CERTAIN SUBCLASS OF BESSEL FUNCTIONS WITH RESPECT TO (j, k)-SYMMETRIC POINTS

C. Selvaraj, K.R. Karthikeyan, S. Lakshmi

Abstract. In this paper, the authors introduces new class of analytic functions with respect to (j, k)-symmetric points and investigate various inclusion properties for these classes. Integral representation for functions in these classes and some interesting applications involving a familiar integral operator, are also obtained.

2010 Mathematics Subject Classification: 30C45.
Keywords: Analytic function, Univalent function, Convex function, Bessel function, (j, k)-symmetrical functions.

1. Introduction

Observations: Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \quad a_{n} \geq 0, \tag{1}
\end{equation*}
$$

which are analytic in the open $\operatorname{disc} \mathcal{U}=\{z: z \in \mathbb{C}:|z|<1\}$ and \mathcal{S} be the class of functions $f \in \mathcal{A}$ which are univalent in \mathcal{U}.

We denote by $\mathcal{S}^{*}, \mathcal{C}, \mathcal{K}$ and \mathcal{C}^{*} the familiar subclasses of \mathcal{A} consisting of functions which are respectively starlike, convex, close-to-convex and quasi-convex in \mathcal{U}. Our favorite references of the field are ([3], [6]) which covers most of the topics in a lucid and economical style.

In [9], Rønning introduced a new class of starlike functions related to $U C V$ deined as

$$
f(z) \in \mathcal{S}_{P} \quad \Longleftrightarrow \quad \operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| .
$$

Note that $f(z) \in U C V \Longleftrightarrow z f^{\prime}(z) \in \mathcal{S}_{P}$. The geometrical interpretation of uniformly convex and related functions have been studied by several authors (see $[4,5,9])$.
C. Selvaraj, K.R. Karthikeyan, S. Lakshmi - Certain Subclass Of Bessel ...

An analytic function f is said to be subordinate to an analytic function g (written as $f \prec g$) if and only if there exists an analytic function ω with

$$
\omega(0)=0 \text { and }|\omega(z)|<1 \text { for } z \in \mathcal{U}
$$

such that

$$
f(z)=g(\omega(z)) \text { for } z \in \mathcal{U} \text {. }
$$

In particular, if g is univalent in \mathcal{U}, we have the following equivalence

$$
f \prec g \Leftrightarrow f(0)=g(0) \text { and } f(\mathcal{U}) \subset g(\mathcal{U}) .
$$

The convolution or Hadamard product of two functions of class \mathcal{A} is denoted and defined by

$$
(f * g)(z)=z+\sum_{n=2}^{\infty} a_{n} b_{n} z^{n}
$$

where f has the form (1) and

$$
g(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \quad z \in \mathcal{U}
$$

Let us consider the following second-order linear homogeneous differential equation (see for details [1] and [2]):

$$
\begin{equation*}
z^{2} \omega^{\prime \prime}(z)+b z \omega^{\prime}(z)+\left[d z^{2}-v^{2}+(1-b) v\right] \omega(z)=0 \quad(v, b, d \in \mathbb{C}) \tag{2}
\end{equation*}
$$

The function $\omega_{v, b, d}(z)$, which is called the generalized Bessel function of the first kind of order v, it is defined as a particular solution of (2). The function $\omega_{v, b, d}(z)$ has the familiar representation as

$$
\begin{equation*}
\omega_{v, b, d}(z)=\sum_{n=0}^{\infty} \frac{(-d)^{n}}{n!\Gamma\left(v+n+\frac{b+1}{2}\right)}\left(\frac{z}{2}\right)^{2 n+v} \quad(z \in \mathbb{C}) \tag{3}
\end{equation*}
$$

Here Γ stands for the Euler gamma function. The series (3) permits the study of Bessel, modified Bessel, and spherical Bessel function altogether. It is worth mentioning that, in particular:
(i) For $b=d=1$ in (3), we obtain the familiar Bessel function of the first kind of order \mathcal{U} defined by

$$
\begin{equation*}
\mathcal{J}_{v}(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(v+n+1)}\left(\frac{z}{2}\right)^{2 n+v} \quad(z \in \mathbb{C}) \tag{4}
\end{equation*}
$$

(ii) For $b=1$ and $d=-1$ in (3), we obtain the modified Bessel function of the first kind of order v defined by

$$
\begin{equation*}
\mathcal{I}_{v}(z)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma(v+n+1)}\left(\frac{z}{2}\right)^{2 n+v} \quad(z \in \mathbb{C}) \tag{5}
\end{equation*}
$$

