FEKETE-SZEGÖ TYPE COEFFICIENT INEQUALITIES FOR A NEW SUBCLASS OF ANALYTIC FUNCTIONS INVOLVING THE Q-DERIVATIVE OPERATOR

S. Bulut

Abstract. We introduce a new subclass of analytic functions of complex order involving the q-derivative operator defined in the open unit disc. For this class, several Fekete-Szegö type coefficient inequalities are derived. Various known special cases of our results are also pointed out.

2010 Mathematics Subject Classification: 30C45.
Keywords: Analytic function, Univalent function, Coefficient inequalities, FeketeSzegö problem, Subordination, Hadamard product (or convolution), q-derivative operator.

1. Introduction and definitions

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1}
\end{equation*}
$$

which are analytic in the unit disk

$$
\mathbb{U}=\{z \in \mathbb{C}:|z|<1\} .
$$

Also let \mathcal{S} denote the subclass of \mathcal{A} consisting of univalent functions in \mathbb{U}.
Fekete and Szegö [8] proved a noticeable result that the estimate

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}-4 \mu+3 & , \quad \mu \leq 0 \tag{2}\\ 1+2 \exp \left(\frac{-2 \mu}{1-\mu}\right) & , \quad 0 \leq \mu \leq 1 \\ 4 \mu-3 & , \quad \mu \geq 1\end{cases}
$$

holds for $f \in \mathcal{S}$. The result is sharp in the sense that for each μ there is a function in the class under consideration for which equality holds.

The coefficient functional

$$
\phi_{\mu}(f)=a_{3}-\mu a_{2}^{2}=\frac{1}{6}\left(f^{\prime \prime \prime}(0)-\frac{3 \mu}{2}\left(f^{\prime \prime}(0)\right)^{2}\right)
$$

on $f \in \mathcal{A}$ represents various geometric quantities as well as in the sense that this behaves well with respect to the rotation, namely

$$
\phi_{\mu}\left(e^{-i \theta} f\left(e^{i \theta} z\right)\right)=e^{2 i \theta} \phi_{\mu}(f) \quad(\theta \in \mathbb{R}) .
$$

In fact, other than the simplest case when

$$
\phi_{0}(f)=a_{3},
$$

we have several important ones. For example,

$$
\phi_{1}(f)=a_{3}-a_{2}^{2}
$$

represents $S_{f}(0) / 6$, where S_{f} denotes the Schwarzian derivative

$$
S_{f}(z)=\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{\prime}-\frac{1}{2}\left(\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right)^{2} .
$$

Moreover, the first two non-trivial coefficients of the k-th root transform

$$
\left(f\left(z^{k}\right)\right)^{\frac{1}{k}}=z+c_{k+1} z^{k+1}+c_{2 k+1} z^{2 k+1}+\cdots
$$

of f with the power series (1), are written by

$$
c_{k+1}=\frac{a_{2}}{k}
$$

and

$$
c_{2 k+1}=\frac{a_{3}}{k}+\frac{(k-1) a_{2}^{2}}{2 k^{2}},
$$

so that

$$
a_{3}-\mu a_{2}^{2}=k\left(c_{2 k+1}-\delta c_{k+1}^{2}\right),
$$

where

$$
\delta=\mu k+\frac{k-1}{2} .
$$

Thus it is quite natural to ask about inequalities for ϕ_{μ} corresponding to subclasses of \mathcal{S}. This is called Fekete-Szegö problem. Actually, many authors have
considered this problem for typical classes of univalent functions (see, for instance $[1,2,4,5,6,7,8,11,12,13,14,15])$.

