OPERATION-SEPARATION AXIOMS VIA α -OPEN SETS

A. B. KHALAF, H. Z. IBRAHIM, A. K. KAYMAKCI

ABSTRACT. The purpose of this paper is to investigate several types of separation axioms in topological spaces and study some of the essential properties of such spaces. Moreover, we investigate their relationship to some other known separation axioms and some counterexamples.

2010 Mathematics Subject Classification: 30C45.

Keywords: Operation; α -open set; α_{γ} -open set; α - γ - T_0 space; α - γ - T_1 space; α - γ - T_2 space; $\alpha_{\gamma}R_0$ space; $\alpha_{\gamma}R_1$ space.

1. INTRODUCTION

The study of α -open sets was initiated by Njastad [6]. In [2], Ibrahim introduced α_{γ} -open sets in topological spaces and these α_{γ} -open sets were used to define three new separation axioms called $\alpha_{\gamma}T_0$, $\alpha_{\gamma}T_1$ and $\alpha_{\gamma}T_2$. Another set of new separation axioms, α - T_i , i = 0, 1 were characterized by Maki et al. [5] in 1993. The aim of this paper is to introduce and study some new separation axioms by means operations defined on α -open sets in topological spaces.

2. Preliminaries

Throughout the present paper, for a nonempty set X, (X, τ) always denote a topological space on which no separation axioms are assumed unless explicitly stated. The closure and interior of $A \subseteq X$ will be denoted by Cl(A) and Int(A), respectively. A subset A of a topological space (X, τ) is said to be α -open [6] if $A \subseteq Int(Cl(Int(A)))$. The complement of an α -open set is said to be α -closed. The intersection of all α closed sets containing A is called the α -closure of A and is denoted by $\alpha Cl(A)$. The family of all α -open sets in a topological space (X, τ) is denoted by $\alpha O(X, \tau)$. An operation $\gamma : \alpha O(X, \tau) \to P(X)$ [2] is a mapping satisfying the condition, $V \subseteq V^{\gamma}$ for each $V \in \alpha O(X, \tau)$. We call the mapping γ an operation on $\alpha O(X, \tau)$. A subset A of X is called an α_{γ} -open set [2] if for each point $x \in A$, there exists an α -open set U of X containing x such that $U^{\gamma} \subseteq A$. The complement of an α_{γ} -open set is said to be α_{γ} -closed. We denote the set of all α_{γ} -open (resp., α_{γ} -closed) sets of (X, τ) by $\alpha O(X, \tau)_{\gamma}$ (resp., $\alpha C(X, \tau)_{\gamma}$). The α_{γ} -closure [2] of a subset A of X with an operation γ on $\alpha O(X)$ is denoted by $\alpha_{\gamma}Cl(A)$ and is defined to be the intersection of all α_{γ} -closed sets containing A. A point $x \in X$ is in αCl_{γ} -closure [2] of a set $A \subseteq X$, if $U^{\gamma} \cap A \neq \phi$ for each α -open set U containing x. The αCl_{γ} -closure of A is denoted by $\alpha Cl_{\gamma}(A)$. An operation γ on $\alpha O(X, \tau)$ is said to be α -regular [2] if for every α -open sets U and V of each $x \in X$, there exists an α -open set W of x such that $W^{\gamma} \subseteq U^{\gamma} \cap V^{\gamma}$. An operation γ on $\alpha O(X, \tau)$ is said to be α -open [2] if for every α -open set U of $x \in X$, there exists an α_{γ} -open set V of X such that $x \in V$ and $V \subseteq U^{\gamma}$.

Let (X, τ) be any topological space and γ be an operation defined on $\alpha O(X)$. We recall the following results from [3].

Theorem 2.1. For each $x \in X$, either $\{x\}$ is α_{γ} -closed or $X \setminus \{x\}$ is α - γ -g.closed in (X, τ) .

Theorem 2.2. If a subset A of X is α - γ -g.closed, then $\alpha Cl_{\gamma}(A) \setminus A$ does not contain any non-empty α_{γ} -closed set.

Theorem 2.3. Let A be any subset of a topological space (X, τ) . If A is α_{γ} -g.closed in X, then A is α - γ -g.closed.

Proposition 2.4. For any two distinct points x and y in a topological space X, the following statements are equivalent:

- 1. $\alpha_{\gamma}ker(\{x\}) \neq \alpha_{\gamma}ker(\{y\});$
- 2. $\alpha_{\gamma}Cl(\{x\}) \neq \alpha_{\gamma}Cl(\{y\}).$

Proposition 2.5. Let $x \in X$, we have $y \in \alpha_{\gamma} ker(\{x\})$ if and only if $x \in \alpha_{\gamma} Cl(\{y\})$.

Proposition 2.6. Let A be a subset of X. Then, $\alpha_{\gamma} ker(A) = \{x \in X : \alpha_{\gamma} Cl(\{x\}) \cap A \neq \phi\}.$

3. $\alpha - \gamma - T_i$ SPACES, WHERE i = 0, 1/2, 1, 2

In this section, we introduce some new separation axioms using the notions of operation and α -open sets, also we give some characterization of these types of spaces and study the relationships between them and other well known spaces. **Definition 3.1.** A topological space (X, τ) with an operation γ on $\alpha O(X)$ is said to be:

- 1. An α - γ - T_0 space if for any two distinct points $x, y \in X$, there exists an α -open set U such that either $x \in U$ and $y \notin U^{\gamma}$ or $y \in U$ and $x \notin U^{\gamma}$.
- 2. An $\alpha_{\gamma}T_0$ [2] (resp., α - T_0 [5]) space if for any two distinct points $x, y \in X$, there exists an α_{γ} -open (resp., α -open) set U such that either $x \in U$ and $y \notin U$ or $y \in U$ and $x \notin U$.
- 3. An α - γ - T_1 space if for any two distinct points $x, y \in X$, there exist two α -open sets U and V containing x and y, respectively, such that $y \notin U^{\gamma}$ and $x \notin V^{\gamma}$.
- 4. An $\alpha_{\gamma}T_1$ [2] (resp., α - T_1 [5]) space if for any two distinct points $x, y \in X$, there exist two α_{γ} -open (resp., α -open) sets U and V containing x and y, respectively, such that $y \notin U$ and $x \notin V$.
- 5. An α - γ - T_2 space if for any two distinct points $x, y \in X$, there exist two α -open sets U and V containing x and y, respectively, such that $U^{\gamma} \cap V^{\gamma} = \phi$.
- 6. An $\alpha_{\gamma}T_2$ [2] (resp., α - T_2 [4]) space if for any two distinct points $x, y \in X$, there exist two α_{γ} -open (resp., α -open) sets U and V containing x and y, respectively, such that $U \cap V = \phi$.
- 7. An α - γ - $T_{1/2}$ space if every α - γ -g.closed set of (X, τ) is α_{γ} -closed.
- 8. An α - $T_{1/2}$ space [1] if every (α, α) -g-closed set (X, τ) is α -closed.

Theorem 3.2. Suppose that $\gamma : \alpha O(X) \to P(X)$ is α -open. A topological space (X, τ) is α - γ - T_0 if and only if for every pair $x, y \in X$ with $x \neq y$, $\alpha Cl_{\gamma}(\{x\}) \neq \alpha Cl_{\gamma}(\{y\})$.

Proof. Necessity: Let x and y be any two distinct points of an α - γ - T_0 space (X, τ) . Then, by definition, we assume that there exists an α -open set U such that $x \in U$ and $y \notin U^{\gamma}$. It follows from assumption that there exists an α_{γ} -open set S such that $x \in S$ and $S \subseteq U^{\gamma}$. Hence, $y \in X \setminus U^{\gamma} \subseteq X \setminus S$. Because $X \setminus S$ is an α_{γ} -closed set, we obtain that $\alpha Cl_{\gamma}(\{y\}) \subseteq X \setminus S$ and so $\alpha Cl_{\gamma}(\{x\}) \neq \alpha Cl_{\gamma}(\{y\})$.

