GENERALIZATION MEASURE FOR CONES AND SPHERES

S. Owa, D. Kawanabe, K. Teramoto, R. Hirahara, K. Yamamoto, T. Yamamori

ABSTRACT. Let S_2 be some the 2-dimensional figure and V_2 be the 2-dimensional measure of S_2 . From this S_2 , the *n*-dimensional cone S_n and the *n*-dimensional measure V_n of S_n are considered. Applying the fractional integrals $I_x^{\alpha}f(x)$ of f(x), we introduce the α -dimensional cone S_{α} for $\alpha \geq 3$ and the α -dimensional measure V_{α} of S_{α} . Furthermore, the α -dimensional sphere $S_{\alpha}(r)$ with the radius r and the α -dimensional measure $V_{\alpha}(r)$ of $S_{\alpha}(r)$ are considered.

2010 Mathematics Subject Classification: 97I50.

Keywords: n-dimensional cone, *n*-dimensional measure, fractional calculus, *n*-dimensional sphere.

1. INTRODUCTION

Let S_2 be some the 2-dimensional figure with the 2-dimensional measure V_2 . For such the 2-dimensional figure S_2 , let S_3 be the 3-dimensional cone with the height h from the vertex and V_3 be the 3-dimensional measure of S_3 . Similarly, we define the *n*-dimensional cone S_n with the height x from the vertex for S_{n-1} and the *n*dimensional measure V_n of S_n . For the 3-dimensional cone S_3 , we denote by $V_2(x)$ the area of the base $S_2(x)$ which has the height x from the vertex and $S_2 \sim S_2(x)$. Then we have that

(1.1)
$$V_2(x) = \frac{V_2}{h^2} x^2$$

Thus we get

(1.2)
$$V_3 = \int_0^h V_2(x) dx = \frac{V_2}{h^2} \int_0^h x^2 dx = \frac{2h}{3!} V_2.$$

Next, for the 3-dimensional cone S_3 , we say that S_4 is the 4-dimensional cone which has the height h from the vertex for S_3 . Denoting by V_4 the 4-dimensional measure of S_4 , we consider the 3-dimensional measure $V_3(x)$ of $S_3(x)$ which is the height x(0 < x < h) from the vertex. Then we know that

(1.3)
$$V_3(x) = \frac{V_3}{h^3} x^3,$$

and that

(1.4)
$$V_4 = \int_0^h V_3(x) dx = \frac{V_3}{h^3} \int_0^h x^3 dx = \frac{2h^2}{4!} V_2$$

Similarly, we have that the *n*-dimensional measure V_n of the *n*-dimensional cone S_n is given by

(1.5)
$$V_n = \int_0^h V_{n-1} dx = \frac{V_{n-1}}{h^{n-1}} \int_0^h x^{n-1} dx = \frac{2h^{n-2}}{n!} V_2.$$

2. Generalization measure for cones

For a real number α such that $\alpha \geq 3$, we consider the α -dimensional cone S_{α} . we also denote by V_{α} the α -dimensional measure of S_{α} . For a real number x such that $x \neq 0, -1, -2, \cdots$, the gamma function $\Gamma(x)$ is defined by

(2.1)
$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt.$$

This gamma function $\Gamma(x)$ has the following properties

(2.2)
$$\Gamma(x+1) = x\Gamma(x) \quad (x \neq 0, -1, -2, \cdots)$$

 $\Gamma(1) = 1$ and $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.

Furthermore, for x > 0 and y > 0, Bate function B(x, y) is given by

(2.3)
$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$$

Then, we know that

(2.4)
$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} \qquad (x>0, y>0).$$

Using $\Gamma(x)$, the fractional integral of order $\alpha I_x^{\alpha} f(x)$ of f(x) is defined by

(2.5)
$$I_x^{\alpha} f(x) = \frac{1}{\Gamma(\alpha)} \int_0^x \frac{f(t)}{(x-t)^{1-\alpha}} dt \qquad (\alpha > 0).$$

The fractional calculus (fractional integral and fractional derivative) were defined by Owa [1] and applied by Owa and Srivastava [2] and Srivastava and Owa [3].