For two functions f and g, analytic in \mathbb{U}, we say that the function $f(z)$ is subordinate to $g(z)$ in \mathbb{U}, and write

$$
f(z) \prec g(z) \quad(z \in \mathbb{U}),
$$

if there exists a Schwarz function $w(z)$, analytic in \mathbb{U}, with

$$
w(0)=0 \quad \text { and } \quad|w(z)|<1 \quad(z \in \mathbb{U})
$$

such that

$$
f(z)=g(w(z)) \quad(z \in \mathbb{U}) .
$$

In particular, if the function g is univalent in \mathbb{U}, the above subordination is equivalent to

$$
f(0)=g(0) \quad \text { and } \quad f(\mathbb{U}) \subset g(\mathbb{U}) .
$$

Quantum calculus is ordinary classical calculus without the notion of limits. It defines q-calculus and h-calculus. Here h ostensibly stands for Planck's constant, while q stands for quantum. Recently, the area of q-calculus has attracted the serious attention of researchers. This great interest is due to its application in various branches of mathematics and physics. The application of q-calculus was initiated by Jackson [9, 10]. He was the first to develop q-integral and q-derivative in a systematic way. Later, geometrical interpretation of q-analysis has been recognized through studies on quantum groups. It also suggests a relation between integrable systems and q-analysis. A comprehensive study on applications of q-calculus in operator theory may be found in [3].

For a function $f \in \mathcal{A}$ given by (1) and $0<q<1$, the q-derivative of function f is defined by (see $[9,10]$)

$$
\begin{equation*}
D_{q} f(z)=\frac{f(q z)-f(z)}{(q-1) z} \quad(z \neq 0) \tag{3}
\end{equation*}
$$

$D_{q} f(0)=f^{\prime}(0)$ and $D_{q}^{2} f(z)=D_{q}\left(D_{q} f(z)\right)$. From (3), we deduce that

$$
\begin{equation*}
D_{q} f(z)=1+\sum_{k=2}^{\infty}[k]_{q} a_{k} z^{k-1}, \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
[k]_{q}=\frac{1-q^{k}}{1-q} . \tag{5}
\end{equation*}
$$

As $q \rightarrow 1^{-},[k]_{q} \rightarrow k$. For a function $g(z)=z^{k}$, we get

$$
\begin{gathered}
D_{q}\left(z^{k}\right)=[k]_{q} z^{k-1}, \\
\lim _{q \rightarrow 1^{-}}\left(D_{q}\left(z^{k}\right)\right)=k z^{k-1}=g^{\prime}(z),
\end{gathered}
$$

where g^{\prime} is the ordinary derivative.
We denote by \mathcal{P} the class of all functions φ which are analytic and univalent in \mathbb{U} and for which $\varphi(\mathbb{U})$ is convex with

$$
\varphi(0)=1 \quad \text { and } \quad \Re\{\varphi(z)\}>0 \quad(z \in \mathbb{U}) .
$$

By making use of the q-derivative of a function $f \in \mathcal{A}$ and the principle of subordination, we introduce the following subclass.

Definition 1. A function $f \in \mathcal{A}$ is said to be in the class $\mathcal{M}_{q, b}^{\lambda}(\varphi) \quad(0 \leq \lambda \leq 1, b \in$ $\mathbb{C} \backslash\{0\}, \varphi \in \mathcal{P})$ if it satisfies the following subordination condition:

$$
1+\frac{1}{b}\left(\frac{z D_{q} \mathcal{F}_{\lambda}(z)}{\mathcal{F}_{\lambda}(z)}-1\right) \prec \varphi(z) \quad(z \in \mathbb{U})
$$

where $\mathcal{F}_{\lambda}(z)=\lambda z D_{q} f(z)+(1-\lambda) f(z)$.
Remark 1. (i) If we set $\lambda=0$ in Definition 1, then we have the class

$$
\mathcal{M}_{q, b}^{0}(\varphi)=\mathcal{S}_{q, b}(\varphi)
$$

which consists of functions satisfying

$$
1+\frac{1}{b}\left(\frac{z D_{q} f(z)}{f(z)}-1\right) \prec \varphi(z) \quad(z \in \mathbb{U})
$$

(ii) If we set $\lambda=1$ in Definition 1, then we have the class

$$
\mathcal{M}_{q, b}^{1}(\varphi)=\mathcal{C}_{q, b}(\varphi)
$$

which consists of functions satisfying

$$
1+\frac{1}{b}\left(\frac{D_{q}\left(z D_{q} f(z)\right)}{D_{q} f(z)}-1\right) \prec \varphi(z) \quad(z \in \mathbb{U})
$$

The classes $\mathcal{S}_{q, b}(\varphi)$ and $\mathcal{C}_{q, b}(\varphi)$ was introduced and studied by Seoudy and Aouf [16].
S. Bulut - Fekete-Szegö type coefficient inequalities ...