Sufficiency: Suppose that $x \neq y$ for any $x, y \in X$. Then, we have that $\alpha Cl_{\gamma}(\{x\}) \neq \alpha Cl_{\gamma}(\{y\})$. Thus, there exists $z \in \alpha Cl_{\gamma}(\{x\})$ but $z \notin \alpha Cl_{\gamma}(\{y\})$. If $x \in \alpha Cl_{\gamma}(\{y\})$, then we get $\alpha Cl_{\gamma}(\{x\}) \subseteq \alpha Cl_{\gamma}(\{y\})$. This implies that $z \in \alpha Cl_{\gamma}(\{y\})$. This contradiction shows that $x \notin \alpha Cl_{\gamma}(\{y\})$, by ([2], Definition 2.20), there exists an α -open set W such that $x \in W$ and $W^{\gamma} \cap \{y\} = \phi$. Consequently, we have that $x \in W$ and $y \notin W^{\gamma}$. Hence, (X, τ) is an α - γ - T_0 .

Theorem 3.3. Suppose that $\gamma : \alpha O(X) \to P(X)$ is α -open. A topological space (X, τ) is $\alpha - \gamma - T_0$ if and only if (X, τ) is $\alpha_{\gamma} T_0$.

Proof. It is obvious that, for any subset A of (X, τ) , $\alpha_{\gamma}Cl(A) = \alpha Cl_{\gamma}(A)$ holds under the assumption that γ is α -open ([2], Theorem 2.26 (2)). On the other hand, we have Theorem 3.2 and ([2], Theorem 3.9). Consequently, we obtain this proof by using these three facts.

Theorem 3.4. Let (X, τ) be a topological space and γ an operation on $\alpha O(X)$. Then, the following properties are equivalent:

- 1. A space X is α - γ - $T_{1/2}$;
- 2. For each $x \in X$, $\{x\}$ is α_{γ} -closed or α_{γ} -open.

Proof. (1) \Rightarrow (2): Suppose $\{x\}$ is not α_{γ} -closed in (X, τ) . Then, $X \setminus \{x\}$ is α - γ -g.closed by Theorem 2.1. Since (X, τ) is an α - γ - $T_{1/2}$ space, then $X \setminus \{x\}$ is α_{γ} -closed and so $\{x\}$ is α_{γ} -open.

 $(2) \Rightarrow (1)$: Let F be an α - γ -g.closed set in (X, τ) . We shall prove that $\alpha Cl_{\gamma}(F) = F$. It is sufficient to show that $\alpha Cl_{\gamma}(F) \subseteq F$. Assume that there exists a point x such that $x \in \alpha Cl_{\gamma}(F) \setminus F$. Then by assumption, $\{x\}$ is α_{γ} -closed or α_{γ} -open.

Case 1. $\{x\}$ is an α_{γ} -closed set, for this case, we have an α_{γ} -closed set $\{x\}$ such that $\{x\} \subseteq \alpha Cl_{\gamma}(F) \setminus F$. This is a contradiction to Theorem 2.2.

Case 2. $\{x\}$ is an α_{γ} -open set, we have $x \in \alpha_{\gamma}Cl(F)$. Since $\{x\}$ is α_{γ} -open, it implies that $\{x\} \cap F \neq \phi$ by ([2], Theorem 2.23). This is a contradiction. Thus, we have $\alpha Cl_{\gamma}(F) = F$ and this is shows that F is α_{γ} -closed.

Theorem 3.5. Let (X, τ) be a topological space and γ an operation on $\alpha O(X)$. Then, the following properties are equivalent:

- 1. (X, τ) is $\alpha \gamma T_{1/2}$;
- 2. For each $x \in X$, $\{x\}$ is α_{γ} -closed or α_{γ} -open;
- 3. (X, τ) is α_{γ} - $T_{1/2}$.

Proof. Follows from ([2], Theorem 3.2) and Theorem 3.4.

Theorem 3.6. Let (X, τ) be a topological space and γ an operation on $\alpha O(X)$. Then, the following properties are equivalent:

- 1. (X, τ) is $\alpha \gamma T_1$;
- 2. For every point $x \in X$, $\{x\}$ is an α_{γ} -closed set;

3. (X, τ) is $\alpha_{\gamma} T_1$.

Proof. (1) \Rightarrow (2): Let $x \in X$ be a point. For each point $y \in X \setminus \{x\}$, there exists an α -open set V_y such that $y \in V_y$ and $x \notin V_y^{\gamma}$. Then $X \setminus \{x\} = \bigcup \{V_y^{\gamma} : y \in X \setminus \{x\}\}$. It is shown that $X \setminus \{x\}$ is α_{γ} -open in (X, τ) .

 $(2) \Rightarrow (3)$: This follows from ([2], Theorem 3.10).

(3) \Rightarrow (1): It is shown that if $x \in U$, where U is α_{γ} -open, then there exists an α -open set V such that $x \in V \subseteq V^{\gamma} \subseteq U$. Using (3), we have that (X, τ) is α - γ - T_1 .

Proposition 3.7. The following statements are equivalent for a topological space (X, τ) with an operation γ on $\alpha O(X)$:

- 1. X is α - γ - T_2 ;
- 2. Let $x \in X$. For each $y \neq x$, there exists an α -open set U containing x such that $y \notin \alpha Cl_{\gamma}(U^{\gamma})$;
- 3. For each $x \in X$, $\cap \{ \alpha Cl_{\gamma}(U^{\gamma}) : U \in \alpha O(X) \text{ and } x \in U \} = \{ x \}.$

Proof. (1) \Rightarrow (2): Since X is $\alpha - \gamma - T_2$, there exist α -open set U containing x and α -open set W containing y such that $U^{\gamma} \cap W^{\gamma} = \phi$, implies that $y \notin \alpha Cl_{\gamma}(U^{\gamma})$.

(2) \Rightarrow (3): If possible for some $y \neq x$, we have $y \in \alpha Cl_{\gamma}(U^{\gamma})$ for every α -open set U containing x, which then contradicts (2).

(3) \Rightarrow (1): Let $x, y \in X$ and $x \neq y$. Then there exists α -open set U containing x such that $y \notin \alpha Cl_{\gamma}(U^{\gamma})$, implies that $U^{\gamma} \cap W^{\gamma} = \phi$ for some α -open set W containing y.

Theorem 3.8. Let X be an α - γ - T_2 space and V^{γ} be α_{γ} -open for each $V \in \alpha O(X)$. Then, the following properties hold.

- 1. For any two distinct points $a, b \in X$, there are α_{γ} -closed sets C_1 and C_2 such that $a \in C_1$ and $b \notin C_1$ and $a \notin C_2$, $b \in C_2$ and $X = C_1 \cup C_2$.
- 2. For every point a of X, $\{a\} = \cap C_a$, where C_a is an α_{γ} -closed set containing α -open set U which contains a.
- Proof. 1. Since X is $\alpha \gamma T_2$ space, then for any $a, b \in X$, there exist α -open sets U and V such that $a \in U, b \in V$ and $U^{\gamma} \cap V^{\gamma} = \phi$. Therefore, $U^{\gamma} \subseteq X \setminus V^{\gamma}$ and $V^{\gamma} \subseteq X \setminus U^{\gamma}$. Hence $a \in X \setminus V^{\gamma}$. Put $X \setminus V^{\gamma} = C_1$. This gives $a \in C_1$ and $b \notin C_1$. Also $b \in X \setminus U^{\gamma}$. Put $X \setminus U^{\gamma} = C_2$. Therefore $b \in C_2$ and $a \notin C_2$. Moreover $C_1 \cup C_2 = (X \setminus U^{\gamma}) \cup (X \setminus V^{\gamma}) = X$.