(iii) For $b=2$ and $d=1$ in (3), the function $\omega_{v, b, d}(z)$ reduces to $\frac{\sqrt{2}}{\sqrt{\pi}} \mathcal{S}_{v}(z)$, where \mathcal{S}_{v} is the spherical Bessel function of the first kind of order v, defined by

$$
\begin{equation*}
\mathcal{S}_{v}(z)=\frac{\sqrt{\pi}}{\sqrt{2}} \sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!\Gamma\left(v+n+\frac{3}{2}\right)}\left(\frac{z}{2}\right)^{2 n+v} \quad(z \in \mathbb{C}) \tag{6}
\end{equation*}
$$

Now, consider the function $u_{v, b, d}(z): \mathbb{C} \longrightarrow \mathbb{C}$, defined by the transformation

$$
\begin{equation*}
u_{v, b, d}(z)=2^{v} \Gamma\left(v+\frac{b+1}{2}\right) z^{\frac{-v}{2}} \omega_{v, b, d}(\sqrt{z}) . \tag{7}
\end{equation*}
$$

By using the well-known Pochhammer symbol (or the shifted factorial) $(\lambda)_{\mu}$ defined, for $\lambda, \mu \in \mathbb{C}$ and in terms of the Euler gamma function, by

$$
(\lambda)_{\mu}:=\frac{\Gamma(\lambda+\mu)}{\Gamma(\lambda)}= \begin{cases}1 & (\mu=0 ; \lambda \in \mathbb{C} \backslash\{0\}) \\ \lambda(\lambda+1) \cdots(\lambda+n-1) & (\mu=n \in \mathbb{N} ; \lambda \in \mathbb{C})\end{cases}
$$

and $(\lambda)_{0}=1$, we obtain for the function $u_{v, b, d}(z)$ the following representation

$$
u_{v, b, d}(z)=\sum_{n \geq 0} \frac{\left(\frac{-d}{4}\right)^{n}}{\left(v+\frac{b+1}{2}\right)_{n}} \frac{z^{n}}{n!},
$$

where $k=v+\frac{b+1}{2} \neq 0,-1,-2, \ldots$. This function is analytic on \mathbb{C} and satisfies the second order linear differential equation

$$
4 z^{2} u^{\prime \prime}(z)+2(2 v+b+1) z u^{\prime}(z)+d z u(z)=0
$$

Now, we introduce the function $\varphi_{v, b, d}(z)$ defined in terms of generalized Bessel function $\omega_{v, b, d}(z)$, by

$$
\begin{aligned}
\varphi_{v, b, d}(z) & =z u_{v, b, d}(z) \\
& =2^{v} \Gamma\left(v+\frac{b+1}{2}\right) z^{1-\frac{v}{2}} \omega_{v, b, d}(\sqrt{z}) \\
& =z+\sum_{n=1}^{\infty} \frac{(-d)^{n} z^{n+1}}{4^{n} n!(c)_{n}}, \quad \text { where } c=\left(v+\frac{b+1}{2}\right) \\
& =g(c, d, z) .
\end{aligned}
$$

Motivated by Selvaraj and Karthikeyan[11], we define the following $D_{\lambda}^{m}(c, d) f(z)$: $\mathcal{U} \longrightarrow \mathcal{U}$ by

$$
\begin{gather*}
D_{\lambda}(c, d) f(z)=f(z) * g(c, d, z) \tag{8}\\
D_{\lambda}^{1}(c, d) f(z)=(1-\lambda)(f(z) * g(c, d, z))+\lambda z(f(z) * g(c, d, z))^{\prime} \tag{9}\\
\vdots \tag{10}\\
D_{\lambda}^{m}(c, d) f(z)=D_{\lambda}^{1}\left(D_{\lambda}^{m-1}(c, d) f(z)\right)
\end{gather*}
$$

If $f \in \mathcal{A}$, then from (9) and (10) we may easily deduce that

$$
\begin{equation*}
D_{\lambda}^{m}(c, d) f(z)=z+\sum_{n=2}^{\infty} \frac{(1+(n-1) \lambda)^{m}(-d)^{n-1} a_{n} z^{n}}{4^{n-1}(n-1)!(c)_{n-1}} \tag{11}
\end{equation*}
$$

where $m \in N_{0}=N \cup\{0\}$ and $\lambda \geq 0$.
It can be easily verified from definition of (11) that

$$
\begin{equation*}
\lambda z\left(D_{\lambda}^{m}(c, d) f(z)\right)^{\prime}=D_{\lambda}^{m+1}(c, d) f(z)-(1-\lambda) D_{\lambda}^{m}(c, d) f(z) \tag{12}
\end{equation*}
$$

Let k be a positive integer and $j=0,1,2, \ldots(k-1)$. A domain D is said to be (j, k)-fold symmetric if a rotation of D about the origin through an angle $2 \pi j / k$ carries D onto itself. A function $f \in A$ is said to be (j, k)-symmetrical if for each $z \in \mathcal{U}$

$$
\begin{equation*}
f(\varepsilon z)=\varepsilon^{j} f(z) \tag{13}
\end{equation*}
$$

where $\varepsilon=\exp (2 \pi i / k)$. The family of $(j, k)-$ symmetrical functions will be denoted by \mathcal{F}_{k}^{j}. We observe that $\mathcal{F}_{2}^{1}, \mathcal{F}_{2}^{0}$ and \mathcal{F}_{k}^{1} are well-known families of odd functions, even functions and k -symmetrical functions respectively.

