr{P} if and only if the Toeplitz determinants

$$
D_{n}=\left|\begin{array}{ccccc}
2 & c_{1} & c_{2} & \cdots & c_{n} \\
c_{-1} & 2 & c_{1} & \cdots & c_{n-1} \\
c_{-2} & c_{-1} & 2 & \cdots & c_{n-2} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
c_{-n} & c_{-n+1} & c_{-n+2} & \cdots & 2
\end{array}\right|, n=1,2,3, \cdots
$$

and $c_{-k}=\bar{c}_{k}$, are all non-negative. They are strictly positive except for $p(z)=$ $\sum_{k=1}^{m} \rho_{k} P_{0}\left(e^{i t_{k}} z\right), \rho_{k}>0, t_{k}$ real and $t_{k} \neq t_{j}$, for $k \neq j$, where $P_{0}(z)=\left(\frac{1+z}{1-z}\right)$; in this case $D_{n}>0$ for $n<(m-1)$ and $D_{n} \doteq 0$ for $n \geq m$.

This necessary and sufficient condition found in [5] is due to Caratheòdory and Toeplitz. We may assume without restriction that $c_{1}>0$. On using Lemma 2, for $n=2$, we have

$$
D_{2}=\left|\begin{array}{ccc}
2 & c_{1} & c_{2} \\
\bar{c}_{1} & 2 & c_{1} \\
\bar{c}_{2} & \bar{c}_{1} & 2
\end{array}\right|=\left[8+2 \operatorname{Re}\left\{c_{1}^{2} c_{2}\right\}-2\left|c_{2}\right|^{2}-4\left|c_{1}\right|^{2}\right] \geq 0
$$

which is equivalent to

$$
\begin{equation*}
2 c_{2}=c_{1}^{2}+x\left(4-c_{1}^{2}\right), \text { for some } x,|x| \leq 1 \tag{2.2}
\end{equation*}
$$

For $n=3$,

$$
D_{3}=\left|\begin{array}{cccc}
2 & c_{1} & c_{2} & c_{3} \\
\bar{c}_{1} & 2 & c_{1} & c_{2} \\
\bar{c}_{2} & \bar{c}_{1} & 2 & c_{1} \\
\bar{c}_{3} & \bar{c}_{2} & \bar{c}_{1} & 2
\end{array}\right| \geq 0
$$

and is equivalent to

$$
\begin{equation*}
\left|\left(4 c_{3}-4 c_{1} c_{2}+c_{1}^{3}\right)\left(4-c_{1}^{2}\right)+c_{1}\left(2 c_{2}-c_{1}^{2}\right)^{2}\right| \leq 2\left(4-c_{1}^{2}\right)^{2}-2\left|\left(2 c_{2}-c_{1}^{2}\right)\right|^{2} \tag{2.3}
\end{equation*}
$$

From the relations (2.2) and (2.3), after simplifying, we get

$$
\begin{align*}
& 4 c_{3}=c_{1}^{3}+2 c_{1}\left(4-c_{1}^{2}\right) x-c_{1}\left(4-c_{1}^{2}\right) x^{2}+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z \\
& \text { for some real value of } z, \text { with }|z| \leq 1 . \tag{2.4}
\end{align*}
$$

To obtain our result, we refer to the classical method initiated by Libera and Zlotkiewicz [7] and used by several authors in the literature.

3. Main Result

Theorem 1. If $f(z) \in \widetilde{R T_{p}}$ then

$$
\left|a_{p+1} a_{p+2}-a_{p+3}\right| \leq\left[\frac{\sqrt{2} p\left(p^{2}+3 p+6\right)^{\frac{3}{2}}}{3 \sqrt{3}(p+1)(p+2)(p+3)}\right]
$$

Proof. For $f(z)=z^{p}+\sum_{n=p+1}^{\infty} a_{n} z^{n} \in \widetilde{R T}_{p}$, there exists an analytic function $p \in \mathscr{P}$ in the open unit disc E with $p(0)=1$ and $\operatorname{Re}\{p(z)\}>0$ such that

$$
\begin{equation*}
\frac{p z^{p-1}}{f^{\prime}(z)}=p(z) \Leftrightarrow p z^{p-1}=p(z) f^{\prime}(z) \tag{3.1}
\end{equation*}
$$

Using the series representations for $f^{\prime}(z)$ and $p(z)$ in (3.1), we have

$$
p z^{p-1}=\left(1+\sum_{n=1}^{\infty} c_{n} z^{n}\right)\left(p z^{p-1}+\sum_{n=p+1}^{\infty} n a_{n} z^{n-1}\right)
$$