2. Since X is $\alpha - \gamma - T_2$ space, therefore for any $a, b, a \neq b$, there exist α -open sets U and V such that $a \in U, b \in V$ and $U^{\gamma} \cap V^{\gamma} = \phi$. This gives $U^{\gamma} \subseteq X \setminus V^{\gamma}$. Since $X \setminus V^{\gamma}$ is α_{γ} -closed and $U^{\gamma} \subseteq X \setminus V^{\gamma} = C_a, \alpha_{\gamma}$ -closed containing a and does not contain b. Since b is an arbitrary point of X different from a, $b \notin \cap C_a$. Thus a is the only point which is in every α_{γ} -closed containing a, that is, $\{a\} = \cap C_a$.

Theorem 3.9. For a topological space (X, τ) and γ an operation on $\alpha O(X)$, the following properties hold.

- 1. Every $\alpha_{\gamma}T_i$ space is α - γ - T_i , where $i \in \{2, 0\}$.
- 2. Every α - γ - T_2 space is α - γ - T_1 .
- 3. Every α - γ - T_1 space is α - γ - $T_{1/2}$.
- 4. Every α - γ - T_1 space is α_{γ} - $T_{1/2}$.
- 5. Every α - γ - $T_{1/2}$ space is $\alpha_{\gamma}T_0$.
- 6. Every γ - T_i space is α - γ - T_i , where $i \in \{2, 1, 1/2, 0\}$.
- 7. Every $\alpha \gamma T_i$ space is αT_i , where $i \in \{2, 1, 1/2, 0\}$.

Proof. (1), (2): The proofs are obvious by Definition 3.1.

- (3): This follows from Theorems 3.6 and 3.4.
- (4): This follows from Theorems 3.6 and 3.5.
- (5): This follows from Theorem 3.4 and Definition 3.1 (2).

(6): For any open set U of (X, τ) , we have $U \in \alpha O(X, \tau)$ holds. Thus, the proofs of (6) for $i \in \{2, 1, 0\}$ are obvious from ([7], Definitions 4.1, 4.2, 4.3) and Definition 3.1. The proof for i = 1/2, is obtained by ([7], Proposition 4.10 (i)), ([2], Theorem 2.8) and Theorem 3.4.

(7): The proof is obvious by Definition 3.1 and ([2], Definition 2.1).

Remark 3.10. From Theorems 3.5, 3.6 and 3.9, we obtain the following diagram of implications:

where $A \to B$ represents that A implies B.

Example 3.11. The converse of Theorem 3.9 (1) for i = 0 is not true in general. Consider $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ be a topology on X. For each $A \in \alpha O(X)$ we define γ on $\alpha O(X)$ by

$$A^{\gamma} = \begin{cases} \{a,c\} & \text{if } A = \{a\}, \\ \{a,b\} & \text{if } A = \{b\}, \\ \{a,b\} & \text{if } A = \{a,b\}, \\ X & \text{if } A = X, \\ \phi & \text{if } A = \phi. \end{cases}$$

Then, X is not $\alpha_{\gamma}T_0$. Indeed, for every α_{γ} -open set V_a containing a, we have $b \in V_a$, for every α_{γ} -open set V_b containing b, we have $a \in V_b$. By Definition 3.1 (2) the space X is not $\alpha_{\gamma}T_0$. Moreover, the space X is α - γ - T_0 .

Example 3.12. The converse of Theorem 3.9 (2) is not true in general. Consider $X = \{a, b, c\}$ with the discrete topology τ on X. For each $A \in \alpha O(X)$ we define γ on $\alpha O(X)$ by

$$A^{\gamma} = \begin{cases} A & \text{if } A = \{a, b\} \text{ or } \{a, c\} \text{ or } \{b, c\}, \\ X & \text{otherwise.} \end{cases}$$

Then, it is shown directly that each singleton is α_{γ} -closed in (X, τ) . By Theorem 3.6, X is α - γ - T_1 . But, we can show that $U^{\gamma} \cap V^{\gamma} \neq \phi$ holds for any α -open sets U and V. This implies X is not α - γ - T_2 .

Example 3.13. The converse of Theorem 3.9 (3) and (4) are not true in general. Consider $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$ be a topology on X. For each $A \in \alpha O(X)$ we define γ on $\alpha O(X)$ by $A^{\gamma} = A$. Then, it is shown directly that each singleton is α_{γ} -closed or α_{γ} -open in (X, τ) . By Theorem 3.5, X is both α - γ - $T_{1/2}$ and α_{γ} - $T_{1/2}$. However, by Theorem 3.6, X is not α - γ - T_1 , in fact, a singleton $\{a\}$ is not α_{γ} -closed.

Example 3.14. The converse of Theorem 3.9 (5) is not true in general. Consider $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{a\}, \{a, b\}\}$ be a topology on X. For each $A \in \alpha O(X)$ we define γ on $\alpha O(X)$ by

$$A^{\gamma} = \begin{cases} A & \text{if } A = \{a\} \text{ or } \{a, b\}, \\ X & \text{otherwise.} \end{cases}$$

Then, X is not $\alpha - \gamma - T_{1/2}$ because a singleton $\{b\}$ is neither α_{γ} -open nor α_{γ} -closed. It is shown directly that X is $\alpha_{\gamma}T_0$. **Example 3.15.** Some converses of Theorem 3.9 (6) are not true in general. Consider $X = \{a, b, c\}$ and $\tau = \{\phi, X, \{c\}\}$ be a topology on X. For each $A \in \alpha O(X)$, we define γ on $\alpha O(X)$ by $A^{\gamma} = A$. Then, X is $\alpha - \gamma - T_i$ but it is not $\gamma - T_i$ for i = 0, 1/2.

Example 3.16. The converse of Theorem 3.9 (7) is not true in general. Consider $X = \{a, b, c\}$ with the discrete topology τ on X. For each $A \in \alpha O(X)$ we define γ on $\alpha O(X)$ by $A^{\gamma} = A$. Then, X is α - T_i but it is not α - γ - T_i for i = 0, 1/2, 1, 2.

Proposition 3.17. If (X, τ) is $\alpha_{\gamma} D_0$, then $\alpha_{\gamma} T_0$.

Proof. Suppose that X is $\alpha_{\gamma}D_0$. Then for each distinct pair $x, y \in X$, at least one of x, y, say x, belongs to an $\alpha_{\gamma}D$ -set G but $y \notin G$. Let $G = U_1 \setminus U_2$ where $U_1 \neq X$ and $U_1, U_2 \in \alpha O(X, \tau)_{\gamma}$. Then $x \in U_1$, and for $y \notin G$ we have two cases: (a) $y \notin U_1$, (b) $y \in U_1$ and $y \in U_2$. In case (a), $x \in U_1$ but $y \notin U_1$. In case (b), $y \in U_2$ but $x \notin U_2$. Thus in both the cases, we obtain that X is $\alpha_{\gamma}T_0$.

Proposition 3.18. If (X, τ) is $\alpha_{\gamma} D_0$, then α - γ - T_0 .

Proof. Follows from Proposition 3.17 and Theorem 3.9 (1).

Corollary 3.19. If (X, τ) is $\alpha_{\gamma} D_1$, then it is $\alpha - \gamma - T_0$.

Proof. Follows from ([2], Remark 3.7 (3)) and Proposition 3.18.

Proposition 3.20. Let (X, τ) be an α - γ - $T_{1/2}$ topological space and γ be an α -regular operation on $\alpha O(X)$. If $\alpha_{\gamma} ker(\{x\}) \neq X$ for a point $x \in X$, then $\{x\}$ is an $\alpha_{\gamma} D$ -set of (X, τ) .