Also let $f_{j, k}(z)$ be defined by the following equality

$$
\begin{equation*}
f_{j, k}(z)=\frac{1}{k} \sum_{v=0}^{k-1} \frac{f\left(\varepsilon^{v} z\right)}{\varepsilon^{v j}}, \quad(f \in \mathcal{A} ; k=1,2, \ldots ; j=0,1,2, \ldots(k-1)), \tag{14}
\end{equation*}
$$

where v is an integer.
The notation of (j, k)-symmetric functions was introduced and studied by Liczberski and Polubinski in [8].

The following identities follow directly from (14):

$$
\begin{align*}
& f_{j, k}\left(\varepsilon^{v} z\right)=\varepsilon^{v j} f_{j, k}(z), \\
& f_{j, k}^{\prime}\left(\varepsilon^{v} z\right)=\varepsilon^{v j-v} f_{j, k}^{\prime}(z)=\frac{1}{k} \sum_{v=0}^{k-1} \frac{f^{\prime}\left(\varepsilon^{v} z\right)}{\varepsilon^{v j-v}} \tag{15}\\
& f_{j, k}^{\prime \prime}\left(\varepsilon^{v} z\right)=\varepsilon^{v j-2 v} f_{j, k}^{\prime \prime}(z)=\frac{1}{k} \sum_{v=0}^{k-1} \frac{f^{\prime \prime}\left(\varepsilon^{v} z\right)}{\varepsilon^{v j-2 v}} .
\end{align*}
$$

Motivated by the concept introduced by K.Sakaguchi in [10], recently several subclasses of analytic functions with respect to k-symmetric points were introduced and studied by various authors. In this paper, new subclasses of analytic functions with respect to (j, k)-symmetric points are introduced.

Now we define
$f_{j, k}^{\lambda, m}(c, d ; z)=\frac{1}{k} \sum_{v=0}^{k-1} \varepsilon^{-v j}\left(D_{\lambda}^{m}(c, d) f\left(\varepsilon^{v} z\right)\right), \quad(f \in \mathcal{A} ; k=1,2, \ldots ; j=0,1,2, \ldots(k-1))$.
Clearly for $j=k=1$, we have

$$
f_{j, k}^{\lambda, m}(c, d ; z)=D_{\lambda}^{m}(c, d) f\left(\varepsilon^{v} z\right)
$$

Definition 1. The class $\mathcal{S}_{j, k}^{\lambda, m}(c, d, \alpha, \beta, \gamma)$ of function f, analytic in \mathcal{U} given by (1) and satisfying the condition
$\operatorname{Re}\left|\left\{e^{i \alpha}\left(1+\frac{1}{\gamma}\left(\frac{z\left[D_{\lambda}^{m}(c, d) f(z)\right]^{\prime}}{f_{j, k}^{\lambda, m}(c, d, z)}-1\right)\right)\right\}\right|^{2}+\beta>\left|\frac{1}{\gamma}\left(\frac{z\left[D_{\lambda}^{m}(c, d) f(z)\right]^{\prime}}{f_{j, k}^{\lambda, m}(c, d, z)}-1\right)\right|^{2},(z \in \mathcal{U})$,
where $-\pi / 2<\alpha<\pi / 2, \gamma \in \mathcal{C} \backslash\{0\}$ and $f_{j, k}^{\lambda, m}$ is defined by the equality (16).
Remark 1. If we let $j=k=1$ and $\alpha=\beta=0, \gamma=1$ in (17), the class $\mathcal{S}_{j, k}^{\lambda, m}(c, d, \alpha, \beta, \gamma)$ reduces to the function class \mathcal{S}_{p}.

2. Integral Representation

Theorem 1. If $f \in \mathcal{S}_{j, k}^{\lambda, m}(c, d, \alpha, \beta, \gamma)$, then $f_{j, k}^{\lambda, m} \in \mathcal{S}^{*}$.
Proof. Let $f \in \mathcal{S}_{j, k}^{\lambda, m}(c, d, \alpha, \beta, \gamma)$. For $\omega=u+i v$, the inequality (17) can be rewritten as

$$
u>\frac{1}{2}\left(v^{2}+1-\frac{\beta}{\cos ^{2} \alpha}\right)
$$

Setting

$$
\mathcal{G}=\left\{u+i v: u>\frac{1}{2}\left(v^{2}+1-\frac{\beta}{\cos ^{2} \alpha}\right)\right\} .
$$