For example, the fractional integral of order α for x^p (p > 0) shows us that

(2.6)

$$I_x^{\alpha} x^p = \frac{1}{\Gamma(\alpha)} \int_0^x t^p (x-t)^{\alpha-1} dt$$

$$= \frac{x^{p+\alpha}}{\Gamma(\alpha)} \int_0^1 u^{\alpha-1} (1-u)^p du \qquad (x-t=xu)$$

$$= \frac{x^{p+\alpha}}{\Gamma(\alpha)} B(\alpha, p+1) = \frac{\Gamma(p+1)}{\Gamma(p+\alpha+1)} x^{p+\alpha}.$$

From the above, if we consider the α -dimensional cone S_{α} with the height h for the α -dimension and the α -dimensional measure V_{α} of S_{α} , we have that

(2.7)
$$V_{\alpha} = \frac{2h^{\alpha-2}}{\Gamma(\alpha+1)}V_2 \qquad (\alpha \ge 3).$$

If we take $\alpha = \frac{7}{2}$, then we obtain that

(2.8)
$$V_{\frac{7}{2}} = \left[I_x^{\frac{1}{2}}V_3(x)\right]_{x=0}^{x=h} = \frac{V_3}{h^3} \left[I_x^{\frac{1}{2}}x^3\right]_{x=0}^{x=h} = \frac{V_3}{h^3} \left[\frac{\Gamma(4)}{\Gamma(\frac{9}{2})}x^{\frac{7}{2}}\right]_{x=0}^{x=h} = \frac{2h^{\frac{3}{2}}}{\Gamma(\frac{9}{2})}V_2,$$

(2.9)

$$V_4 = \left[I_x^{\frac{1}{2}} V_{\frac{7}{2}}(x)\right]_{x=0}^{x=h} = \left[I_x^{\frac{1}{2}} \left(\frac{\Gamma(4)V_3}{\Gamma(\frac{9}{2})h^3} x^{\frac{7}{2}}\right)\right]_{x=0}^{x=h} = \frac{2V_2}{\Gamma(\frac{9}{2})h^2} \left[\frac{\Gamma(\frac{9}{2})}{\Gamma(5)} x^4\right]_{x=0}^{x=h} = \frac{2h^2}{4!}V_2,$$

and (2.10)

$$V_{\frac{9}{2}} = \left[I_x^{\frac{1}{2}}V_4(x)\right]_{x=0}^{x=h} = \left[I_x^{\frac{1}{2}}\left(\frac{2V_2}{4!h^2}x^4\right)\right]_{x=0}^{x=h} = \frac{2V_2}{4!h^2}\left[\frac{\Gamma(5)}{\Gamma(\frac{11}{2})}x^{\frac{9}{2}}\right]_{x=0}^{x=h} = \frac{2h^{\frac{5}{2}}}{\Gamma(\frac{11}{2})}V_2.$$

Further, if we consider $\alpha = \frac{10}{3}$, then we have that

$$(2.11) V_{\frac{10}{3}} = \left[I_x^{\frac{1}{3}}V_3(x)\right]_{x=0}^{x=h} = \frac{V_3}{h^3} \left[I_x^{\frac{1}{3}}x^3\right]_{x=0}^{x=h} = \frac{V_3}{h^3} \left[\frac{\Gamma(4)}{\Gamma(\frac{13}{3})}x^{\frac{10}{3}}\right]_{x=0}^{x=h} = \frac{2h^{\frac{4}{3}}}{\Gamma(\frac{13}{3})}V_2$$

and (2.12)

$$V_4 = \left[I_x^{\frac{2}{3}}V_{\frac{10}{3}}(x)\right]_{x=0}^{x=h} = \frac{\Gamma(4)V_3}{h^3\Gamma(\frac{13}{3})} \left[I_x^{\frac{2}{3}}x^{\frac{10}{3}}\right]_{x=0}^{x=h} = \frac{2V_2}{\Gamma(\frac{13}{3})h^2} \left[\frac{\Gamma(\frac{13}{3})}{\Gamma(5)}x^4\right]_{x=0}^{x=h} = \frac{2h^2}{4!}V_2.$$