Remark 2. We also get

$$
\lim _{q \rightarrow 1^{-}} \mathcal{M}_{q, b}^{\lambda}(\varphi)=\mathcal{M}_{b}^{\lambda}(\varphi)
$$

which consists of functions satisfying

$$
1+\frac{1}{b}\left(\frac{z f^{\prime}(z)+\lambda z^{2} f^{\prime \prime}(z)}{\lambda z f^{\prime}(z)+(1-\lambda) f(z)}-1\right) \prec \varphi(z) \quad(z \in \mathbb{U}) .
$$

We shall require the following lemmas.
Lemma 1. [17] Let $p \in \mathcal{P}$ with $p(z)=1+c_{1} z+c_{2} z^{2}+\cdots$. Then for any complex number ν

$$
\left|c_{2}-\nu c_{1}^{2}\right| \leq 2 \max \{1,|2 \nu-1|\},
$$

and the result is sharp for the functions given by

$$
p(z)=\frac{1+z^{2}}{1-z^{2}} \quad \text { and } \quad p(z)=\frac{1+z}{1-z} .
$$

Lemma 2. [15] If $p \in \mathcal{P}$ with $p(z)=1+c_{1} z+c_{2} z^{2}+\cdots$, then

$$
\left|c_{2}-\nu c_{1}^{2}\right| \leq\left\{\begin{array}{ll}
-4 \nu+2 & , \quad \nu \leq 0 \\
2 & , \quad 0 \leq \nu \leq 1 \\
4 \nu-2 & , \quad \nu \geq 1
\end{array} .\right.
$$

When $\nu<0$ or $\nu>1$, equality holds true if and only if $p(z)$ is $\frac{1+z}{1-z}$ or one of its rotations. If $0<\nu<1$, then equality holds true if and only if $p(z)$ is $\frac{1+z^{2}}{1-z^{2}}$ or one of its rotations. If $\nu=0$, then the equality holds true if and only if

$$
p(z)=\left(\frac{1}{2}+\frac{1}{2} \eta\right) \frac{1+z}{1-z}+\left(\frac{1}{2}-\frac{1}{2} \eta\right) \frac{1-z}{1+z} \quad(0 \leq \eta \leq 1)
$$

or one of its rotations. If $\nu=1$, then the equality holds true if and only if $p(z)$ is the reciprocal of one of the functions such that the equality holds true in the case when $\nu=0$.

Although the above upper bound is sharp, in the case when $0<\nu<1$, it can be further improved as follows:

$$
\left|c_{2}-\nu c_{1}^{2}\right|+\nu\left|c_{1}\right|^{2} \leq 2 \quad\left(0 \leq \nu \leq \frac{1}{2}\right)
$$

and

$$
\left|c_{2}-\nu c_{1}^{2}\right|+(1-\nu)\left|c_{1}\right|^{2} \leq 2 \quad\left(\frac{1}{2} \leq \nu \leq 1\right) .
$$

2. Fekete-Szegö Problem for the Function Class $\mathcal{M}_{q, b}^{\lambda}(\varphi)$

Unless otherwise mentioned, we assume throughout this paper that the function $0 \leq \lambda \leq 1,0<q<1, b \in \mathbb{C} \backslash\{0\}, \varphi \in \mathcal{P},[k]_{q}$ is given by (5) and $z \in \mathbb{U}$.

Theorem 3. Let $\varphi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots$ with $B_{1} \neq 0$. If $f(z)$ given by (1) belongs to the function class $\mathcal{M}_{q, b}^{\lambda}(\varphi)$, then for any complex number μ

$$
\begin{align*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq & \frac{\left|B_{1} b\right|}{\left([3]_{q}-1\right)\left(1-\lambda+[3]_{q} \lambda\right)} \tag{6}\\
& \times \max \left\{1,\left|\frac{B_{2}}{B_{1}}+\frac{B_{1} b}{[2]_{q}-1}\left(1-\frac{\left([3]_{q}-1\right)\left(1-\lambda+[3]_{q} \lambda\right)}{\left([2]_{q}-1\right)\left(1-\lambda+[2]_{q} \lambda\right)^{2}} \mu\right)\right|\right\}
\end{align*}
$$