Upon simplification, we obtain

$$
\begin{align*}
0 & =\left\{c_{1} p+(p+1) a_{p+1}\right\} z^{p}+\left\{c_{2} p+c_{1}(p+1) a_{p+1}+(p+2) a_{p+2}\right\} z^{p+1} \\
& +\left\{c_{3} p+c_{2}(p+1) a_{p+1}+c_{1}(p+2) a_{p+2}+(p+3) a_{p+3}\right\} z^{p+2} \\
& +\left\{c_{4} p+c_{3}(p+1) a_{p+1}+c_{2}(p+2) a_{p+2}+c_{1}(p+3) a_{p+3}+(p+4) a_{p+4}\right\} z^{p+3}+\cdots . \tag{3.2}
\end{align*}
$$

B. Venkateswarlu, D. Vamshee Krishna, N. Rani - Third Hankel determinant ...

Equating the coefficients of like powers of z^{p}, z^{p+1}, z^{p+2} and z^{p+3} respectively in (3.2), we can now write

$$
\begin{align*}
& a_{p+1}=\frac{-p c_{1}}{(p+1)} ; \quad a_{p+2}=\frac{p}{p+2}\left(c_{1}^{2}-c_{2}\right) ; \quad a_{p+3}=\frac{-p}{p+3}\left(c_{3}-2 c_{1} c_{2}+c_{1}^{3}\right) ; \\
& a_{p+4}=\frac{-p}{p+4}\left(3 c_{2} c_{1}^{2}-2 c_{3} c_{1}-c_{1}^{4}-c_{2}^{2}+c_{4}\right) . \tag{3.3}
\end{align*}
$$

Substituting the values of a_{p+1}, a_{p+2} and a_{p+3} from (3.3) in the functional $\left|a_{p+1} a_{p+2}-a_{p+3}\right|$ for the function $f \in \widetilde{R T_{p}}$, after simplifying, we get

$$
\begin{equation*}
\left|a_{p+1} a_{p+2}-a_{p+3}\right|=\frac{p}{(p+1)(p+2)(p+3)}\left|2 c_{1}^{3}-c_{1} c_{2}\left(p^{2}+3 p+4\right)+c_{3}(p+1)(p+2)\right| . \tag{3.4}
\end{equation*}
$$

Substituting the values of c_{2} and c_{3} from (2.2) and (2.4) respectively from Lemma 2 on the right-hand side of (3.4), we have

$$
\begin{aligned}
& \left|2 c_{1}^{3}-c_{1} c_{2}\left(p^{2}+3 p+4\right)+c_{3}(p+1)(p+2)\right|=\left\lvert\, 2 c_{1}^{3}-\frac{c_{1}\left(p^{2}+3 p+4\right)}{2}\left\{c_{1}^{2}+x\left(4-c_{1}^{2}\right)\right\}\right. \\
& \left.\quad+\frac{(p+1)(p+2)}{4}\left\{c_{1}^{3}+2 c_{1}\left(4-c_{1}^{2}\right) x-c_{1}\left(4-c_{1}^{2}\right) x^{2}+2\left(4-c_{1}^{2}\right)\left(1-|x|^{2}\right) z\right\} \right\rvert\,
\end{aligned}
$$

Using the fact $|z|<1$, after simplifying, we get

$$
\begin{align*}
4 \mid 2 c_{1}^{3} & -c_{1} c_{2}\left(p^{2}+3 p+4\right)+c_{3}(p+1)(p+2)|\leq| 8 c_{1}^{3}-2 c_{1}\left\{c_{1}^{2}+x\left(4-c_{1}^{2}\right)\right\}\left(p^{2}+3 p+4\right) \\
& +(p+1)(p+2)\left\{c_{1}^{3}+2 c_{1}\left(4-c_{1}^{2}\right) x+2\left(4-c_{1}^{2}\right)-x^{2}\left(4-c_{1}^{2}\right)\left(c_{1}-2\right)\right\} \mid \tag{3.5}
\end{align*}
$$

Since $c_{1}=c \in[0,2]$, using the result $\left(c_{1}+a\right) \geq\left(c_{1}-a\right)$, where $a \geq 0$, applying triangle inequality and replacing $|x|$ by μ on the right-hand side of (3.5), we have

$$
\begin{align*}
4 \mid 2 c_{1}^{3} & -c_{1} c_{2}\left(p^{2}+3 p+4\right)+c_{3}(p+1)(p+2)|\leq| c^{3}\left(p^{2}+3 p-2\right) \\
& +2\left(4-c^{2}\right)(p+1)(p+2)+4 c\left(4-c^{2}\right) \mu+(c-2)\left(4-c^{2}\right) \mu^{2}(p+1)(p+2) \mid \\
& =F(c, \mu) \quad, \quad 0 \leq \mu=|x| \leq 1 \text { and } 0 \leq c \leq 2 \tag{3.6}
\end{align*}
$$