Proof. Since $\alpha_{\gamma} ker(\{x\}) \neq X$ for a point $x \in X$, then there exists a subset $U \in \alpha O(X, \tau)_{\gamma}$ such that $\{x\} \subseteq U$ and $U \neq X$. Using Proposition 3.4, for the point x, we have $\{x\}$ is α_{γ} -open or α_{γ} -closed in (X, τ) . When the singleton $\{x\}$ is α_{γ} -open, $\{x\}$ is an $\alpha_{\gamma}D$ -set of (X, τ) . When the singleton $\{x\}$ is α_{γ} -closed, then $X \setminus \{x\}$ is α_{γ} -open in (X, τ) . Put $U_1 = U$ and $U_2 = U \cap (X \setminus \{x\})$. Then, $\{x\} = U_1 \setminus U_2$, $U_1 \in \alpha O(X, \tau)_{\gamma}$ and $U_1 \neq X$. It follows from the hypothesis that $U_2 \in \alpha O(X, \tau)_{\gamma}$ and so $\{x\}$ is an $\alpha_{\gamma}D$ -set.

Proposition 3.21. For an α - γ - $T_{1/2}$ topological space (X, τ) with at least two points, (X, τ) is an $\alpha_{\gamma}D_1$ space if and only if $\alpha_{\gamma}ker(\{x\}) \neq X$ holds for every point $x \in X$.

Proof. Necessity: Let $x \in X$. For a point $y \neq x$, there exists an $\alpha_{\gamma}D$ -set U such that $x \in U$ and $y \notin U$. Say $U = U_1 \setminus U_2$, where $U_i \in \alpha O(X, \tau)_{\gamma}$ for each $i \in \{1, 2\}$ and $U_1 \neq X$. Thus, for the point x, we have an α_{γ} -open set U_1 such that $\{x\} \subseteq U_1$ and $U_1 \neq X$. Hence, $\alpha_{\gamma} ker(\{x\}) \neq X$.

Sufficiency: Let x and y be a pair of distinct points of X. We prove that there exist $\alpha_{\gamma}D$ -sets A and B containing x and y, respectively, such that $y \notin A$ and $x \notin B$. Using Proposition 3.4, we can take the subsets A and B for the following four cases for two points x and y.

Case1. $\{x\}$ is α_{γ} -open and $\{y\}$ is α_{γ} -closed in (X, τ) . Since $\alpha_{\gamma}ker(\{y\}) \neq X$, then there exists an α_{γ} -open set V such that $y \in V$ and $V \neq X$. Put $A = \{x\}$ and $B = \{y\}$. Since $B = V \setminus (X \setminus \{y\})$, then V is an α_{γ} -open set with $V \neq X$ and $X \setminus \{y\}$ is α_{γ} -open, and B is a required $\alpha_{\gamma}D$ -set containing y such that $x \notin B$. Obviously, A is a required $\alpha_{\gamma}D$ -set containing x such that $y \notin A$.

Case 2. $\{x\}$ is α_{γ} -closed and $\{y\}$ is α_{γ} -open in (X, τ) . The proof is similar to Case 1.

Case 3. $\{x\}$ and $\{y\}$ are α_{γ} -open in (X, τ) . Put $A = \{x\}$ and $B = \{y\}$.

Case 4. $\{x\}$ and $\{y\}$ are α_{γ} -closed in (X, τ) . Put $A = X \setminus \{y\}$ and $B = X \setminus \{x\}$.

For each case of the above, the subsets A and B are the required $\alpha_{\gamma}D$ -sets. Therefore, (X, τ) is an α_{γ} - D_1 space.

Definition 3.22. A point $x \in X$ which has only X as the α_{γ} -neighbourhood is called an α_{γ} -neat point.

Proposition 3.23. For an $\alpha_{\gamma}T_0$ topological space (X, τ) , the following are equivalent:

- 1. (X, τ) is $\alpha_{\gamma} D_1$;
- 2. (X, τ) has no α_{γ} -neat point.

Proof. (1) \Rightarrow (2): Since (X, τ) is $\alpha_{\gamma}D_1$, then each point x of X is contained in an $\alpha_{\gamma}D$ -set $A = U \setminus V$ and thus in U. By definition $U \neq X$. This implies that x is not an α_{γ} -neat point.

 $(2) \Rightarrow (1)$: If X is $\alpha_{\gamma}T_0$, then for each distinct pair of points $x, y \in X$, at least one of them, x (say) has an α_{γ} -neighbourhood U containing x and not y. Thus, U which is different from X is an $\alpha_{\gamma}D$ -set. If X has no α_{γ} -neat point, then y is not an α_{γ} -neat point. This means that there exists an α_{γ} -neighbourhood V of y such that $V \neq X$. Thus, $y \in V \setminus U$ but not x and $V \setminus U$ is an $\alpha_{\gamma}D$ -set. Hence, X is $\alpha_{\gamma}D_1$.

Corollary 3.24. An $\alpha_{\gamma}T_0$ space X is not $\alpha_{\gamma}D_1$ if and only if there is a unique α_{γ} -neat point in X.

Proof. We only prove the uniqueness of the α_{γ} -neat point. If x and y are two α_{γ} neat points in X, then since X is $\alpha_{\gamma}T_0$, at least one of x and y, say x, has an α_{γ} -neighbourhood U containing x but not y. Hence $U \neq X$. Therefore x is not an α_{γ} -neat point which is a contradiction.

Definition 3.25. A topological space (X, τ) with an operation γ on $\alpha O(X)$, is said to be α_{γ} -symmetric if for x and y in $X, x \in \alpha_{\gamma} Cl(\{y\})$ implies $y \in \alpha_{\gamma} Cl(\{x\})$.

Proposition 3.26. If (X, τ) is a topological space with an operation γ on $\alpha O(X)$, then the following are equivalent:

- 1. X is an α_{γ} -symmetric space;
- 2. $\{x\}$ is α_{γ} -g.closed, for each $x \in X$.

Proof. (1) \Rightarrow (2): Assume that $\{x\} \subseteq U \in \alpha O(X)_{\gamma}$, but $\alpha_{\gamma} Cl(\{x\}) \not\subseteq U$. Then $\alpha_{\gamma} Cl(\{x\}) \cap X \setminus U \neq \phi$. Now, we take $y \in \alpha_{\gamma} Cl(\{x\}) \cap X \setminus U$, then by hypothesis $x \in \alpha_{\gamma} Cl(\{y\}) \subseteq X \setminus U$ and $x \notin U$, which is a contradiction. Therefore $\{x\}$ is α_{γ} -g.closed, for each $x \in X$.

(2) \Rightarrow (1): Assume that $x \in \alpha_{\gamma}Cl(\{y\})$, but $y \notin \alpha_{\gamma}Cl(\{x\})$. Then $\{y\} \subseteq X \setminus \alpha_{\gamma}Cl(\{x\})$ and hence $\alpha_{\gamma}Cl(\{y\}) \subseteq X \setminus \alpha_{\gamma}Cl(\{x\})$. Therefore $x \in X \setminus \alpha_{\gamma}Cl(\{x\})$, which is a contradiction and hence $y \in \alpha_{\gamma}Cl(\{x\})$.

Proposition 3.27. If a topological space (X, τ) is α_{γ} -symmetric, then $\{x\}$ is α - γ -g.closed, for each $x \in X$.

Proof. Follows from Theorem 2.3 and Proposition 3.26.

Corollary 3.28. If a topological space (X, τ) with an operation γ on $\alpha O(X)$ is an α - γ - T_1 space, then it is α_{γ} -symmetric.

Proof. Since every singleton is α_{γ} -closed according to Theorem 3.6, we have it is α_{γ} -g.closed. Then by Proposition 3.26, (X, τ) is α_{γ} -symmetric.