From the equivalent subordination condition proved by N.Xu and D.Yang in [15], we may rewrite the conditions (17) in the form

$$
1+\frac{1}{\gamma}\left(\frac{z\left[D_{\lambda}^{m}(c, d) f(z)\right]^{\prime}}{f_{j, k}^{\lambda, m}(c, d ; z)}-1\right) \prec e^{-i \alpha}[h(z) \cos \alpha+i \sin \alpha]
$$

> C. Selvaraj, K.R. Karthikeyan, S. Lakshmi - Certain Subclass Of Bessel . . .
where

$$
\begin{gathered}
h(z)=1-\frac{\beta}{2 \cos ^{2} \alpha}+\frac{2}{\pi^{2}}\left(\log \frac{1+\sqrt{(z+\theta)(1+\theta z)}}{1-\sqrt{(z+\theta)(1+\theta z)}}\right)^{2} \text { with } \\
\theta=\left(\frac{e^{\mu}-1}{e^{\mu}+1}\right)^{2}, \mu=\sqrt{\beta} \pi / 2 \cos \alpha . \\
1+\frac{1}{\gamma}\left(\frac{z\left[D_{\lambda}^{m}(c, d) f(z)\right]^{\prime}}{f_{j, k}^{\lambda, m}(c, d ; z)}-1\right)=e^{-i \alpha}[h(\omega(z)) \cos \alpha+i \sin \alpha] .
\end{gathered}
$$

The function $e^{-i \alpha}[h(\omega(z)) \cos \alpha+i \sin \alpha]$ is univalent and convex in \mathcal{U}, where $\omega(z)$ is a Schwarz function, analytic in \mathcal{U} with $\omega(0)=0$.

$$
\begin{equation*}
\frac{z\left[D_{\lambda}^{m}(c, d) f(z)\right]^{\prime}}{f_{j, k}^{\lambda, m}(c, d ; z)}=\gamma\left(e^{-i \alpha}[h(\omega(z)) \cos \alpha+i \sin \alpha]-1\right)+1 . \tag{18}
\end{equation*}
$$

If we replace z by $\varepsilon^{v} z$ in (18), then (18) will be of the form

$$
\begin{equation*}
\frac{\varepsilon^{v} z\left[D_{\lambda}^{m}(c, d) f\left(\varepsilon^{v} z\right)\right]^{\prime}}{f_{j, k}^{\lambda, m}\left(c, d ; \varepsilon^{v} z\right)}=\gamma\left(e^{-i \alpha}\left[h\left(\omega\left(\varepsilon^{v} z\right)\right) \cos \alpha+i \sin \alpha\right]-1\right)+1 . \tag{19}
\end{equation*}
$$

Using (13) in (19), we get

$$
\begin{align*}
\frac{\varepsilon^{v} z\left[D_{\lambda}^{m}(c, d) f\left(\varepsilon^{v} z\right)\right]^{\prime}}{\varepsilon^{v j} f_{j, k}^{\lambda, m}(c, d ; z)} & =\gamma\left(e^{-i \alpha}\left[h\left(\omega\left(\varepsilon^{v} z\right)\right) \cos \alpha+i \sin \alpha\right]-1\right)+1 \\
\frac{\varepsilon^{v-v j} z\left[D_{\lambda}^{m}(c, d) f\left(\varepsilon^{v} z\right)\right]^{\prime}}{f_{j, k}^{\lambda, m}(c, d ; z)} & =\gamma\left(e^{-i \alpha}\left[h\left(\omega\left(\varepsilon^{v} z\right)\right) \cos \alpha+i \sin \alpha\right]-1\right)+1 . \tag{20}
\end{align*}
$$

Let $v=0,1,2, \cdots, k-1$ in (20) respectively and summing them, we get

$$
\frac{\sum_{v=0}^{k-1} \varepsilon^{v-v j} z\left[D_{\lambda}^{m}(c, d) f\left(\varepsilon^{v} z\right)\right]^{\prime}}{f_{j, k}^{\lambda, m}(c, d ; z)}=\sum_{v=0}^{k-1} \gamma\left(e^{-i \alpha}\left[h\left(\omega\left(\varepsilon^{v} z\right)\right) \cos \alpha+i \sin \alpha\right]-1\right)+1,
$$

or equivalently

$$
\frac{z\left[f_{j, k}^{\lambda, m}(c, d ; z)\right]^{\prime}}{f_{j, k}^{\lambda, m}(c, d ; z)}=\frac{\gamma}{k} \sum_{v=0}^{k-1}\left(e^{-i \alpha}\left[h\left(\omega\left(\varepsilon^{v} z\right)\right) \cos \alpha+i \sin \alpha\right]-1\right)+1,
$$

that is $f_{j, k}^{\lambda, m} \in \mathcal{S}^{*}$.

