# GENERALIZATION MEASURE FOR CONES AND SPHERES 

S. Owa, D. Kawanabe, K. Teramoto, R. Hirahara, K. Yamamoto, T. Yamamori

Abstract. Let $S_{2}$ be some the 2-dimensional figure and $V_{2}$ be the 2-dimensional measure of $S_{2}$. From this $S_{2}$, the $n$-dimensional cone $S_{n}$ and the $n$-dimensional measure $V_{n}$ of $S_{n}$ are considered. Applying the fractional integrals $I_{x}^{\alpha} f(x)$ of $f(x)$, we introduce the $\alpha$-dimensional cone $S_{\alpha}$ for $\alpha \geqq 3$ and the $\alpha$-dimensional measure $V_{\alpha}$ of $S_{\alpha}$. Furthremore, the $\alpha$-dimensional sphere $S_{\alpha}(r)$ with the radius $r$ and the $\alpha$-dimensional measure $V_{\alpha}(r)$ of $S_{\alpha}(r)$ are considered.

2010 Mathematics Subject Classification: 97I50.
Keywords: $n$-dimensional cone, $n$-dimensional measure, fractional calculus, $n$ dimensional sphere.

## 1. Introduction

Let $S_{2}$ be some the 2-dimensional figure with the 2 -dimensional measure $V_{2}$. For such the 2-dimensional figure $S_{2}$, let $S_{3}$ be the 3-dimensional cone with the height $h$ from the vertex and $V_{3}$ be the 3 -dimensional measure of $S_{3}$. Similarly, we define the $n$-dimensional cone $S_{n}$ with the height $x$ from the vertex for $S_{n-1}$ and the $n$ dimensional measure $V_{n}$ of $S_{n}$. For the 3 -dimensional cone $S_{3}$, we denote by $V_{2}(x)$ the area of the base $S_{2}(x)$ which has the height $x$ from the vertex and $S_{2} \backsim S_{2}(x)$. Then we have that

$$
\begin{equation*}
V_{2}(x)=\frac{V_{2}}{h^{2}} x^{2} \tag{1.1}
\end{equation*}
$$

Thus we get

$$
\begin{equation*}
V_{3}=\int_{0}^{h} V_{2}(x) d x=\frac{V_{2}}{h^{2}} \int_{0}^{h} x^{2} d x=\frac{2 h}{3!} V_{2} \tag{1.2}
\end{equation*}
$$

Next, for the 3-dimensional cone $S_{3}$, we say that $S_{4}$ is the 4-dimensional cone which has the height $h$ from the vertex for $S_{3}$. Denoting by $V_{4}$ the 4-dimensional measure
S. Owa, D. Kawanabe, K. Teramoto, R. Hirahara, K. Yamamoto, T. Yamamori -
of $S_{4}$, we consider the 3-dimensional measure $V_{3}(x)$ of $S_{3}(x)$ which is the height $x(0<x<h)$ from the vertex. Then we know that

$$
\begin{equation*}
V_{3}(x)=\frac{V_{3}}{h^{3}} x^{3}, \tag{1.3}
\end{equation*}
$$

and that

$$
\begin{equation*}
V_{4}=\int_{0}^{h} V_{3}(x) d x=\frac{V_{3}}{h^{3}} \int_{0}^{h} x^{3} d x=\frac{2 h^{2}}{4!} V_{2} \tag{1.4}
\end{equation*}
$$

Similarly, we have that the $n$-dimensional measure $V_{n}$ of the $n$-dimensional cone $S_{n}$ is given by

$$
\begin{equation*}
V_{n}=\int_{0}^{h} V_{n-1} d x=\frac{V_{n-1}}{h^{n-1}} \int_{0}^{h} x^{n-1} d x=\frac{2 h^{n-2}}{n!} V_{2} \tag{1.5}
\end{equation*}
$$

## 2. Generalization measure for cones

For a real number $\alpha$ such that $\alpha \geqq 3$, we consider the $\alpha$-dimensional cone $S_{\alpha}$. we also denote by $V_{\alpha}$ the $\alpha$-dimensional measure of $S_{\alpha}$. For a real number $x$ such that $x \neq 0,-1,-2, \cdots$, the gamma function $\Gamma(x)$ is defined by

$$
\begin{equation*}
\Gamma(x)=\int_{0}^{\infty} e^{-t} t^{x-1} d t \tag{2.1}
\end{equation*}
$$

This gamma function $\Gamma(x)$ has the following properties

$$
\begin{equation*}
\Gamma(x+1)=x \Gamma(x) \quad(x \neq 0,-1,-2, \cdots) \tag{2.2}
\end{equation*}
$$

$\Gamma(1)=1$ and $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.
Furthermore, for $x>0$ and $y>0$, Bate function $B(x, y)$ is given by

$$
\begin{equation*}
B(x, y)=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t \tag{2.3}
\end{equation*}
$$

Then, we know that

$$
\begin{equation*}
B(x, y)=\frac{\Gamma(x) \Gamma(y)}{\Gamma(x+y)} \quad(x>0, y>0) \tag{2.4}
\end{equation*}
$$