Corollary 3.29. For a topological space (X, τ) with an operation γ on $\alpha O(X)$, the following statements are equivalent:

- 1. (X, τ) is α_{γ} -symmetric and $\alpha_{\gamma}T_0$;
- 2. (X, τ) is α - γ - T_1 .

Proof. By Theorem 3.6, Corollary 3.28 and ([2], Remark 3.7 (1)), it suffices to prove only $(1) \Rightarrow (2)$:

Let $x \neq y$ and as (X, τ) is $\alpha_{\gamma}T_0$, we may assume that $x \in U \subseteq X \setminus \{y\}$ for some $U \in \alpha O(X)_{\gamma}$. Then $x \notin \alpha_{\gamma}Cl(\{y\})$ and hence $y \notin \alpha_{\gamma}Cl(\{x\})$. There exists an α_{γ} -open set V such that $y \in V \subseteq X \setminus \{x\}$ and thus by Theorem 3.6, X is an α - γ - T_1 space.

Proposition 3.30. If (X, τ) is an α_{γ} -symmetric space with an operation γ on $\alpha O(X)$, then the following statements are equivalent:

- 1. (X, τ) is an $\alpha_{\gamma} T_0$ space;
- 2. (X, τ) is an $\alpha_{\gamma} T_{\frac{1}{2}}$ space;
- 3. (X, τ) is an α - γ - T_1 space.

Proof. (1) \Leftrightarrow (3) : Obvious from Corollary 3.29.

 $(3) \Rightarrow (2)$ and $(2) \Rightarrow (1)$: Directly from Theorem 3.5 and Theorem 3.9 (4) and (5).

Corollary 3.31. For an α_{γ} -symmetric space (X, τ) , the following are equivalent:

- 1. (X, τ) is $\alpha_{\gamma} T_0$;
- 2. (X, τ) is $\alpha_{\gamma} D_1$;
- 3. (X, τ) is α - γ - T_1 .

Proof. $(1) \Rightarrow (3)$. Follows from Corollary 3.29.

 $(3) \Rightarrow (2) \Rightarrow (1)$: Follows from Theorem 3.6, ([2], Remark 3.7 (2) and (3)) and Proposition 3.17.

Definition 3.32. A topological space (X, τ) with an operation γ on $\alpha O(X)$, is said to be $\alpha_{\gamma}R_0$ if U is an α_{γ} -open set and $x \in U$ then $\alpha_{\gamma}Cl(\{x\}) \subseteq U$.

Proposition 3.33. For a topological space (X, τ) with an operation γ on $\alpha O(X)$, the following properties are equivalent:

- 1. (X, τ) is $\alpha_{\gamma} R_0$;
- 2. For any $F \in \alpha C(X)_{\gamma}$, $x \notin F$ implies $F \subseteq U$ and $x \notin U$ for some $U \in \alpha O(X)_{\gamma}$;
- 3. For any $F \in \alpha C(X)_{\gamma}, x \notin F$ implies $F \cap \alpha_{\gamma} Cl(\{x\}) = \phi$;
- 4. For any distinct points x and y of X, either $\alpha_{\gamma}Cl(\{x\}) = \alpha_{\gamma}Cl(\{y\})$ or $\alpha_{\gamma}Cl(\{x\}) \cap \alpha_{\gamma}Cl(\{y\}) = \phi$.

Proof. (1) \Rightarrow (2): Let $F \in \alpha C(X)_{\gamma}$ and $x \notin F$. Then by (1), $\alpha_{\gamma} Cl(\{x\}) \subseteq X \setminus F$. Set $U = X \setminus \alpha_{\gamma} Cl(\{x\})$, then U is an α_{γ} -open set such that $F \subseteq U$ and $x \notin U$.

(2) \Rightarrow (3): Let $F \in \alpha C(X)_{\gamma}$ and $x \notin F$. There exists $U \in \alpha O(X)_{\gamma}$ such that $F \subseteq U$ and $x \notin U$. Since $U \in \alpha O(X)_{\gamma}$, $U \cap \alpha_{\gamma} Cl(\{x\}) = \phi$ and $F \cap \alpha_{\gamma} Cl(\{x\}) = \phi$.

(3) \Rightarrow (4): Suppose that $\alpha_{\gamma}Cl(\{x\}) \neq \alpha_{\gamma}Cl(\{y\})$ for distinct points $x, y \in X$. There exists $z \in \alpha_{\gamma}Cl(\{x\})$ such that $z \notin \alpha_{\gamma}Cl(\{y\})$ (or $z \in \alpha_{\gamma}Cl(\{y\})$) such that $z \notin \alpha_{\gamma}Cl(\{x\})$). There exists $V \in \alpha O(X)_{\gamma}$ such that $y \notin V$ and $z \in V$, hence $x \in V$. Therefore, we have $x \notin \alpha_{\gamma}Cl(\{y\})$. By (3), we obtain $\alpha_{\gamma}Cl(\{x\}) \cap \alpha_{\gamma}Cl(\{y\}) = \phi$.

(4) \Rightarrow (1): Let $V \in \alpha O(X)_{\gamma}$ and $x \in V$. For each $y \notin V$, $x \neq y$ and $x \notin \alpha_{\gamma} Cl(\{y\})$. This shows that $\alpha_{\gamma} Cl(\{x\}) \neq \alpha_{\gamma} Cl(\{y\})$. By (4), $\alpha_{\gamma} Cl(\{x\}) \cap \alpha_{\gamma} Cl(\{y\}) = \phi$ for each $y \in X \setminus V$ and hence $\alpha_{\gamma} Cl(\{x\}) \cap (\bigcup_{y \in X \setminus V} \alpha_{\gamma} Cl(\{y\})) = \phi$. On other hand, since $V \in \alpha O(X)_{\gamma}$ and $y \in X \setminus V$, we have $\alpha_{\gamma} Cl(\{y\}) \subseteq X \setminus V$ and hence $X \setminus V = \bigcup_{y \in X \setminus V} \alpha_{\gamma} Cl(\{y\})$. Therefore, we obtain $(X \setminus V) \cap \alpha_{\gamma} Cl(\{x\}) = \phi$ and $\alpha_{\gamma} Cl(\{x\}) \subseteq V$. This shows that (X, τ) is an $\alpha_{\gamma} R_0$ space.

Proposition 3.34. A topological space (X, τ) with an operation γ on $\alpha O(X)$ is α - γ - T_1 if and only if (X, τ) is $\alpha_{\gamma}T_0$ and $\alpha_{\gamma}R_0$.

Proof. Necessity: Let U be any α_{γ} -open set of (X, τ) and $x \in U$. Then by Proposition 3.6, we have $\alpha_{\gamma}Cl(\{x\}) \subseteq U$ and so by Proposition 3.9, it is clear that X is $\alpha_{\gamma}T_0$ and an $\alpha_{\gamma}R_0$ space.

Sufficiency: Let x and y be any distinct points of X. Since X is $\alpha_{\gamma}T_0$, there exists an α_{γ} -open set U such that $x \in U$ and $y \notin U$. As $x \in U$ implies that $\alpha_{\gamma}Cl(\{x\}) \subseteq U$. Since $y \notin U$, so $y \notin \alpha_{\gamma}Cl(\{x\})$. Hence $y \in V = X \setminus \alpha_{\gamma}Cl(\{x\})$ and it is clear that $x \notin V$. Hence it follows that there exist α_{γ} -open sets U and V containing x and y respectively, such that $y \notin U$ and $x \notin V$. Therefore, by Theorem 3.6 implies that X is α - γ - T_1 .