Theorem 2. If $f \in \mathcal{S}_{j, k}^{\lambda, m}(c, d, \alpha, \beta, \gamma)$, then we have

$$
\begin{equation*}
f_{j, k}^{\lambda, m}(c, d ; z)=z \exp \left\{\frac{\gamma}{k} \sum_{v=0}^{k-1} \int_{0}^{\varepsilon^{v} z} \frac{e^{-i \alpha}\left[h\left(\omega\left(\varepsilon^{v} t\right)\right) \cos \alpha+i \sin \alpha\right]-1}{t} d t\right\} \tag{21}
\end{equation*}
$$

where $f_{j, k}^{\lambda, m}(z)$ is defined by (16), $\omega(z)$ is analytic in \mathcal{U} and $\omega(0)=0,|\omega(z)|<1$.
Proof. Let $f \in \mathcal{S}_{j, k}^{\lambda, m}(c, d, \alpha, \beta, \gamma)$. In view of (18), we have

$$
\begin{equation*}
\frac{z\left[D_{\lambda}^{m}(c, d) f(z)\right]^{\prime}}{f_{j, k}^{\lambda, m}(c, d ; z)}=\gamma\left(e^{-i \alpha}[h(\omega(z)) \cos \alpha+i \sin \alpha]-1\right)+1 \tag{22}
\end{equation*}
$$

where $\omega(z)$ is analytic in \mathcal{U} and $\omega(0)=0,|\omega(z)|<1$. Substituting z by $\varepsilon^{v} z$ in the equality (22) respectively ($v=0,1,2, \cdots, k-1, \varepsilon^{k}=1$), we have

$$
\begin{equation*}
\frac{\varepsilon^{v} z\left[D_{\lambda}^{m}(c, d) f\left(\varepsilon^{v} z\right)\right]^{\prime}}{f_{j, k}^{\lambda, m}\left(c, d ; \varepsilon^{v} z\right)}=\gamma\left(e^{-i \alpha}\left[h\left(\omega\left(\varepsilon^{v} z\right)\right) \cos \alpha+i \sin \alpha\right]-1\right)+1 \tag{23}
\end{equation*}
$$

Using (13) in (23) can be rewritten in the form

$$
\begin{equation*}
\frac{\varepsilon^{v-v j} z\left[D_{\lambda}^{m}(c, d) f\left(\varepsilon^{v} z\right)\right]^{\prime}}{f_{j, k}^{\lambda, m}(c, d ; z)}=\gamma\left(e^{-i \alpha}\left[h\left(\omega\left(\varepsilon^{v} z\right)\right) \cos \alpha+i \sin \alpha\right]-1\right)+1 . \tag{24}
\end{equation*}
$$

Let $v=0,1,2, \cdots, k-1$ in (24) respectively and summing them, we get

$$
\begin{equation*}
\frac{z\left[f_{j, k}^{\lambda, m}(c, d ; z)\right]^{\prime}}{f_{j, k}^{\lambda, m}(c, d ; z)}=\frac{\gamma}{k} \sum_{v=0}^{k-1}\left(e^{-i \alpha}\left[h\left(\omega\left(\varepsilon^{v} z\right)\right) \cos \alpha+i \sin \alpha\right]-1\right)+1 . \tag{25}
\end{equation*}
$$

From the equality (25), we get

$$
\frac{\left[f_{j, k}^{\lambda, m}(c, d ; z)\right]^{\prime}}{f_{j, k}^{\lambda, m}(c, d ; z)}-\frac{1}{z}=\frac{\gamma}{k} \sum_{v=0}^{k-1} \frac{e^{-i \alpha}\left[h\left(\omega\left(\varepsilon^{v} z\right)\right) \cos \alpha+i \sin \alpha\right]-1}{z} .
$$

Integrating this equality, we get

$$
\begin{aligned}
\log \left\{\frac{f_{j, k}^{\lambda, m}(c, d ; z)}{z}\right\} & =\frac{\gamma}{k} \sum_{v=0}^{k-1} \int_{0}^{z} \frac{e^{-i \alpha}\left[h\left(\omega\left(\varepsilon^{v} \zeta\right)\right) \cos \alpha+i \sin \alpha\right]-1}{\zeta} d \zeta \\
& =\frac{\gamma}{k} \sum_{v=0}^{k-1} \int_{0}^{\varepsilon^{v} z} \frac{e^{-i \alpha}\left[h\left(\omega\left(\varepsilon^{v} t\right)\right) \cos \alpha+i \sin \alpha\right]-1}{t} d t
\end{aligned}
$$

or equivalently,

$$
f_{j, k}^{\lambda, m}(c, d ; z)=z \exp \left\{\frac{\gamma}{k} \sum_{v=0}^{k-1} \int_{0}^{\varepsilon^{v} z} \frac{e^{-i \alpha}\left[h\left(\omega\left(\varepsilon^{v} t\right)\right) \cos \alpha+i \sin \alpha\right]-1}{t} d t\right\} .
$$

