FEKETE-SZEGÖ THEOREM FOR A CLASS OF FUNCTIONS DEFINED BY A DERIVATIVE OPERATOR

A. Eghbiq, M. Darus

Abstract. In this paper, a new subclass $S^{\alpha, n}(m, l, q, \lambda, \phi)$ defined by the generalised derivative operator $D^{\alpha, n}(m, l, q, \lambda)$ is introduced. The Fekete-Szegö functional $\left|a_{3}-\mu a_{2}^{2}\right|$ of the subclass $S^{\alpha, n}(m, l, q, \lambda, \phi)$ is obtained. Then by convolution, we state another subclass $S^{\alpha, n, g}(m, l, q, \lambda, \phi)$ defined by fractional derivatives. Another set of Fekete-Szegö result is determined.

2010 Mathematics Subject Classification: 30C45.

Keywords: Analytic functions, Derivative Operator, Fekete-Szegö Problem.

1. Introduction

Denote by \mathcal{A} the class of normalised analytic univalent functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1}
\end{equation*}
$$

where $z \in \mathbb{U}=\{z:|z|<1\}$.
For the function $f \in \mathcal{A}$ given by (1), we state a generalised derivative operator given by Eghbiq and Darus [2] as follows:

$$
\begin{equation*}
D^{\alpha, n}(m, l, q, \lambda)(f)(z)=z+\sum_{k=2}^{\infty} k^{\alpha}\left(\frac{q+\lambda(k-1)+l}{q+l}\right)^{m} c(n, k) a_{k} z^{k} \tag{2}
\end{equation*}
$$

where $n, \alpha \in \mathbb{N}_{0}=\{0,1,2 \ldots\}, m \in \mathbb{Z}, \lambda, l, q \geq 0, l+q \neq 0$ and $c(n, k)=\frac{\prod_{j=1}^{k-1}(j+n)}{(k-1)!}$.
In terms of convolution, $D^{\alpha, n}(m, l, q, \lambda) f(z)$ can also be written as

$$
\phi(z):=\left(\frac{l+q-\lambda}{l+q}\right) \frac{z}{1-z}+\left(\frac{\lambda}{l+q}\right) \frac{z}{(1-z)^{2}}, \quad(z \in \mathbb{U}) .
$$

If $m=0,1,2, \ldots$, then

$$
\begin{aligned}
D^{\alpha, n}(m, l, q, \lambda) f(z) & =\underbrace{\phi(z) * \ldots * \phi(z)}_{(m)-\text { times }} *\left[\frac{z}{(1-z)^{n+1}}\right] * \sum_{k=1}^{\infty} k^{\alpha} z^{k} * f(z) \\
& =R^{n} * D^{\alpha}(m, l, q, \lambda) f(z),
\end{aligned}
$$

where $R^{n}=z+\sum_{k=2}^{\infty} c(n, k) z^{k}$, the Ruscheweyh derivative operator [18] and $D^{\alpha}(m, l, q, \lambda)=$ $z+\sum_{k=2}^{\infty} k^{\alpha}\left(1+\frac{k-1}{l+q} \lambda\right)^{m}$. If $m=-1,-2, \ldots$, then

$$
\begin{aligned}
D^{\alpha, n}(m, l, q, \lambda) f(z) & =\underbrace{\phi(z) * \ldots * \phi(z)}_{(m)-\text { times }} *\left[\frac{z}{(1-z)^{n+1}}\right] * \sum_{k=1}^{\infty} k^{\alpha} z^{k} * f(z) \\
& =R^{n} * D^{\alpha}(m, l, q, \lambda) f(z) .
\end{aligned}
$$

Note that:

$$
\begin{aligned}
& D^{0,0}(0, l, q, \lambda) f(z)=f(z), \quad \text { and } \\
& D^{1,0}(0, l, q, \lambda) f(z)=z f^{\prime}(z) .
\end{aligned}
$$

By specialising the parameters of $D^{\alpha, n}(m, l, q, \lambda) f(z)$, we get the following derivative and integral operators.