Proposition 3.35. For a topological space (X, τ) with an operation γ on $\alpha O(X)$, the following properties are equivalent:

- 1. (X, τ) is $\alpha_{\gamma} R_0$;
- 2. $x \in \alpha_{\gamma} Cl(\{y\})$ if and only if $y \in \alpha_{\gamma} Cl(\{x\})$, for any points x and y in X.

Proof. (1) \Rightarrow (2): Assume that X is $\alpha_{\gamma}R_0$. Let $x \in \alpha_{\gamma}Cl(\{y\})$ and V be any α_{γ} -open set such that $y \in V$. Now by hypothesis, $x \in V$. Therefore, every α_{γ} -open set which contain y contains x. Hence, $y \in \alpha_{\gamma}Cl(\{x\})$.

(2) \Rightarrow (1): Let U be an α_{γ} -open set and $x \in U$. If $y \notin U$, then $x \notin \alpha_{\gamma}Cl(\{y\})$ and hence $y \notin \alpha_{\gamma}Cl(\{x\})$. This implies that $\alpha_{\gamma}Cl(\{x\}) \subseteq U$. Hence (X, τ) is $\alpha_{\gamma}R_0$.

Remark 3.36. From Definition 3.25 and Proposition 3.35, the notions of α_{γ} -symmetric and $\alpha_{\gamma}R_0$ are equivalent.

Proposition 3.37. A topological space (X, τ) with an operation γ on $\alpha O(X)$ is $\alpha_{\gamma}R_0$ if and only if for every x and y in X, $\alpha_{\gamma}Cl(\{x\}) \neq \alpha_{\gamma}Cl(\{y\})$ implies $\alpha_{\gamma}Cl(\{x\}) \cap \alpha_{\gamma}Cl(\{y\}) = \phi$.

Proof. Necessity: Suppose that (X, τ) is $\alpha_{\gamma}R_0$ and $x, y \in X$ such that $\alpha_{\gamma}Cl(\{x\}) \neq \alpha_{\gamma}Cl(\{y\})$. Then, there exists $z \in \alpha_{\gamma}Cl(\{x\})$ such that $z \notin \alpha_{\gamma}Cl(\{y\})$ (or $z \in \alpha_{\gamma}Cl(\{y\})$ such that $z \notin \alpha_{\gamma}Cl(\{x\})$). There exists $V \in \alpha O(X)_{\gamma}$ such that $y \notin V$ and $z \in V$, hence $x \in V$. Therefore, we have $x \notin \alpha_{\gamma}Cl(\{y\})$. Thus $x \in [X \setminus \alpha_{\gamma}Cl(\{y\})] \in \alpha O(X)_{\gamma}$, which implies $\alpha_{\gamma}Cl(\{x\}) \subseteq [X \setminus \alpha_{\gamma}Cl(\{y\})]$ and $\alpha_{\gamma}Cl(\{x\}) \cap \alpha_{\gamma}Cl(\{y\}) = \phi$.

Sufficiency: Let $V \in \alpha O(X)_{\gamma}$ and $x \in V$. We show that $\alpha_{\gamma} Cl(\{x\}) \subseteq V$. Let $y \notin V$, that is $y \in X \setminus V$. Then $x \neq y$ and $x \notin \alpha_{\gamma} Cl(\{y\})$. This shows that $\alpha_{\gamma} Cl(\{x\}) \neq \alpha_{\gamma} Cl(\{y\})$. By assumption, $\alpha_{\gamma} Cl(\{x\}) \cap \alpha_{\gamma} Cl(\{y\}) = \phi$. Hence $y \notin \alpha_{\gamma} Cl(\{x\})$ and therefore $\alpha_{\gamma} Cl(\{x\}) \subseteq V$.

Proposition 3.38. A topological space (X, τ) with an operation γ on $\alpha O(X)$ is $\alpha_{\gamma}R_0$ if and only if for any points x and y in X, $\alpha_{\gamma}ker(\{x\}) \neq \alpha_{\gamma}ker(\{y\})$ implies $\alpha_{\gamma}ker(\{x\}) \cap \alpha_{\gamma}ker(\{y\}) = \phi$.

Proof. Suppose that (X, τ) is an $\alpha_{\gamma}R_0$ space. Thus by Proposition 2.4, for any points x and y in X if $\alpha_{\gamma}ker(\{x\}) \neq \alpha_{\gamma}ker(\{y\})$ then $\alpha_{\gamma}Cl(\{x\}) \neq \alpha_{\gamma}Cl(\{y\})$. Now we prove that $\alpha_{\gamma}ker(\{x\}) \cap \alpha_{\gamma}ker(\{y\}) = \phi$. Assume that $z \in \alpha_{\gamma}ker(\{x\}) \cap \alpha_{\gamma}ker(\{y\})$. By $z \in \alpha_{\gamma}ker(\{x\})$ and Proposition 2.5, it follows that $x \in \alpha_{\gamma}Cl(\{z\})$. Since $x \in \alpha_{\gamma}Cl(\{x\})$, by Proposition 3.33, $\alpha_{\gamma}Cl(\{x\}) = \alpha_{\gamma}Cl(\{z\})$. Similarly, we have $\alpha_{\gamma}Cl(\{y\}) = \alpha_{\gamma}Cl(\{z\}) = \alpha_{\gamma}Cl(\{z\}) = \alpha_{\gamma}Cl(\{x\})$. This is a contradiction. Therefore, we have $\alpha_{\gamma}ker(\{x\}) \cap \alpha_{\gamma}ker(\{y\}) = \phi$.

Conversely, let (X, τ) be a topological space such that for any points x and y in $X, \alpha_{\gamma}ker(\{x\}) \neq \alpha_{\gamma}ker(\{y\})$ implies $\alpha_{\gamma}ker(\{x\}) \cap \alpha_{\gamma}ker(\{y\}) = \phi$. If $\alpha_{\gamma}Cl(\{x\}) \neq \alpha_{\gamma}Cl(\{y\})$, then by Proposition 2.4, $\alpha_{\gamma}ker(\{x\}) \neq \alpha_{\gamma}ker(\{y\})$. Hence, $\alpha_{\gamma}ker(\{x\}) \cap \alpha_{\gamma}ker(\{y\}) = \phi$ which implies $\alpha_{\gamma}Cl(\{x\}) \cap \alpha_{\gamma}Cl(\{y\}) = \phi$. Because $z \in \alpha_{\gamma}Cl(\{x\})$ implies that $x \in \alpha_{\gamma}ker(\{z\})$ and therefore $\alpha_{\gamma}ker(\{x\}) \cap \alpha_{\gamma}ker(\{z\}) \neq \phi$. By hypothesis, we have $\alpha_{\gamma}ker(\{z\}) = \alpha_{\gamma}ker(\{z\})$. Then $z \in \alpha_{\gamma}Cl(\{x\}) \cap \alpha_{\gamma}Cl(\{y\})$ implies that $\alpha_{\gamma}ker(\{x\}) = \alpha_{\gamma}ker(\{z\}) = \alpha_{\gamma}ker(\{y\})$. This is a contradiction. Therefore, $\alpha_{\gamma}Cl(\{x\}) \cap \alpha_{\gamma}Cl(\{y\}) = \phi$ and by Proposition 3.33, (X, τ) is an $\alpha_{\gamma}R_{0}$ space.

Proposition 3.39. For a topological space (X, τ) with an operation γ on $\alpha O(X)$, the following properties are equivalent:

- 1. (X, τ) is $\alpha_{\gamma} R_0$;
- 2. For any non-empty set A and $G \in \alpha O(X)_{\gamma}$ such that $A \cap G \neq \phi$, there exists $F \in \alpha C(X)_{\gamma}$ such that $A \cap F \neq \phi$ and $F \subseteq G$;

- 3. For any $G \in \alpha O(X)_{\gamma}$, we have $G = \bigcup \{F \in \alpha C(X)_{\gamma} : F \subseteq G\}$;
- 4. For any $F \in \alpha C(X)_{\gamma}$, we have $F = \cap \{G \in \alpha O(X)_{\gamma} : F \subseteq G\};$
- 5. For every $x \in X$, $\alpha_{\gamma}Cl(\{x\}) \subseteq \alpha_{\gamma}ker(\{x\})$.