The result is sharp.
Proof. If $f \in \mathcal{M}_{q, b}^{\lambda}(\varphi)$, then we have

$$
h(z) \prec \varphi(z),
$$

where

$$
\begin{equation*}
h(z)=1+\frac{1}{b}\left(\frac{z D_{q} \mathcal{F}_{\lambda}(z)}{\mathcal{F}_{\lambda}(z)}-1\right)=1+h_{1} z+h_{2} z^{2}+\cdots \tag{7}
\end{equation*}
$$

with $\mathcal{F}_{\lambda}(z)=\lambda z D_{q} f(z)+(1-\lambda) f(z)$. From (7), we have

$$
\begin{align*}
h_{1} & =\frac{1}{b}\left([2]_{q}-1\right)\left(1-\lambda+[2]_{q} \lambda\right) a_{2} \tag{8}\\
h_{2} & =\frac{1}{b}\left([3]_{q}-1\right)\left(1-\lambda+[3]_{q} \lambda\right) a_{3}-\left([2]_{q}-1\right)\left(1-\lambda+[2]_{q} \lambda\right)^{2} a_{2}^{2} \tag{9}
\end{align*}
$$

Since $\varphi(z)$ is univalent and $h(z) \prec \varphi(z)$, the function

$$
p_{1}(z)=\frac{1+\varphi^{-1}(h(z))}{1-\varphi^{-1}(h(z))}=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots
$$

is analytic and has a positive real part in \mathbb{U}. Also we have

$$
\begin{align*}
h(z) & =\varphi\left(\frac{p_{1}(z)-1}{p_{1}(z)+1}\right) \\
& =1+\frac{B_{1} c_{1}}{2} z+\left[\frac{B_{1}}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{B_{2} c_{1}^{2}}{4}\right] z^{2}+\cdots \tag{10}
\end{align*}
$$

Thus by (7) - (10) we get

$$
\begin{align*}
a_{2} & =\frac{B_{1} c_{1} b}{2\left([2]_{q}-1\right)\left(1-\lambda+[2]_{q} \lambda\right)} \tag{11}\\
a_{3} & =\frac{B_{1} b}{2\left([3]_{q}-1\right)\left(1-\lambda+[3]_{q} \lambda\right)}\left[c_{2}-\frac{1}{2}\left(1-\frac{B_{2}}{B_{1}}-\frac{B_{1} b}{[2]_{q}-1}\right) c_{1}^{2}\right] . \tag{12}
\end{align*}
$$

Taking into account (11) and (12), we obtain

$$
\begin{equation*}
a_{3}-\mu a_{2}^{2}=\frac{B_{1} b}{2\left([3]_{q}-1\right)\left(1-\lambda+[3]_{q} \lambda\right)}\left(c_{2}-\delta c_{1}^{2}\right), \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta=\frac{1}{2}\left[1-\frac{B_{2}}{B_{1}}-\frac{B_{1} b}{[2]_{q}-1}\left(1-\frac{\left([3]_{q}-1\right)\left(1-\lambda+[3]_{q} \lambda\right)}{\left([2]_{q}-1\right)\left(1-\lambda+[2]_{q} \lambda\right)^{2}} \mu\right)\right] . \tag{14}
\end{equation*}
$$

Our result now follows by an application of Lemma 1. The result is sharp for the functions

$$
1+\frac{1}{b}\left(\frac{z D_{q} \mathcal{F}_{\lambda}(z)}{\mathcal{F}_{\lambda}(z)}-1\right)=\varphi\left(z^{2}\right) \quad \text { and } \quad 1+\frac{1}{b}\left(\frac{z D_{q} \mathcal{F}_{\lambda}(z)}{\mathcal{F}_{\lambda}(z)}-1\right)=\varphi(z)
$$

This completes the proof of Theorem 3.
Corollary 4. Taking $\lambda=0$ and $\lambda=1$ in Theorem 3, we get [16, Theorem 1] and [16, Theorem 2], respectively.

Taking $q \rightarrow 1^{-}$in Theorem 3, we obtain the following result for the functions belonging to the class $\mathcal{M}_{b}^{\lambda}(\varphi)$.