- The derivative operator introduced by Ruscheweyh [18];

$$
D^{0, n}(0, l, q, \lambda) ;\left(n \in \mathbb{N}_{0}\right) \equiv R^{n}=z+\sum_{k=2}^{\infty} c(n, k) a_{k} z^{k}
$$

- The derivative operator introduced by Sălăgean [6];

$$
D^{n, 0}(0, l, q, \lambda) ;\left(n \in \mathbb{N}_{0}\right) \equiv D^{n}=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k}
$$

- The generalised Sălăgean derivative operator given by Al-Oboudi (see [5]);

$$
D^{0,0}(n, 1,0, \lambda) ;\left(n \in \mathbb{N}_{0}\right) \equiv D_{\lambda}^{n}=z+\sum_{k=2}^{\infty}(1+\lambda(k-1))^{n} a_{k} z^{k}
$$

A. Eghbiq, M. Darus - Fekete-Szegö theorem for a class of functions . . .

- The generalised Ruscheweyh derivative operator given by Al-Shaqsi and Darus in [9];

$$
D^{0, n}(1,1,0, \lambda) ;\left(n \in \mathbb{N}_{0}\right) \equiv R_{\lambda}^{n}=z+\sum_{k=2}^{\infty}(1+\lambda(k-1)) c(n, k) a_{k} z^{k}
$$

- The generalised Ruscheweyh and Sălăgean derivative operator introduced by Darus and Al-shaqsi (see [11]);

$$
D^{0, \beta}(m, 1,0, \lambda) ;\left(m \in \mathbb{N}_{0}\right) \equiv D_{\lambda, \beta}^{m}=z+\sum_{k=2}^{\infty}(1+\lambda(k-1))^{m} c(\beta, k) a_{k} z^{k}
$$

- The derivative operator introduced by Catas (see [1]);

$$
D^{0, \beta}(m, l, 1, \lambda) ;\left(m \in \mathbb{N}_{0}\right) \equiv D^{m}(\lambda, \beta, l)=z+\sum_{k=2}^{\infty}\left(\frac{1+\lambda(k-1)+l}{1+l}\right)^{m} c(\beta, k) a_{k} z^{k}
$$

- The operator introduced by Uralegaddi and Somanatha (see [4]);

$$
D^{0,0}(n, 1,1,1) \equiv I^{n}=z+\sum_{k=2}^{\infty}\left(\frac{k+1}{2}\right)^{n} a_{k} z^{k}
$$

- The multiplier transformations studied by Flett (see [19]);

$$
D^{0,0}(n, 1, \lambda, 1) \equiv I_{\lambda}^{n}=z+\sum_{k=2}^{\infty}\left(\frac{k+\lambda}{1+\lambda}\right)^{n} a_{k} z^{k}
$$

- The integral operator introduced by Cho and Kim (see [12]);

$$
D^{0,0}(-n, 1, \lambda, 1) \equiv I_{n}^{\lambda}=z+\sum_{k=2}^{\infty} k\left(\frac{1+\lambda}{k+\lambda}\right)^{n} a_{k} z^{k}
$$

- The derivative operator introduced by Mustafa and Darus ((see [13]);
$D^{\alpha, n}(m, 1, q, \lambda)(f)(z) \equiv D^{\alpha, n}(m, q, \lambda)(f)(z)=z+\sum_{k=2}^{\infty} k^{\alpha}\left(1+\frac{k-1}{1+q} \lambda\right)^{m} c(n, k) a_{k} z^{k}$,
The Fekete-Szegö problem has attracted many researchers to solve similar problems
for different classes.

In this paper, we obtain the Fekete-Szegö inequality for functions f of the class $S^{\alpha, n}(m, l, q, \lambda, \phi)$ which we will define below. Also, we give applications of our results to certain functions defined through convolution (or the Hadamard product). In particular, we consider a class $S^{\alpha, n, \eta}(m, l, q, \lambda, \phi)$, of functions defined by fractional derivatives. The work here is much motivated by Srivastava and Mishra (see $[7])$, that leads to our new results.