Proof. (1) \Rightarrow (2): Let A be a non-empty subset of X and $G \in \alpha O(X)_{\gamma}$ such that $A \cap G \neq \phi$. There exists $x \in A \cap G$. Since $x \in G \in \alpha O(X)_{\gamma}$ implies that $\alpha_{\gamma} Cl(\{x\}) \subseteq G$. Set $F = \alpha_{\gamma} Cl(\{x\})$, then $F \in \alpha C(X)_{\gamma}$, $F \subseteq G$ and $A \cap F \neq \phi$.

 $(2) \Rightarrow (3)$: Let $G \in \alpha O(X)_{\gamma}$, then $G \supseteq \cup \{F \in \alpha C(X)_{\gamma} : F \subseteq G\}$. Let x be any point of G. There exists $F \in \alpha C(X)_{\gamma}$ such that $x \in F$ and $F \subseteq G$. Therefore, we have $x \in F \subseteq \cup \{F \in \alpha C(X)_{\gamma} : F \subseteq G\}$ and hence $G = \cup \{F \in \alpha C(X)_{\gamma} : F \subseteq G\}$. $(3) \Rightarrow (4)$: Obvious.

 $(4) \rightarrow (5)$. Let r be any

(4) \Rightarrow (5): Let x be any point of X and $y \notin \alpha_{\gamma} ker(\{x\})$. There exists $V \in \alpha O(X)_{\gamma}$ such that $x \in V$ and $y \notin V$, hence $\alpha_{\gamma} Cl(\{y\}) \cap V = \phi$. By (4), $(\cap \{G \in \alpha O(X)_{\gamma}: \alpha_{\gamma} Cl(\{y\}) \subseteq G\}) \cap V = \phi$ and there exists $G \in \alpha O(X)_{\gamma}$ such that $x \notin G$ and $\alpha_{\gamma} Cl(\{y\}) \subseteq G$. Therefore $\alpha_{\gamma} Cl(\{x\}) \cap G = \phi$ and $y \notin \alpha_{\gamma} Cl(\{x\})$. Consequently, we obtain $\alpha_{\gamma} Cl(\{x\}) \subseteq \alpha_{\gamma} ker(\{x\})$.

(5) \Rightarrow (1): Let $G \in \alpha O(X)_{\gamma}$ and $x \in G$. Let $y \in \alpha_{\gamma} ker(\{x\})$, then $x \in \alpha_{\gamma} Cl(\{y\})$ and $y \in G$. This implies that $\alpha_{\gamma} ker(\{x\}) \subseteq G$. Therefore, we obtain $x \in \alpha_{\gamma} Cl(\{x\}) \subseteq \alpha_{\gamma} ker(\{x\}) \subseteq G$. This shows that X is an $\alpha_{\gamma} R_0$ space.

Corollary 3.40. For a topological space (X, τ) with an operation γ on $\alpha O(X)$, the following properties are equivalent:

- 1. (X, τ) is $\alpha_{\gamma} R_0$;
- 2. $\alpha_{\gamma}Cl(\{x\}) = \alpha_{\gamma}ker(\{x\})$ for all $x \in X$.

Proof. (1) \Rightarrow (2): Suppose that X is an $\alpha_{\gamma}R_0$ space. By Proposition 3.39, $\alpha_{\gamma}Cl(\{x\}) \subseteq \alpha_{\gamma}ker(\{x\})$ for each $x \in X$. Let $y \in \alpha_{\gamma}ker(\{x\})$, then $x \in \alpha_{\gamma}Cl(\{y\})$ and by Proposition 3.33, $\alpha_{\gamma}Cl(\{x\}) = \alpha_{\gamma}Cl(\{y\})$. Therefore, $y \in \alpha_{\gamma}Cl(\{x\})$ and hence $\alpha_{\gamma}ker(\{x\}) \subseteq \alpha_{\gamma}Cl(\{x\})$. This shows that $\alpha_{\gamma}Cl(\{x\}) = \alpha_{\gamma}ker(\{x\})$. (2) \Rightarrow (1): Follows from Proposition 3.39.

 $(2) \rightarrow (1)$. Ponows from 1 reposition 5.55.

Proposition 3.41. For a topological space (X, τ) with an operation γ on $\alpha O(X)$, the following properties are equivalent:

- 1. (X, τ) is $\alpha_{\gamma} R_0$;
- 2. If F is α_{γ} -closed, then $F = \alpha_{\gamma} ker(F)$;
- 3. If F is α_{γ} -closed and $x \in F$, then $\alpha_{\gamma}ker(\{x\}) \subseteq F$;

4. If $x \in X$, then $\alpha_{\gamma} ker(\{x\}) \subseteq \alpha_{\gamma} Cl(\{x\})$.

Proof. (1) \Rightarrow (2): Let F be an α_{γ} -closed and $x \notin F$. Thus $(X \setminus F)$ is an α_{γ} -open set containing x. Since (X, τ) is $\alpha_{\gamma}R_0$, $\alpha_{\gamma}Cl(\{x\}) \subseteq (X \setminus F)$. Thus $\alpha_{\gamma}Cl(\{x\}) \cap F = \phi$ and by Proposition 2.6, $x \notin \alpha_{\gamma}ker(F)$. Therefore $\alpha_{\gamma}ker(F) = F$.

(2) \Rightarrow (3): In general, $A \subseteq B$ implies $\alpha_{\gamma} ker(A) \subseteq \alpha_{\gamma} ker(B)$. Therefore, it follows from (2), that $\alpha_{\gamma} ker(\{x\}) \subseteq \alpha_{\gamma} ker(F) = F$.

 $(3) \Rightarrow (4)$: Since $x \in \alpha_{\gamma}Cl(\{x\})$ and $\alpha_{\gamma}Cl(\{x\})$ is α_{γ} -closed, by $(3), \alpha_{\gamma}ker(\{x\}) \subseteq \alpha_{\gamma}Cl(\{x\})$.

(4) \Rightarrow (1): We show the implication by using Proposition 3.35. Let $x \in \alpha_{\gamma}Cl(\{y\})$. Then by Proposition 2.5, $y \in \alpha_{\gamma}ker(\{x\})$. Since $x \in \alpha_{\gamma}Cl(\{x\})$ and $\alpha_{\gamma}Cl(\{x\})$ is α_{γ} -closed, by (4), we obtain $y \in \alpha_{\gamma}ker(\{x\}) \subseteq \alpha_{\gamma}Cl(\{x\})$. Therefore $x \in \alpha_{\gamma}Cl(\{y\})$ implies $y \in \alpha_{\gamma}Cl(\{x\})$. The converse is obvious and (X, τ) is $\alpha_{\gamma}R_0$.

Definition 3.42. A topological space (X, τ) with an operation γ on $\alpha O(X)$, is said to be $\alpha_{\gamma}R_1$ if for x, y in X with $\alpha_{\gamma}Cl(\{x\}) \neq \alpha_{\gamma}Cl(\{y\})$, there exist disjoint α_{γ} -open sets U and V such that $\alpha_{\gamma}Cl(\{x\}) \subseteq U$ and $\alpha_{\gamma}Cl(\{y\}) \subseteq V$.

Proposition 3.43. A topological space (X, τ) with an operation γ on $\alpha O(X)$ is $\alpha_{\gamma}R_1$ if it is $\alpha_{\gamma}T_2$.