Using $\Gamma(x)$, the fractional integral of order $\alpha I_{x}^{\alpha} f(x)$ of $f(x)$ is defined by

$$
\begin{equation*}
I_{x}^{\alpha} f(x)=\frac{1}{\Gamma(\alpha)} \int_{0}^{x} \frac{f(t)}{(x-t)^{1-\alpha}} d t \quad(\alpha>0) \tag{2.5}
\end{equation*}
$$

S. Owa, D. Kawanabe, K. Teramoto, R. Hirahara, K. Yamamoto, T. Yamamori -

The fractional calculus (fractional integral and fractional derivative) were defined by Owa [1] and applied by Owa and Srivastava [2] and Srivastava and Owa [3].

For example, the fractional integral of order $\alpha$ for $x^{p}(p>0)$ shows us that

$$
\begin{gather*}
I_{x}^{\alpha} x^{p}=\frac{1}{\Gamma(\alpha)} \int_{0}^{x} t^{p}(x-t)^{\alpha-1} d t \\
=\frac{x^{p+\alpha}}{\Gamma(\alpha)} \int_{0}^{1} u^{\alpha-1}(1-u)^{p} d u \quad(x-t=x u) \\
=\frac{x^{p+\alpha}}{\Gamma(\alpha)} B(\alpha, p+1)=\frac{\Gamma(p+1)}{\Gamma(p+\alpha+1)} x^{p+\alpha} . \tag{2.6}
\end{gather*}
$$

From the above, if we consider the $\alpha$-dimensional cone $S_{\alpha}$ with the height $h$ for the $\alpha$-dimension and the $\alpha$-dimensional measure $V_{\alpha}$ of $S_{\alpha}$, we have that

$$
\begin{equation*}
V_{\alpha}=\frac{2 h^{\alpha-2}}{\Gamma(\alpha+1)} V_{2} \quad(\alpha \geqq 3) \tag{2.7}
\end{equation*}
$$

If we take $\alpha=\frac{7}{2}$, then we obtain that

$$
\begin{equation*}
V_{4}=\left[I_{x}^{\frac{1}{2}} V_{\frac{7}{2}}(x)\right]_{x=0}^{x=h}=\left[I_{x}^{\frac{1}{2}}\left(\frac{\Gamma(4) V_{3}}{\Gamma\left(\frac{9}{2}\right) h^{3}} x^{\frac{7}{2}}\right)\right]_{x=0}^{x=h}=\frac{2 V_{2}}{\Gamma\left(\frac{9}{2}\right) h^{2}}\left[\frac{\Gamma\left(\frac{9}{2}\right)}{\Gamma(5)} x^{4}\right]_{x=0}^{x=h}=\frac{2 h^{2}}{4!} V_{2}, \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{\frac{9}{2}}=\left[I_{x}^{\frac{1}{2}} V_{4}(x)\right]_{x=0}^{x=h}=\left[I_{x}^{\frac{1}{2}}\left(\frac{2 V_{2}}{4!h^{2}} x^{4}\right)\right]_{x=0}^{x=h}=\frac{2 V_{2}}{4!h^{2}}\left[\frac{\Gamma(5)}{\Gamma\left(\frac{11}{2}\right)} x^{\frac{9}{2}}\right]_{x=0}^{x=h}=\frac{2 h^{\frac{5}{2}}}{\Gamma\left(\frac{11}{2}\right)} V_{2} . \tag{2.10}
\end{equation*}
$$

Further, if we consider $\alpha=\frac{10}{3}$, then we have that

$$
\begin{equation*}
V_{\frac{10}{3}}=\left[I_{x}^{\frac{1}{3}} V_{3}(x)\right]_{x=0}^{x=h}=\frac{V_{3}}{h^{3}}\left[I_{x}^{\frac{1}{3}} x^{3}\right]_{x=0}^{x=h}=\frac{V_{3}}{h^{3}}\left[\frac{\Gamma(4)}{\Gamma\left(\frac{13}{3}\right)} x^{\frac{10}{3}}\right]_{x=0}^{x=h}=\frac{2 h^{\frac{4}{3}}}{\Gamma\left(\frac{13}{3}\right)} V_{2} \tag{2.11}
\end{equation*}
$$

> S. Owa, D. Kawanabe, K. Teramoto, R. Hirahara, K. Yamamoto, T. Yamamori -
and

$$
\begin{equation*}
V_{4}=\left[I_{x}^{\frac{2}{3}} V_{\frac{10}{3}}(x)\right]_{x=0}^{x=h}=\frac{\Gamma(4) V_{3}}{h^{3} \Gamma\left(\frac{13}{3}\right)}\left[I_{x}^{\frac{2}{3}} x^{\frac{10}{3}}\right]_{x=0}^{x=h}=\frac{2 V_{2}}{\Gamma\left(\frac{13}{3}\right) h^{2}}\left[\frac{\Gamma\left(\frac{13}{3}\right)}{\Gamma(5)} x^{4}\right]_{x=0}^{x=h}=\frac{2 h^{2}}{4!} V_{2} . \tag{2.12}
\end{equation*}
$$