By using the following definition and the operator $D^{\alpha, n}(m, l, q, \lambda)$, we define the class $S^{\alpha, n}(m, l, q, \lambda, \phi)$ as follows:

Definition 1. Let $\phi(z)$ be a univalent starlike function with respect to 1 that maps the unit disc \mathbb{U} onto the right half plane which is symmetric with respect to the real axis, $\phi(0)=1, \phi^{\prime}(0)>0$. The function $f \in \mathcal{A}$ belongs to the class $S^{\alpha, n}(m, l, q, \lambda, \phi)$, if

$$
\frac{z\left(D^{\alpha, n}(m, l, q, \lambda) f(z)\right)^{\prime}}{D^{\alpha, n}(m, l, q, \lambda) f(z)} \prec \phi(z) .
$$

It is clear that:
(1) $S^{0,0}(0,0, q, \lambda, \phi) \equiv S^{*}(\phi)$, introduced by Ma and Minda (see [21]).
(2) $S^{0,0}(0,0, q, \lambda,(1+A z) /(1+B z))=S^{*}[A, B],(-1 \leq B<A \leq 1)$, introduced by Janowski (see [20]).
(3) $S^{0,0}(0,0, q, \lambda, \beta)=S^{*}(\beta)$, introduced by Robertson in 1936 (see [15]).
(4) $S^{0, n}(1,1,0, \lambda,(1+z) /(1-z)) \equiv R_{n}$ was studied by Singh and Singh (see [16]), and also Owa et al (see [17]).

2. Main Results

In order to prove our result we have to recall the following lemmas:
Lemma 1. (Ma and Minda [21]) If $p(z)=1+c_{1} z+c_{2} z^{2}+\ldots$ is an analytic function with positive real part in \mathbb{U}, then

$$
\left|c_{2}-\nu c_{1}^{2}\right| \leq\left\{\begin{array}{lcc}
-4 \nu+2 & \text { if } & \nu \leq 0 \\
2 & \text { if } & 0 \leq \nu \leq 1 \\
4 \nu+2 & \text { if } & \nu \geq 1 .
\end{array}\right.
$$

When $\nu<0$ or $\nu>1$, the equality holds if and only if $p(z)$ is $\frac{1+z}{1-z}$, or one of its
A. Eghbiq, M. Darus - Fekete-Szegö theorem for a class of functions . . .
rotations. If $0<\nu<1$, then the equality holds if and only if $p(z)$ is $\frac{1+z^{2}}{1-z^{2}}$, or one of its rotations. If $\nu=0$, the equality holds if and only if

$$
p(z)=\left(\frac{1}{2}+\frac{1}{2} a\right) \frac{1+z}{1-z}+\left(\frac{1}{2}-\frac{1}{2} a\right) \frac{1-z}{1+z}, \quad(0 \leq a<1)
$$

or one of its rotations. If $\nu=1$, the equality holds if and only if $p(z)$ is the reciprocal of one of the functions such that the equality holds in the case of $\nu=0$. Also the above upper bound is sharp, and it can be improved as follows when $0<\nu<1$:

$$
\left|c_{2}-\nu c_{1}^{2}\right|+\nu\left|c_{1}\right| \leq 2, \quad\left(0<\nu \leq \frac{1}{2}\right)
$$

and

$$
\left|c_{2}-\nu c_{1}^{2}\right|+(1-\nu)\left|c_{1}\right| \leq 2, \quad\left(\frac{1}{2}<\nu \leq 1\right)
$$

Lemma 2. (Ma and Minda [21]) If $p(z)=1+c_{1} z+c_{2} z^{2}+\ldots$ is an analytic function with positive real part in \mathbb{U}, then for any complex number μ

$$
\left|c_{2}-\mu c_{1}^{2}\right| \leq 2 \max \{1,|2 \mu-1|\}
$$

The result is sharp for the function

$$
p(z)=\frac{1+z}{1-z} \quad \text { or } \quad p(z)=\frac{1+z^{2}}{1-z^{2}}
$$

Next, we state and prove the following theorem.
Theorem 1. Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+\cdots$, where B_{k} are real with $B_{1}>0$. Let the function f be given by (1) and belongs to the class $S^{\alpha, n}(m, l, q, \lambda, \phi)$. Then $\left|a_{3}-\mu a_{2}^{2}\right| \leq$