Corollary 5. Let $\varphi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots$ with $B_{1} \neq 0$. If $f(z)$ given by (1) belongs to the function class $\mathcal{M}_{b}^{\lambda}(\varphi)$, then for any complex number μ

$$
\begin{aligned}
\left|a_{3}-\mu a_{2}^{2}\right| \leq & \frac{\left|B_{1} b\right|}{2(1+2 \lambda)} \\
& \times \max \left\{1,\left|\frac{B_{2}}{B_{1}}+\left(1-\frac{2(1+2 \lambda)}{(1+\lambda)^{2}} \mu\right) B_{1} b\right|\right\}
\end{aligned}
$$

The result is sharp.

Corollary 6. Taking $\lambda=0$ and $\lambda=1$ in Theorem 5, we get [16, Corollary 1] and [16, Corollary 2], respectively.

Theorem 7. Let $\varphi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots$ with $B_{1}>0$ and $B_{2} \geq 0$. If $f(z)$ given by (1) belongs to the function class $\mathcal{M}_{q, b}^{\lambda}(\varphi)$ with $b>0$, then

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right| \leq \\
& \begin{cases}\frac{B_{2} b}{\left([3]_{q}-1\right)\left(1-\lambda+[3]_{q} \lambda\right)}+\frac{B_{1}^{2} b^{2}}{\left([2]_{q}-1\right)}\left[\frac{1}{\left([3]_{q}-1\right)\left(1-\lambda+[3]_{q} \lambda\right)}-\frac{\mu}{\left([2]_{q}-1\right)\left(1-\lambda+[2]_{q} \lambda\right)^{2}}\right] & , \quad \mu \leq \sigma_{1} \\
\left([3]_{q}-1\right)\left(1-\lambda+[3]_{q} \lambda\right) & \sigma_{1} \leq \mu \leq \sigma_{2}, \\
-\frac{B_{2} b}{\left([3]_{q}-1\right)\left(1-\lambda+[3]_{q} \lambda\right)}-\frac{B_{1}^{2} b^{2}}{\left([2]_{q}-1\right)}\left[\frac{1}{\left([3]_{q}-1\right)\left(1-\lambda+[3]_{q} \lambda\right)}-\frac{\mu}{\left([2]_{q}-1\right)\left(1-\lambda+[2]_{q} \lambda\right)^{2}}\right] & , \quad \mu \geq \sigma_{2}\end{cases}
\end{aligned}
$$

where

$$
\begin{align*}
& \sigma_{1}=\frac{\left([2]_{q}-1\right)\left(1-\lambda+[2]_{q} \lambda\right)^{2}\left[B_{1}^{2} b+\left([2]_{q}-1\right)\left(B_{2}-B_{1}\right)\right]}{\left([3]_{q}-1\right)\left(1-\lambda+[3]_{q} \lambda\right) B_{1}^{2} b}, \tag{15}\\
& \sigma_{2}=\frac{\left([2]_{q}-1\right)\left(1-\lambda+[2]_{q} \lambda\right)^{2}\left[B_{1}^{2} b+\left([2]_{q}-1\right)\left(B_{2}+B_{1}\right)\right]}{\left([3]_{q}-1\right)\left(1-\lambda+[3]_{q} \lambda\right) B_{1}^{2} b}, \tag{16}\\
& \sigma_{3}=\frac{\left([2]_{q}-1\right)\left(1-\lambda+[2]_{q} \lambda\right)^{2}\left[B_{1}^{2} b+\left([2]_{q}-1\right) B_{2}\right]}{\left([3]_{q}-1\right)\left(1-\lambda+[3]_{q} \lambda\right) B_{1}^{2} b} . \tag{17}
\end{align*}
$$