This completes the proof of Theorem 2.
Theorem 3. Let $f \in \mathcal{S}_{j, k}^{\lambda, m}(c, d, \alpha, \beta, \gamma)$. Then we have

$$
\begin{align*}
D_{\lambda}^{m}(c, d) f(z)=\int_{0}^{z} \exp \left\{\frac{\gamma}{k} \sum_{v=0}^{k-1}\right. & \left.\int_{0}^{\varepsilon^{v} \zeta} \frac{e^{-i \alpha}\left[h\left(\omega\left(\varepsilon^{v} t\right)\right) \cos \alpha+i \sin \alpha\right]-1}{t} d t\right\} \tag{26}\\
& \cdot\left(\gamma\left(e^{-i \alpha}[h(\omega(\zeta) \cos \alpha+i \sin \alpha]-1+1)\right) d \zeta\right.
\end{align*}
$$

where $\omega(z)$ is analytic in \mathcal{U} and $\omega(0)=0,|\omega(z)|<1$.

$$
\text { 3. Inclusion properties of the class } \mathcal{S}_{j, k}^{\lambda, m}(c, d, \alpha, \beta, \gamma)
$$

In this section, we will prove inclusion property associated with generalized Bernardi integral operator given by

$$
\begin{equation*}
L_{\mu}[f](z)=\frac{\mu+1}{z^{\mu}} \int_{0}^{z} t^{\mu-1} f(t) d t, \quad(f \in \mathcal{A}, \mu>-1) . \tag{27}
\end{equation*}
$$

To establish our results in this section, We need the following Lemmas.
Lemma 4. Let h be convex in \mathcal{U}, with $\operatorname{Re}[\beta h(z)+\gamma]>0$. If $p(z)$ is analytic in \mathcal{U} with $p(0)=h(0)$, then

$$
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec h(z) \quad \Longrightarrow \quad p(z) \prec h(z) .
$$

Lemma 5. Let h be convex in \mathcal{U}, with $\operatorname{Re}[\beta h(z)+\gamma]>0$. If $f \in \mathcal{A}$ and F is given by (27), then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec h(z) \quad \Longrightarrow \quad \frac{z F^{\prime}(z)}{F(z)} \prec h(z) .
$$

Theorem 6. Let $0 \leq \lambda \leq 1$ and $h(z)$ be convex univalent function, then

$$
\mathcal{S}_{j, k}^{\lambda, m+1}(c, d, \alpha, \beta, \gamma) \subset \mathcal{S}_{j, k}^{\lambda, m}(c, d, \alpha, \beta, \gamma)
$$

Proof. Let $f \in \mathcal{S}_{j, k}^{\lambda, m}(c, d, \alpha, \beta, \gamma)$ and set

$$
\begin{equation*}
l(z)=\frac{z\left[D_{\lambda}^{m}(c, d) f(z)\right]^{\prime}}{f_{j, k}^{\lambda, m}(c, d ; z)}, \quad m(z)=\frac{z\left[f_{j, k}^{\lambda, m}(c, d ; z)\right]^{\prime}}{f_{j, k}^{\lambda, m}(c, d ; z)} \tag{28}
\end{equation*}
$$

we observe that $l(z)$ and $m(z)$ are analytic in \mathcal{U} with $l(0)=m(0)=1$. Then by applying (12) in $l(z)$, we obtain

$$
\begin{equation*}
l(z) f_{j, k}^{\lambda, m}(c, d ; z)=\frac{1}{\lambda} D_{\lambda}^{m+1}(c, d) f(z)-\frac{(1-\lambda)}{\lambda} D_{\lambda}^{m}(c, d) f(z) . \tag{29}
\end{equation*}
$$

Differentiating both sides of equation (29) with respect to z, we get after simple computation

$$
\begin{equation*}
z l^{\prime}(z)+\left(\frac{(1-\lambda)}{\lambda}+\frac{z\left[f_{j, k}^{\lambda, m}(c, d ; z)\right]^{\prime}}{f_{j, k}^{\lambda, m}(c, d ; z)}\right) l(z)=\frac{1}{\lambda} \frac{z\left[D_{\lambda}^{m+1}(c, d) f(z)\right]^{\prime}}{f_{j, k}^{\lambda, m}(c, d ; z)} . \tag{30}
\end{equation*}
$$

Using the relation between (12) and (16), we can easily deduce that

$$
\begin{equation*}
z\left[f_{j, k}^{\lambda, m}(c, d ; z)\right]^{\prime}+\frac{(1-\lambda)}{\lambda} f_{j, k}^{\lambda, m}(c, d ; z)=\frac{1}{\lambda} f_{j, k}^{\lambda, m+1}(c, d ; z) . \tag{31}
\end{equation*}
$$