We next maximize the function $F(c, \mu)$ on the closed region $[0,2] \times[0,1]$. Differentiating $F(c, \mu)$ given in (3.6) partially with respect to μ, we obtain

$$
\begin{equation*}
\frac{\partial F}{\partial \mu}=2[\mu(c-2)(p+1)(p+2)+2 c]\left(4-c^{2}\right)>0 \tag{3.7}
\end{equation*}
$$

For $0<\mu<1$ and for fixed c with $0<c<2$, from (3.7), we observe that $\frac{\partial F}{\partial \mu}>0$. Therefore, $F(c, \mu)$ becomes an increasing function of μ and hence it cannot have
B. Venkateswarlu, D. Vamshee Krishna, N. Rani - Third Hankel determinant ...
a maximum value at any point in the interior of the closed region $[0,2] \times[0,1]$. Moreover, for a fixed $c \in[0,2]$, we have

$$
\max _{0 \leq \mu \leq 1} F(c, \mu)=F(c, 1)=G(c)
$$

Therefore, replacing μ by 1 in $F(c, \mu)$, upon simplification, we obtain

$$
\begin{align*}
& G(c)=-8 c^{3}+4 c\left(p^{2}+3 p+6\right) \tag{3.8}\\
& G^{\prime}(c)=-24 c^{2}+4\left(p^{2}+3 p+6\right) \tag{3.9}\\
& G^{\prime \prime}(c)=-48 c \tag{3.10}
\end{align*}
$$

For optimum value of $G(c)$, consider $G^{\prime}(c)=0$. From (3.9), we get

$$
c^{2}=\frac{p^{2}+3 p+6}{6}
$$

Using the obtained value of $c=\sqrt{\frac{p^{2}+3 p+6}{6}}$ in (3.10), then

$$
G^{\prime \prime}(c)=-48 \sqrt{\frac{p^{2}+3 p+6}{6}}<0, \text { for } p \in N .
$$

Therefore, by the second derivative test, $G(c)$ has maximum value at $c=\sqrt{\frac{p^{2}+3 p+6}{6}}$. Substituting the value of c in the expression (3.8), upon simplification, we obtain the maximum value of $G(c)$ as

$$
\begin{equation*}
G_{\max }=16\left[\frac{p^{2}+3 p+6}{6}\right]^{\frac{3}{2}} \tag{3.11}
\end{equation*}
$$

From the expressions (3.6) and (3.11), we obtain

$$
\begin{equation*}
\left|2 c_{1}^{3}-c_{1} c_{2}\left(p^{2}+3 p+4\right)+c_{3}(p+1)(p+2)\right| \leq 4\left[\frac{p^{2}+3 p+6}{6}\right]^{\frac{3}{2}} \tag{3.12}
\end{equation*}
$$

Simplifying the relations (3.4) and (3.12), we obtain

$$
\begin{equation*}
\left|a_{p+1} a_{p+2}-a_{p+3}\right| \leq\left[\frac{\sqrt{2} p\left(p^{2}+3 p+6\right)^{\frac{3}{2}}}{3 \sqrt{3}(p+1)(p+2)(p+3)}\right] \tag{3.13}
\end{equation*}
$$

This completes the proof of our Theorem.

Remark 1. For the choice of $p=1$, from (3.13), we obtain $\left|a_{2} a_{3}-a_{4}\right| \leq \frac{1}{6}\left(\frac{5}{3}\right)^{\frac{3}{2}}$, obtained by Babalola [2] and Venkateswarlu et al. [16]. From this we conclude that, for $p=1$, the sharp upper bound to the $\left|a_{p+1} a_{p+2}-a_{p+3}\right|$ of a function whose derivative has a positive real part for p-valent function and a function whose reciprocal derivative has a positive real part for p-valent function is the same.

The following theorem is a straight forward verification on applying the same procedure as described in Theorem 1 and the result is sharp for the values $c_{1}=$ $0, c_{2}=2$ and $x=1$.

Theorem 2. If $f \in \widetilde{R T p}$ then $\left|a_{p+2}-a_{p+1}^{2}\right| \leq\left[\frac{2 p}{p+2}\right]$.
Using the fact that $\left|c_{n}\right|, n \in N=\{1,2,3, \cdots\}$, with the help of c_{2} and c_{3} values given in (2.2) and (2.4) respectively together with the values in (3.3), we obtain $\left|a_{k}\right| \leq \frac{2 p}{k}$, where $k \in\{p+1, p+2, p+3, \cdots\}$.