If $\sigma_{1} \leq \mu \leq \sigma_{3}$, then

$$
\begin{aligned}
& \quad\left|a_{3}-\mu a_{2}^{2}\right| \\
& \quad+\frac{\left([2]_{q}-1\right)^{2}\left(1-\lambda+[2]_{q} \lambda\right)^{2}}{\left([3]_{q}-1\right)\left(1-\lambda+[3]_{q} \lambda\right) B_{1}^{2} b} \\
& \quad \times\left\{B_{1}-B_{2}-\frac{B_{1}^{2} b}{\left([2]_{q}-1\right)}\left(1-\frac{\left([3]_{q}-1\right)\left(1-\lambda+[3]_{q} \lambda\right)}{\left([2]_{q}-1\right)\left(1-\lambda+[2]_{q} \lambda\right)^{2}} \mu\right)\right\}\left|a_{2}\right|^{2} \\
& \leq \\
& \quad \frac{B_{1} b}{\left([3]_{q}-1\right)\left(1-\lambda+[3]_{q} \lambda\right)} .
\end{aligned}
$$

Furthermore, if $\sigma_{3} \leq \mu \leq \sigma_{2}$, then

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right| \\
& +\frac{\left([2]_{q}-1\right)^{2}\left(1-\lambda+[2]_{q} \lambda\right)^{2}}{\left([3]_{q}-1\right)\left(1-\lambda+[3]_{q} \lambda\right) B_{1}^{2} b} \\
& \times\left\{B_{1}+B_{2}+\frac{B_{1}^{2} b}{\left([2]_{q}-1\right)}\left(1-\frac{\left([3]_{q}-1\right)\left(1-\lambda+[3]_{q} \lambda\right)}{\left([2]_{q}-1\right)\left(1-\lambda+[2]_{q} \lambda\right)^{2}} \mu\right)\right\}\left|a_{2}\right|^{2} \\
\leq & \frac{B_{1} b}{\left([3]_{q}-1\right)\left(1-\lambda+[3]_{q} \lambda\right)} .
\end{aligned}
$$

Each of these results is sharp.
Proof. Applying Lemma 2 to (13) and (14), we can get our results. On the other hand, using (13) for the values of $\sigma_{1} \leq \mu \leq \sigma_{3}$, we have

$$
\begin{aligned}
\left|a_{3}-\mu a_{2}^{2}\right|+\left(\mu-\sigma_{1}\right)\left|a_{2}\right|^{2}= & \frac{B_{1} b}{2\left([3]_{q}-1\right)\left(1-\lambda+[3]_{q} \lambda\right)}\left|c_{2}-\delta c_{1}^{2}\right| \\
& +\left(\mu-\sigma_{1}\right) \frac{B_{1}^{2} b^{2}\left|c_{1}\right|^{2}}{4\left([2]_{q}-1\right)^{2}\left(1-\lambda+[2]_{q} \lambda\right)^{2}} \\
= & \frac{B_{1} b}{2\left([3]_{q}-1\right)\left(1-\lambda+[3]_{q} \lambda\right)}\left\{\left|c_{2}-\delta c_{1}^{2}\right|+\delta\left|c_{1}\right|^{2}\right\} \\
\leq & \frac{B_{1} b}{\left([3]_{q}-1\right)\left(1-\lambda+[3]_{q} \lambda\right)} .
\end{aligned}
$$

Similarly, for the values of $\sigma_{3} \leq \mu \leq \sigma_{2}$, we get

$$
\begin{aligned}
\left|a_{3}-\mu a_{2}^{2}\right|+\left(\sigma_{2}-\mu\right)\left|a_{2}\right|^{2}= & \frac{B_{1} b}{2\left([3]_{q}-1\right)\left(1-\lambda+[3]_{q} \lambda\right)}\left|c_{2}-\delta c_{1}^{2}\right| \\
& +\left(\sigma_{2}-\mu\right) \frac{B_{1}^{2} b^{2}\left|c_{1}\right|^{2}}{4\left([2]_{q}-1\right)^{2}\left(1-\lambda+[2]_{q} \lambda\right)^{2}} \\
= & \frac{B_{1} b}{2\left([3]_{q}-1\right)\left(1-\lambda+[3]_{q} \lambda\right)}\left\{\left|c_{2}-\delta c_{1}^{2}\right|+(1-\delta)\left|c_{1}\right|^{2}\right\} \\
\leq & \frac{B_{1} b}{\left([3]_{q}-1\right)\left(1-\lambda+[3]_{q} \lambda\right)}
\end{aligned}
$$