Consequently, if we consider the α -dimensional cone S_{α} for $\alpha \geq 3$ and the α -dimensional measure V_{α} of S_{α} , then we say that V_{α} is given by

(2.13)
$$V_{\alpha} = \frac{2h^{\alpha-2}}{\Gamma(\alpha+1)}V_2.$$

3. Generalization measure for spheres

Let $S_2(r)$ be the 2-dimensional disk with the radius r. Then $S_2(r)$ is given by $x^2 + y^2 = r^2$. If we write the 2-dimensional measure of $S_2(r)$ by $V_2(r)$, then we know that $V_2(r) = \pi r^2$.

Let $S_3(r)$ be the 3-dimensional sphere with the radius r and $V_3(r)$ be the 3-dimensional measure of $S_3(r)$. Then, using $x^2 + y^2 + z^2 = r^2$, we have that

(3.1)
$$V_3(r) = 2 \int_0^r \pi (x^2 + y^2) dz = 2 \int_0^r \pi (r^2 - z^2) dz = \frac{4}{3} \pi r^3.$$

Further, let $S_4(r)$ be the 4-dimensional sphere with the radius r and $V_4(r)$ be the 4-dimensional measure of $S_4(r)$. Then using $x^2 + y^2 + z^2 + w^2 = r^2$, we obtain that

(3.2)
$$V_4(r) = 2 \int_0^r \frac{4}{3} \pi \left(\sqrt{x^2 + y^2 + z^2}\right)^3 dw = \frac{8\pi}{3} \int_0^r \left(\sqrt{r^2 - w^2}\right)^3 dw$$
$$= \frac{8\pi r^4}{3} \int_0^{\frac{\pi}{2}} \cos^4\theta d\theta = \frac{1}{2}\pi^2 r^4$$

with $w = r\sin\theta$.

Similarly, we have that

$$V_5(r) = \frac{8}{15}\pi^2 r^5, \quad V_6(r) = \frac{1}{6}\pi^3 r^6, \quad V_7(r) = \frac{16}{105}\pi^3 r^7, \quad V_8(r) = \frac{1}{24}\pi^4 r^8, \quad V_9(r) = \frac{32}{945}\pi^4 r^9, \cdots$$

Therefore, if we consider the *n*-dimensional sphere $S_n(r)$ with the radius r and the *n*-dimensional measure $V_n(r)$ of $S_n(r)$, then we obtain that

(3.2)
$$V_n(r) = \frac{1}{m!} \pi^m r^{2m} \qquad (n = 2m)$$

and

(3.3)
$$V_n(r) = \frac{2^{2m-1}(m-1)!}{(2m-1)!} \pi^{m-1} r^{2m-1} \qquad (n=2m-1).$$

Therefore, using the gamma function, we can write that

(3.4)
$$V_n(r) = \frac{\pi^{\frac{n}{2}}}{\Gamma(1+\frac{n}{2})}r^n \qquad (n = 1, 2, 3, \cdots)$$

Consequently, if we consider that the α -dimensional sphere $S_{\alpha}(r)$ and the α -dimensional measure $V_{\alpha}(r)$ of $S_{\alpha}(r)$ for $\alpha \geq 2$, then we can write that

(3.5)
$$V_{\alpha}(r) = \frac{\pi^{\frac{\alpha}{2}}}{\Gamma(1+\frac{\alpha}{2})}r^{\alpha}.$$

References

[1] S. Owa, On the distortion theorem. I, Kyungpook Math. J. 18(1978), 53 – 59.

[2] S. Owa and H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Canad. J. Math. 39(1987), 1057 – 1077.

[3] H. M. Srivastava and S. Owa, Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, hadamard products, linear operators, and certain subclasses of analytic functions, Nagoya Math. J. 106(1987), 1-28.

Shigeyoshi Owa Department of Mathematics, Faculty of Education Yamato University Katayama 2-5-1, Suita, Osaka 564-0082 Japan E-mail: owa.shigeyoshi@yamato-u.ac.jp