Using (31)in (30), we have

$$
l(z)+z l^{\prime}(z)\left(\frac{(1-\lambda)}{\lambda}+\frac{z\left[f_{j, k}^{\lambda, m}(c, d ; z)\right]^{\prime}}{f_{j, k}^{\lambda, m}(c, d ; z)}\right)^{-1}=\frac{z\left[D_{\lambda}^{m+1}(c, d) f(z)\right]^{\prime}}{f_{j, k}^{\lambda, m+1}(c, d ; z)} .
$$

From the definition of $f \in \mathcal{S}_{j, k}^{\lambda, m}(c, d, \alpha, \beta, \gamma)$, we have

$$
\begin{equation*}
l(z)+\frac{z l^{\prime}(z)}{\frac{(1-\lambda)}{\lambda}+m(z)} \prec \gamma\left(e^{-i \alpha}[h(z) \cos \alpha+i \sin \alpha]-1\right)+1 . \tag{32}
\end{equation*}
$$

In view of Lemma 5, the assertion of the Theorem would follow once we prove that $m(z) \prec \gamma\left(e^{-i \alpha}[h(z) \cos \alpha+i \sin \alpha]-1\right)+1,(z \in \mathcal{U})$.

It follows from $m(z)$ and (31) that

$$
\begin{equation*}
\frac{(1-\lambda)}{\lambda}+m(z)=\frac{f_{j, k}^{\lambda, m+1}(c, d ; z)}{\lambda f_{j, k}^{\lambda, m}(c, d ; z)} . \tag{33}
\end{equation*}
$$

By logarithmical differentiation of equation (33), we get

$$
\begin{equation*}
m(z)+\frac{z m^{\prime}(z)}{(1-\lambda)+\lambda m(z)}=\frac{z\left[f_{j, k}^{\lambda, m+1}(c, d ; z)\right]^{\prime}}{f_{j, k}^{\lambda, m+1}(c, d ; z)} . \tag{34}
\end{equation*}
$$

Using Theorem 1 in equality (34), we have

$$
\begin{equation*}
m(z)+\frac{z m^{\prime}(z)}{(1-\lambda)+\lambda m(z)} \prec \gamma\left(e^{-i \alpha}[h(z) \cos \alpha+i \sin \alpha]-1\right)+1, \quad(z \in \mathcal{U}) \tag{35}
\end{equation*}
$$

In view of Lemma (4), we deduce that

$$
m(z) \prec \gamma\left(e^{-i \alpha}[h(z) \cos \alpha+i \sin \alpha]-1\right)+1
$$

This implies that

$$
\mathcal{S}_{j, k}^{\lambda, m+1}(c, d, \alpha, \beta, \gamma) \subset \mathcal{S}_{j, k}^{\lambda, m}(c, d, \alpha, \beta, \gamma)
$$

Theorem 7. Let $f \in \mathcal{A}$ and $F=L_{\mu}[f]$, where $L_{\mu}[f]$ is defined by (27). If $f \in \mathcal{S}_{j, k}^{\lambda, m}(c, d, \alpha, \beta, \gamma)$ then $F \in \mathcal{S}_{j, k}^{\lambda, m}(c, d, \alpha, \beta, \gamma)$.

Proof. From the definition of F and the linearity of the operator $D_{\lambda}^{m}(c, d) f(z)$, we have

$$
\begin{equation*}
z\left(D_{\lambda}^{m}(c, d) L_{\mu}[f](z)\right)^{\prime}=(\mu+1)\left(D_{\lambda}^{m}(c, d) f(z)\right)-\mu\left(D_{\lambda}^{m}(c, d) L_{\mu}[f](z)\right) \tag{36}
\end{equation*}
$$

From (36), we have

$$
\begin{equation*}
(\mu+1) f_{j, k}^{\lambda, m}(c, d ; z)=\mu F_{j, k}^{\lambda, m}(c, d ; z)+z\left(F_{j, k}^{\lambda, m}(c, d ; z)\right)^{\prime} \tag{37}
\end{equation*}
$$

If we let

$$
\omega(z)=\frac{z\left(F_{j, k}^{\lambda, m}(c, d ; z)\right)^{\prime}}{F_{j, k}^{\lambda, m}(c, d ; z)}
$$

then ω is analytic in \mathcal{U} and $\omega(0)=1$. From (37), we observe that

$$
\begin{equation*}
\mu+\omega(z)=(\mu+1) \frac{f_{j, k}^{\lambda, m}(c, d ; z)}{F_{j, k}^{\lambda, m}(c, d ; z)} \tag{38}
\end{equation*}
$$

Differentiating both sides of (38) with respect to z, we obtain

$$
\omega(z)+\frac{z \omega^{\prime}(z)}{\mu+\omega(z)}=\frac{z\left(f_{j, k}^{\lambda, m}(c, d ; z)\right)^{\prime}}{f_{j, k}^{\lambda, m}(c, d ; z)}
$$