Substituting the results of Theorems 1, 2, $\left|a_{k}\right| \leq \frac{2 p}{k}$ where $k \in\{p+1, p+2, p+3, \cdots\}$ and $\left|a_{p+1} a_{p+3}-a_{p+2}^{2}\right| \leq\left[\frac{2 p}{(p+2)}\right]^{2} \quad$ in (1.5), we obtain the following corollary.
Corollary 3. If $f(z) \in \widetilde{R T_{p}}$ then

$$
\begin{equation*}
\left|H_{3}(p)\right| \leq \frac{2 p^{2}}{p+2}\left[\frac{4 p}{(p+2)^{2}}+\frac{\sqrt{2}\left(p^{2}+3 p+6\right)^{\frac{3}{2}}}{3 \sqrt{3}(p+1)(p+3)^{2}}+\frac{2}{p+4}\right] . \tag{3.14}
\end{equation*}
$$

Remark 2. For the choice $p=1$, from the expressions (3.14), we obtain $\left|H_{3}(1)\right| \leq$ 0.7422 . These inequalities are sharp and coincide with the results of Babalola [2] and Venkateswarlu et al. [16]. From this we conclude that, for $p=1$, the sharp upper bound to the third Hankel determinant of a function whose derivative has a positive real part for p-valent function and a function whose reciprocal derivative has a positive real part for p-valent function is the same.

References

[1] R. M. Ali, Coefficients of the inverse of strongly starlike functions, Bull. Malays. Math. Sci. Soc. (second series), 26(1), (2003), 63-71.
[2] K. O. Babalola, On $H_{3}(1)$ Hankel determinant for some classes of Uni-valent Functions, Inequ. Theory and Appl. , 6, (2010), 1-7.
[3] P. L. Duren, Univalent functions, vol. 259 of Grundlehren der Mathematischen Wissenschaften, Springer, New York, USA, (1983).
B. Venkateswarlu, D. Vamshee Krishna, N. Rani - Third Hankel determinant . . .
[4] A. W. Goodman, Univalent functions Vol. I and Vol. II, Mariner publishing Comp. Inc., Tampa, Florida, (1983).
[5] U. Grenander and G. Szegö, Toeplitz forms and their Applications, Second edition, Chelsea Publishing Co. , New York, (1984).
[6] A. Janteng, S. A. Halim and M. Darus, Coefficient inequality for a function whose derivative has a positive real part, J. Inequal. Pure Appl. Math. , 7 (2), (2006), 1-5.
[7] R. J. Libera and E. J. Zlotkiewicz, Coefficient bounds for the inverse of a function with derivative in \mathscr{P}, Proc. Amer. Math. Soc., 87(2), (1983), 251-257
[8] T. H. Mac Gregor, Functions whose derivative have a positive real part, Trans. Amer. Math. Soc. , 104(3), (1962), 532-537.
[9] J. W. Noonan and D. K. Thomas, On the second Hankel determinant of areally mean p-valent functions, Trans. Amer. Math. Soc. , 223(2), (1976), 337-346.
[10] K. I. Noor, Hankel determinant problem for the class of functions with bounded boundary rotation, Rev. Roumaine Math. Pures Appl., 28(8), (1983), 731 - 739.
[11] Ch. Pommerenke, Univalent functions, Vandenhoeck and Ruprecht, Gottingen, (1975).
[12] Ch. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. Lond. Math. Soc. , 41, (1966), 111-122.
[13] B. Simon, Orthogonal polynomials on the unit circle, Part 1. Classical theory, Amer. Math. Soc. Colloq. Publ., 54, Part 1. 2005.
[14] D. Vamshee Krishna, B. Venkateswarlu and T. RamReddy, Third Hankel determinant for certain subclass of p-valent functions, Compl. Var. ell. eq. , 60(9), (2015), 1301-1307.
[15] D. Vamshee Krishna, B. Venkateswarlu and T. RamReddy, Coefficient inequality for certain subclass of p-valent analytic functions whose reciprocal derivative has a positive real part, Matematiciki Vensik, 68 (2), (2016), 87-92.
[16] B. Venkateswarlu, D. Vamshee Krishna, N. Rani and T. RamReddy, Third Hankel determinant for reciprocal of bounded turning functions, (Communicated).
B. Venkateswarlu

Department of Mathematics
GIT, GITAM University
Visakhapatnam- 530 045, A.P.
India.
email: bvlmaths@gmail.com
B. Venkateswarlu, D. Vamshee Krishna, N. Rani - Third Hankel determinant ...
D. Vamshee Krishna

Department of Mathematics
GIT, GITAM University
Visakhapatnam- 530 045, A.P.
India.
email: vamsheekrishna1972@gmail.com
N. Rani

Department of Sciences and Humanities
Praveenya Institute of Marine Engineering and Maritime studies
Modavalasa - 534002
Visakhapatnam, A.P.
India.
email: raninekkanti1111@gmail.com