$$
\left\{\begin{array}{l}
\frac{B_{1}^{2}(l+q)^{m}}{3^{\alpha}(n+1)(n+2)(l+q+2 \lambda)^{m}}+\frac{B_{2}(l+q)^{m}}{3_{1}(l+q+1)(n+2)(l+q+2 \lambda)^{m}}-\frac{\mu B_{1}^{2}(l+q)^{m}}{2^{2 \alpha}(n+1)^{2}(l+q+\lambda)^{m}} \quad \text { if } \quad \mu \leq \sigma_{1}, \\
\frac{B_{1}(l+q)^{m}}{3^{\alpha}(n+1)(n+2)(l+q+2 \lambda)^{m}} \\
-\frac{B_{1}^{2}(l+q)^{m}}{3^{\alpha}(n+1)(n+2)(l+q+2 \lambda)^{m}}-\frac{B_{2}(l+q)^{m}}{3^{\alpha}(n+1)(n+2)(l+q+2 \lambda)^{m}}+\frac{\mu B_{1}^{2}(l+q)^{m}}{2^{2 \alpha}(n+1)^{2}(l+q+\lambda)^{m}} \quad \text { if } \quad \mu \leq \sigma_{2},
\end{array}\right.
$$

where

$$
\sigma_{1}=\frac{2^{\alpha}(n+1)(l+q+\lambda)^{2 m}\left[B_{1}-B_{2}+B_{1}^{2}\right]}{3^{\alpha} B_{1}^{2}(l+q)^{m}(l+q+2 \lambda)^{m}(n+2)}
$$

$$
\sigma_{2}=\frac{2^{\alpha}(n+1)(l+q+\lambda)^{2 m}\left[B_{1}+B_{2}+B_{1}^{2}\right]}{3^{\alpha} B_{1}^{2}(l+q)^{m}(l+q+2 \lambda)^{m}(n+2)} .
$$

Proof. For $f \in S^{\alpha, n}(m, l, q, \lambda, \phi)$, let

$$
\begin{equation*}
p_{1}(z)=\frac{z\left(D^{\alpha, n}(m, l, q, \lambda) f(z)\right)^{\prime}}{D^{\alpha, n}(m, l, q, \lambda) f(z)}=1+b_{1} z+b_{2} z^{2}+\cdots . \tag{3}
\end{equation*}
$$

It follows from (3) that

$$
2^{\alpha}(n+1) \frac{(l+q+\lambda)^{m}}{(l+q)^{m}} a_{2}=b_{1},
$$

and

$$
3^{\alpha}(n+1)(n+2) \frac{(l+q+2 \lambda)^{m}}{(l+q)^{m}} a_{3}=b_{2}+b_{1} 2^{\alpha}(n+1) \frac{(l+q+\lambda)^{m}}{(l+q)^{m}} a_{2} .
$$

Knowing that $\phi(z)$ is univalent and $p \prec \phi$, we can say

$$
p(z)=\frac{1+\phi^{-1}\left(p_{1}(z)\right)}{1-\phi^{-1}\left(p_{1}(z)\right)}=1+c_{1} z+c_{2} z^{2}+\cdots
$$

is analytic with positive real part in \mathbb{U}. Thus we obtain

$$
p_{1}(z)=\phi\left(\frac{p(z)-1}{p(z)+1}\right),
$$

and from equation,

$$
\begin{aligned}
1+b_{1} z+b_{2} z^{2}+\ldots & =\phi\left(\frac{c_{1} z+c_{2} z^{2}+\ldots}{2+c_{1} z+c_{2} z^{2}+\ldots}\right) \\
& =\phi\left[\frac{1}{2} c_{1} z+\frac{1}{2}\left(c_{2}-\frac{1}{2} c_{1}^{2}\right) z^{2}+\ldots\right] \\
& =1+B_{1} \frac{1}{2} c_{1} z+B_{1} \frac{1}{2}\left(c_{2}-\frac{1}{2} c_{1}^{2}\right) z^{2}+\ldots+B_{2} \frac{1}{4} c_{1}^{2} z^{2}+\ldots
\end{aligned}
$$

we get

$$
b_{1}=\frac{1}{2} B_{1} c_{1} \text { and } b_{2}=\frac{1}{2} B_{1}\left(c_{2}-\frac{1}{2} c_{1}^{2}\right) .
$$