Proof. Let x and y be any points of X such that $\alpha_{\gamma}Cl(\{x\}) \neq \alpha_{\gamma}Cl(\{y\})$. By ([2], Remark 3.7 (1)), every $\alpha_{\gamma}T_2$ space is $\alpha_{\gamma}T_1$. Therefore, by Theorem 3.6, $\alpha_{\gamma}Cl(\{x\}) = \{x\}, \alpha_{\gamma}Cl(\{y\}) = \{y\}$ and hence $\{x\} \neq \{y\}$. Since (X, τ) is $\alpha_{\gamma}T_2$, there exist disjoint α_{γ} -open sets U and V such that $\alpha_{\gamma}Cl(\{x\}) = \{x\} \subseteq U$ and $\alpha_{\gamma}Cl(\{y\}) = \{y\} \subseteq V$. This shows that (X, τ) is $\alpha_{\gamma}R_1$.

Proposition 3.44. For a topological space (X, τ) with an operation γ on $\alpha O(X)$, the following are equivalent:

- 1. (X, τ) is $\alpha_{\gamma}T_2$;
- 2. (X, τ) is $\alpha_{\gamma} R_1$ and $\alpha_{\gamma} T_1$;
- 3. (X, τ) is $\alpha_{\gamma} R_1$ and $\alpha_{\gamma} T_0$.

Proof. Straightforward.

Proposition 3.45. For a topological space (X, τ) with an operation γ on $\alpha O(X)$, the following statements are equivalent:

1. (X, τ) is $\alpha_{\gamma} R_1$;

2. If $x, y \in X$ such that $\alpha_{\gamma}Cl(\{x\}) \neq \alpha_{\gamma}Cl(\{y\})$, then there exist α_{γ} -closed sets F_1 and F_2 such that $x \in F_1, y \notin F_1, y \in F_2, x \notin F_2$ and $X = F_1 \cup F_2$.

Proof. Obvious.

Proposition 3.46. If (X, τ) is $\alpha_{\gamma} R_1$, then (X, τ) is $\alpha_{\gamma} R_0$.

Proof. Let U be α_{γ} -open such that $x \in U$. If $y \notin U$, since $x \notin \alpha_{\gamma}Cl(\{y\})$, we have $\alpha_{\gamma}Cl(\{x\}) \neq \alpha_{\gamma}Cl(\{y\})$. So, there exists an α_{γ} -open set V such that $\alpha_{\gamma}Cl(\{y\}) \subseteq V$ and $x \notin V$, which implies $y \notin \alpha_{\gamma}Cl(\{x\})$. Hence $\alpha_{\gamma}Cl(\{x\}) \subseteq U$. Therefore, (X, τ) is $\alpha_{\gamma}R_0$.

Remark 3.47. The converse of the above proposition need not be ture in general as shown in the following example.

Example 3.48. Consider $X = \{1, 2, 3\}$ with the discrete topology τ on X. Define an operation γ on $\alpha O(X)$ by

$$A^{\gamma} = \begin{cases} A & \text{if } A = \{1, 2\} \text{ or } \{1, 3\} \text{ or } \{2, 3\} \\ X & \text{otherwise.} \end{cases}$$

Then, X is an $\alpha_{\gamma}R_0$ space but not $\alpha_{\gamma}R_1$.

Corollary 3.49. A topological space (X, τ) with an operation γ on $\alpha O(X)$ is $\alpha_{\gamma} R_1$ if and only if for $x, y \in X$, $\alpha_{\gamma} ker(\{x\}) \neq \alpha_{\gamma} ker(\{y\})$, there exist disjoint α_{γ} -open sets U and V such that $\alpha_{\gamma} Cl(\{x\}) \subseteq U$ and $\alpha_{\gamma} Cl(\{y\}) \subseteq V$.

Proof. Follows from Proposition 2.4.

Proposition 3.50. A topological space (X, τ) is $\alpha_{\gamma}R_1$ if and only if $x \in X \setminus \alpha_{\gamma}Cl(\{y\})$ implies that x and y have disjoint α_{γ} -open neighbourhoods.

Proof. Necessity: Let $x \in X \setminus \alpha_{\gamma} Cl(\{y\})$. Then $\alpha_{\gamma} Cl(\{x\}) \neq \alpha_{\gamma} Cl(\{y\})$, so, x and y have disjoint α_{γ} -open neighbourhoods.

Sufficiency: Firstly, we show that (X, τ) is $\alpha_{\gamma}R_0$. Let U be an α_{γ} -open set and $x \in U$. Suppose that $y \notin U$. Then, $\alpha_{\gamma}Cl(\{y\}) \cap U = \phi$ and $x \notin \alpha_{\gamma}Cl(\{y\})$. There exist α_{γ} -open sets U_x and U_y such that $x \in U_x$, $y \in U_y$ and $U_x \cap U_y = \phi$. Hence, $\alpha_{\gamma}Cl(\{x\}) \subseteq \alpha_{\gamma}Cl(U_x)$ and $\alpha_{\gamma}Cl(\{x\}) \cap U_y \subseteq \alpha_{\gamma}Cl(U_x) \cap U_y = \phi$. Therefore, $y \notin \alpha_{\gamma}Cl(\{x\})$. Consequently, $\alpha_{\gamma}Cl(\{x\}) \subseteq U$ and (X, τ) is $\alpha_{\gamma}R_0$. Next, we show that (X, τ) is $\alpha_{\gamma}R_1$. Suppose that $\alpha_{\gamma}Cl(\{x\}) \neq \alpha_{\gamma}Cl(\{y\})$. Then, we can assume that there exists $z \in \alpha_{\gamma}Cl(\{x\})$ such that $z \notin \alpha_{\gamma}Cl(\{y\})$. There exist α_{γ} -open sets V_z and V_y such that $z \in V_z$, $y \in V_y$ and $V_z \cap V_y = \phi$. Since $z \in \alpha_{\gamma}Cl(\{x\})$, $x \in V_z$. Since (X, τ) is $\alpha_{\gamma}R_0$, we obtain $\alpha_{\gamma}Cl(\{x\}) \subseteq V_z$, $\alpha_{\gamma}Cl(\{y\}) \subseteq V_y$ and $V_z \cap V_y = \phi$. This shows that (X, τ) is $\alpha_{\gamma}R_1$.

References

[1] M. Caldas, D. N. Georgiou and S. Jafari, *Characterizations of low separation axioms via* α *-open sets and* α *-closure operator*, Bol. Soc. Paran. Mat. 21 (2003), 1-14.

[2] H. Z. Ibrahim, On a class of α_{γ} -open sets in a topological space, Acta Scientiarum. Technology, 35 (3) (2013), 539-545.

[3] A. B. Khalaf and H. Z. Ibrahim, Some properties of operations on $\alpha O(X)$, International Journal of Mathematics and Soft Computing, 6 (1) (2016), 107-120.

[4] S. N. Maheshwari and S. S. Thakur, On α -irresolute mappings, Tamkang J. Math. 11 (1980), 209-214.

[5] H. Maki, R. Devi and K. Balachandran, Generalized α -closed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42 (1993), 13-21.

[6] O. Njastad, On some classes of nearly open sets, Pacific J. Math. 15 (1965), 961-970.

[7] H. Ogata, Operation on topological spaces and associated topology, Math. Japonica, 36 (1) (1991), 175-184.

Alias B. Khalaf Department of Mathematics, Faculty of Science, University of Duhok, Kurdistan-Region, Iraq email: *aliasbkhalaf@gmail.com*

Hariwan Zikri Ibrahim Department of Mathematics, Faculty of Science, University of Zakho, Kurdistan-Region, Iraq email: hariwan_math@yahoo.com

Aynur Keskin Kaymakci Department of Mathematics, Faculty of Science, University of Selcuk, Konya, Turkey email: akeskin@selcuk.edu.tr