To show that the bounds asserted by Theorem 7 are sharp, we define the following functions:

$$
K_{\varphi_{n}}(z) \quad(n=2,3, \ldots),
$$

with

$$
K_{\varphi_{n}}(0)=0=K_{\varphi_{n}}^{\prime}(0)-1,
$$

by

$$
1+\frac{1}{b}\left(\frac{z D_{q} K_{\varphi_{n}}(z)}{K_{\varphi_{n}}(z)}-1\right)=\varphi\left(z^{n-1}\right)
$$

and the functions $F_{\eta}(z)$ and $G_{\eta}(z)(0 \leq \eta \leq 1)$, with

$$
F_{\eta}(0)=0=F_{\eta}^{\prime}(0)-1 \quad \text { and } \quad G_{\eta}(0)=0=G_{\eta}^{\prime}(0)-1
$$

by

$$
1+\frac{1}{b}\left(\frac{z D_{q} F_{\eta}(z)}{F_{\eta}(z)}-1\right)=\varphi\left(\frac{z(z+\eta)}{1+\eta z}\right)
$$

and

$$
1+\frac{1}{b}\left(\frac{z D_{q} G_{\eta}(z)}{G_{\eta}(z)}-1\right)=\varphi\left(-\frac{z(z+\eta)}{1+\eta z}\right)
$$

respectively. Then, clearly, the functions $K_{\varphi_{n}}, F_{\eta}, G_{\eta} \in \mathcal{M}_{q, b}^{\lambda}(\varphi)$. If $\mu<\sigma_{1}$ or $\mu>\sigma_{2}$, then the equality in Theorem 7 holds true if and only if f is $K_{\varphi_{2}}$ or one of its rotations. When $\sigma_{1}<\mu<\sigma_{2}$, then the equality holds true if and only if f is $K_{\varphi_{3}}$ or one of its rotations. If $\mu=\sigma_{1}$, then the equality holds true if and only if f is F_{η} or one of its rotations. If $\mu=\sigma_{2}$, then the equality holds true if and only if f is G_{η} or one of its rotations.

Corollary 8. Taking $\lambda=0$ and $\lambda=1$ in Theorem 7, we get [16, Theorem 3] and [16, Theorem 4], respectively.

Taking $q \rightarrow 1^{-}$in Theorem 7, we obtain the following result for the functions belonging to the class $\mathcal{M}_{b}^{\lambda}(\varphi)$.

Corollary 9. Let $\varphi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots$ with $B_{1}>0$ and $B_{2} \geq 0$. If $f(z)$ given by (1) belongs to the function class $\mathcal{M}_{b}^{\lambda}(\varphi)$ with $b>0$, then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \begin{cases}\frac{B_{2} b}{2(1+2 \lambda)}+\left[\frac{1}{2(1+2 \lambda)}-\frac{\mu}{(1+\lambda)^{2}}\right] B_{1}^{2} b^{2} & , \mu \leq \sigma_{1} \\ \frac{B_{1} b}{2(1+2 \lambda)} & , \sigma_{1} \leq \mu \leq \sigma_{2} \\ -\frac{B_{2} b}{2(1+2 \lambda)}-\left[\frac{1}{2(1+2 \lambda)}-\frac{\mu}{(1+\lambda)^{2}}\right] B_{1}^{2} b^{2} & , \quad \mu \geq \sigma_{2}\end{cases}
$$

where

$$
\begin{aligned}
\sigma_{1} & =\frac{(1+\lambda)^{2}\left[B_{1}^{2} b+B_{2}-B_{1}\right]}{2(1+2 \lambda) B_{1}^{2} b}, \\
\sigma_{2} & =\frac{(1+\lambda)^{2}\left[B_{1}^{2} b+B_{2}+B_{1}\right]}{2(1+2 \lambda) B_{1}^{2} b}, \\
\sigma_{3} & =\frac{(1+\lambda)^{2}\left[B_{1}^{2} b+B_{2}\right]}{2(1+2 \lambda) B_{1}^{2} b} .
\end{aligned}
$$