By Theorem 1, we have

$$
\omega(z)+\frac{z \omega^{\prime}(z)}{\mu+\omega(z)} \prec \gamma\left(e^{-i \alpha}[h(z) \cos \alpha+i \sin \alpha]-1\right)+1
$$

which on using Lemma 4 implies $\omega(z) \prec \gamma\left(e^{-i \alpha}[h(z) \cos \alpha+i \sin \alpha]-1\right)+1$.
Now suppose that

$$
q(z)=\frac{z\left(D_{\lambda}^{m}(c, d)\right)^{\prime}}{F_{j, k}^{\lambda, m}(c, d ; z)}
$$

then $q(z)$ is analytic in \mathcal{U}, with $q(0)=1$, and it follows from (36) that

$$
\begin{equation*}
F_{j, k}^{\lambda, m}(c, d ; z) q(z)=(\mu+1)\left(D_{\lambda}^{m}(c, d) f(z)\right)-\mu D_{\lambda}^{m}(c, d) F(z) . \tag{39}
\end{equation*}
$$

Differentiating both sides of (39), we get

$$
\begin{equation*}
z q^{\prime}(z)+(\mu+\omega(z)) q(z)=(\mu+1) \frac{z\left(D_{\lambda}^{m}(c, d) f(z)\right)^{\prime}}{F_{j, k}^{\lambda, m}(c, d ; z)} \tag{40}
\end{equation*}
$$

Now from (38) and (40), we can deduce that

$$
q(z)+\frac{z q^{\prime}(z)}{\mu+\omega(z)}=\frac{z\left(D_{\lambda}^{m}(c, d) f(z)\right)^{\prime}}{F_{j, k}^{\lambda, m}(c, d ; z)} \prec \gamma\left(e^{-i \alpha}[h(z) \cos \alpha+i \sin \alpha]-1\right)+1 .
$$

Hence an application of Lemma 5 yields $q(z) \prec \gamma\left(e^{-i \alpha}[h(z) \cos \alpha+i \sin \alpha]-1\right)+1$, which shows that $F \in \mathcal{S}_{j, k}^{\lambda, m}(c, d, \alpha, \beta, \gamma)$.

References

[1] Á. Baricz, Generalized Bessel functions of the first kind, Lecture Notes in Mathematics (1994), Springer, Berlin (2010).
[2] E. Deniz,Differential subordination and superordination results for an operator associated with the generalized Bessel functions, Preprint.
[3] A. W. Goodman, Univalent functions. Vol. I, Mariner, Tampa, FL (1983).
[4] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991), no. 1, 87-92.
[5] A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl. 155 (1991), no. 2, 364-370.
[6] I. Graham and G. Kohr, Geometric function theory in one and higher dimensions, Monographs and Textbooks in Pure and Applied Mathematics, 255, Dekker, New York (2003).
[7] K. R. Karthikeyan, Some classes of analytic functions with respect to (j, k)-symmetric points, Romai J. 9 (2013), no. 1, 51-60.
[8] P. Liczberski and J. Połubiński, On (j, k)-symmetrical functions, Math. Bohem. 120 (1995), no. 1, 13-28.
[9] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), no. 1, 189-196.
[10] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11 (1959), 72-75.
[11] C. Selvaraj and K. R. Karthikeyan, Differential sandwich theorems for certain subclasses of analytic functions, Math. Commun. 13 (2008), 311-319.
[12] T. V. Sudharsan, P. Balasubrahmanyam and K. G. Subramanian, On functions starlike with respect to symmetric and conjugate points, Taiwanese J. Math. 2 (1998), no. 1, 57-68.
[13] Z. G. Wang, C.-Y. Gao and S.-M. Yuan, On certain subclasses of close-to-convex and quasi-convex functions with respect to k-symmetric points, J. Math. Anal. Appl. 322 (2006), no. 1, 97-106.
[14] Z. G. Wang, A new subclass of quasi-convex functions with respect to k-symmetric points, Lobachevskii J. Math. 19 (2005), 41-50 (electronic).
[15] N. Xu and D. Yang, Subclasses of α-spirallike functions associated with Ruscheweyh derivatives, Int. J. Math. Math. Sci. (2006), Art. ID 39840, 12 pp.
C. Selvaraj

Department of Mathematics, Presidency College (Autonoumous), Chennai-600 005, Tamilnadu, India email: pamc9439@yahoo.co.in
K. R. Karthikeyan

Department of Mathematics and Statistics, Caledonian College of Engineering, Muscat, Sultanate of Oman
email: kr_karthikeyan1979@yahoo.com
S. Lakshmi

Department of Mathematics,
R.M.K.Engineering College,

Kavaraipettai-601206, Tamilnadu, India
email: laxmirmk@yahoo.com