Consequently, if we consider the $\alpha$-dimensional cone $S_{\alpha}$ for $\alpha \geqq 3$ and the $\alpha$ dimensional measure $V_{\alpha}$ of $S_{\alpha}$, then we say that $V_{\alpha}$ is given by

$$
\begin{equation*}
V_{\alpha}=\frac{2 h^{\alpha-2}}{\Gamma(\alpha+1)} V_{2} \tag{2.13}
\end{equation*}
$$

## 3. Generalization measure for spheres

Let $S_{2}(r)$ be the 2-dimensional disk with the radius $r$. Then $S_{2}(r)$ is given by $x^{2}+y^{2}=r^{2}$. If we write the 2-dimensional measure of $S_{2}(r)$ by $V_{2}(r)$, then we know that $V_{2}(r)=\pi r^{2}$.
Let $S_{3}(r)$ be the 3-dimensional sphere with the radius $r$ and $V_{3}(r)$ be the 3-dimensional measure of $S_{3}(r)$. Then, using $x^{2}+y^{2}+z^{2}=r^{2}$, we have that

$$
\begin{equation*}
V_{3}(r)=2 \int_{0}^{r} \pi\left(x^{2}+y^{2}\right) d z=2 \int_{0}^{r} \pi\left(r^{2}-z^{2}\right) d z=\frac{4}{3} \pi r^{3} . \tag{3.1}
\end{equation*}
$$

Further, let $S_{4}(r)$ be the 4-dimensional sphere with the radius $r$ and $V_{4}(r)$ be the 4-dimensional measure of $S_{4}(r)$. Then using $x^{2}+y^{2}+z^{2}+w^{2}=r^{2}$, we obtain that

$$
\begin{gather*}
V_{4}(r)=2 \int_{0}^{r} \frac{4}{3} \pi\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)^{3} d w=\frac{8 \pi}{3} \int_{0}^{r}\left(\sqrt{r^{2}-w^{2}}\right)^{3} d w  \tag{3.2}\\
=\frac{8 \pi r^{4}}{3} \int_{0}^{\frac{\pi}{2}} \cos ^{4} \theta d \theta=\frac{1}{2} \pi^{2} r^{4}
\end{gather*}
$$

with $w=r \sin \theta$.
Similarly, we have that
$V_{5}(r)=\frac{8}{15} \pi^{2} r^{5}, \quad V_{6}(r)=\frac{1}{6} \pi^{3} r^{6}, \quad V_{7}(r)=\frac{16}{105} \pi^{3} r^{7}, \quad V_{8}(r)=\frac{1}{24} \pi^{4} r^{8}, \quad V_{9}(r)=\frac{32}{945} \pi^{4} r^{9}, \cdots$.
Therefore, if we consider the $n$-dimensional sphere $S_{n}(r)$ with the radius $r$ and the $n$-dimensional measure $V_{n}(r)$ of $S_{n}(r)$, then we obtain that

$$
\begin{equation*}
V_{n}(r)=\frac{1}{m!} \pi^{m} r^{2 m} \quad(n=2 m) \tag{3.2}
\end{equation*}
$$

S. Owa, D. Kawanabe, K. Teramoto, R. Hirahara, K. Yamamoto, T. Yamamori -
and

$$
\begin{equation*}
V_{n}(r)=\frac{2^{2 m-1}(m-1)!}{(2 m-1)!} \pi^{m-1} r^{2 m-1} \quad(n=2 m-1) \tag{3.3}
\end{equation*}
$$

Therefore, using the gamma function, we can write that

$$
\begin{equation*}
V_{n}(r)=\frac{\pi^{\frac{n}{2}}}{\Gamma\left(1+\frac{n}{2}\right)} r^{n} \quad(n=1,2,3, \cdots) \tag{3.4}
\end{equation*}
$$

Consequently, if we consider that the $\alpha$-dimensional sphere $S_{\alpha}(r)$ and the $\alpha$-dimensional measure $V_{\alpha}(r)$ of $S_{\alpha}(r)$ for $\alpha \geqq 2$, then we can write that

$$
\begin{equation*}
V_{\alpha}(r)=\frac{\pi^{\frac{\alpha}{2}}}{\Gamma\left(1+\frac{\alpha}{2}\right)} r^{\alpha} . \tag{3.5}
\end{equation*}
$$

## References

[1] S. Owa, On the distortion theorem. I, Kyungpook Math. J. 18(1978), 53-59.
[2] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39(1987), 1057 - 1077.
[3] H. M. Srivastava and S. Owa, Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, hadamard products, linear operators, and certain subclasses of analytic functions, Nagoya Math. J. 106(1987), 1 - 28.

## Shigeyoshi Owa

Department of Mathematics, Faculty of Education
Yamato University
Katayama 2-5-1, Suita, Osaka 564-0082
Japan
E-mail: owa.shigeyoshi@yamato-u.ac.jp