If $\sigma_{1} \leq \mu \leq \sigma_{3}$, then

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right|+\frac{(1+\lambda)^{2}}{2(1+2 \lambda) B_{1}^{2} b}\left\{B_{1}-B_{2}-\left(1-\frac{2(1+2 \lambda)}{(1+\lambda)^{2}} \mu\right) B_{1}^{2} b\right\}\left|a_{2}\right|^{2} \\
\leq & \frac{B_{1} b}{2(1+2 \lambda)} .
\end{aligned}
$$

Furthermore, if $\sigma_{3} \leq \mu \leq \sigma_{2}$, then

$$
\begin{aligned}
& \left|a_{3}-\mu a_{2}^{2}\right|+\frac{(1+\lambda)^{2}}{2(1+2 \lambda) B_{1}^{2} b}\left\{B_{1}+B_{2}+\left(1-\frac{2(1+2 \lambda)}{(1+\lambda)^{2}} \mu\right) B_{1}^{2} b\right\}\left|a_{2}\right|^{2} \\
\leq & \frac{B_{1} b}{2(1+2 \lambda)} .
\end{aligned}
$$

Each of these results is sharp.
Corollary 10. Taking $\lambda=0$ and $\lambda=1$ in Theorem 9, we get [16, Corollary 3] and [16, Corollary 4], respectively.
S. Bulut - Fekete-Szegö type coefficient inequalities ...

References

[1] H.R. Abdel-Gawad, D.K. Thomas, The Fekete-Szegö problem for strongly close-to-convex functions, Proc. Amer. Math. Soc. 114 (1992), 345-349.
[2] H.S. Al-Amiri, Certain generalization of prestarlike functions, J. Aust. Math. Soc. 28 (1979), 325-334.
[3] A. Aral, V. Gupta, R.P. Agarwal, Applications of q-Calculus in Operator Theory, Springer, New York, USA, 2013.
[4] J.H. Choi, Y.Ch. Kim, T. Sugawa, A general approach to the Fekete-Szegö problem, J. Math. Soc. Japan 59, 3 (2007), 707-727.
[5] A. Chonweerayoot, D.K. Thomas, W. Upakarnitikaset, On the Fekete-Szegö theorem for close-to-convex functions, Publ. Inst. Math. (Beograd) (N.S.) 66 (1992), 18-26.
[6] M. Darus, D.K. Thomas, On the Fekete-Szegö theorem for close-to-convex functions, Math. Japonica 44 (1996), 507-511.
[7] M. Darus, D.K. Thomas, On the Fekete-Szegö theorem for close-to-convex functions, Math. Japonica 47 (1998), 125-132.
[8] M. Fekete, G. Szegö, Eine bemerkung über ungerade schlichte funktionen, J. Lond. Math. Soc. 8 (1933), 85-89.
[9] F.H. Jackson, On q-definite integrals, Quarterly J. Pure Appl. Math. 41 (1910), 193-203.
[10] F.H. Jackson, On q-functions and a certain difference operator, Trans. R. Soc. Edinb. 46 (1908), 253-281.
[11] S. Kanas, A. Lecko, On the Fekete-Szegö problem and the domain convexity for a certain class of univalent functions, Folia Sci. Univ. Tech. Resov. 73 (1990), 49-58.
[12] F.R. Keogh, E.P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8-12.
[13] W. Koepf, On the Fekete-Szegö problem for close-to-convex functions, Proc. Amer. Math. Soc. 101 (1987), 89-95.
[14] R.R. London, Fekete-Szegö inequalities for close-to-convex functions, Proc. Amer. Math. Soc. 117 (1993), 947-950.
[15] W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis (Tianjin, 1992), 157-169, Conf. Proc. Lecture Notes Anal., I, Int. Press, Cambridge, MA, 1994.
[16] T.M. Seoudy, M.K. Aouf, Coefficient estimates of new classes of q-starlike and q-convex functions of complex order, J. Math. Inequal. 10, 1 (2016), 135-145.
[17] V. Ravichandran, A. Gangadharan, M. Darus, Fekete-Szegö inequality for certain class of Bazilevic functions, Far East J. Math. Sci. 15 (2004), 171-180.

Serap Bulut
Kocaeli University,
Faculty of Aviation and Space Sciences,
Arslanbey Campus,
Kocaeli, Turkey
email: serap.bulut@kocaeli.edu.tr