Therefore

$$
\begin{gather*}
a_{3}-\mu a_{2}^{2}=\frac{\left[\left(B_{1}^{2} c_{1}^{2}+2 B_{1}\left[c_{2}-\frac{1}{2} c_{1}^{2}\right]+B_{2} c_{1}^{2}\right)(l+q)^{m}\right]}{4\left(3^{\alpha}\right)(n+1)(n+2)(l+q+2 \lambda)^{m}} \\
-\frac{\mu B_{1}^{2} c_{1}^{2}\left(l+q^{2 m}\right)}{2^{2(\alpha+1)}(n+1)^{2}(l+q+\lambda)^{2} m}, \\
a_{3}-\mu a_{2}^{2}=\frac{B_{1}(l+q)^{m}}{\left(3^{\alpha}\right)(n+1)(n+2)(l+q+2 \lambda)^{m}} \\
{\left[c_{2}-c_{1}^{2}\left(\frac{1}{2}\left\{1-B_{1}-\frac{B_{2}}{B_{1}}+\mu \frac{3^{\alpha}(l+q)^{m}(n+2)(l+q+2 \lambda)^{m}}{2^{2 \alpha}(n+1)(l+q+\lambda)^{m}}\right]\right)\right],} \\
a_{3}-\mu a_{2}^{2}=\frac{B_{1}(l+q)^{m}}{2\left(3^{\alpha}\right)(n+1)(n+2)(l+q+2 \lambda)^{m}}\left[c_{2}-\nu c_{1}^{2}\right], \tag{4}
\end{gather*}
$$

where

$$
\nu=\frac{1}{2}\left[1-B_{1}-\frac{B_{2}}{B_{1}}+\mu \frac{3^{\alpha}(l+q)^{\mu}(n+2)(l+q+2 \lambda)^{m}}{2^{2 \alpha}(n+1)(l+q+\lambda)^{m}}\right] .
$$

If $\mu \leq \sigma_{1}$, then by applying Lemma 1 we have

$$
\begin{gathered}
\left|a_{3}-\mu a_{2}^{2}\right|=\frac{B_{1}^{2}(1+q)^{m}}{3^{\alpha}(n+1)(n+2)(l+q+2 \lambda)^{m}}+\frac{B_{2}(l+q)^{m}}{3^{\alpha}(n+1)(n+2)(l+q+2 \lambda)^{m}}- \\
\frac{\mu B_{1}^{2}(l+q)^{m}}{2^{2 \alpha}(n+1)^{2}(l+q+\lambda)^{m}} .
\end{gathered}
$$

If $\sigma_{1} \leq \mu \leq \sigma_{2}$, we get

$$
\left|a_{3}-\mu a_{2}^{2}\right|=\frac{B_{1}(l+q)^{m}}{3^{\alpha}(n+1)(n+2)(l+q+2 \lambda)^{m}} .
$$

Similarly, if $\mu \leq \sigma_{2}$, we get

$$
\begin{gathered}
\left|a_{3}-\mu a_{2}^{2}\right|=-\frac{B_{1}^{2}(l+q)^{m}}{3^{\alpha}(n+1)(n+2)(l+q+2 \lambda)^{m}}-\frac{B_{2}(l+q)^{m}}{3^{\alpha}(n+1)(n+2)(l+q+2 \lambda)^{m}}+ \\
\frac{\mu B_{1}^{2}(l+q)^{m}}{2^{2 \alpha}(n+1)^{2}(l+q+\lambda)^{m}} .
\end{gathered}
$$

If $\mu=\sigma_{1}$, then equality holds if and only if

$$
p(z)=\left(\frac{1}{2}+\frac{1}{2} a\right) \frac{1+z}{1-z}+\left(\frac{1}{2}-\frac{1}{2} a\right) \frac{1-z}{1+z}, \quad(0 \leq a<1, z \in \mathbb{U}),
$$

A. Eghbiq, M. Darus - Fekete-Szegö theorem for a class of functions . . .
or one of its rotations. Also, if $\mu=\sigma_{2}$, then

$$
\frac{1}{2}\left[1-B_{1}-\frac{B_{2}}{B_{1}}+\mu \frac{3^{\alpha}(l+q)^{\mu}(n+2)(l+q+2 \lambda)^{m}}{2^{2 \alpha}(n+1)(l+q+\lambda)^{m}}\right]=0
$$

Therefore

$$
\frac{1}{p(z)}=\left(\frac{1}{2}+\frac{1}{2} a\right) \frac{1+z}{1-z}+\left(\frac{1}{2}-\frac{1}{2} a\right) \frac{1-z}{1+z}, \quad(0 \leq a<1, z \in \mathbb{U})
$$

We obtain an interesting result contained in the following remark.

Remark 1.

- For $\quad \alpha=q=0, \quad m=l=1 \quad$ in Theorem 1, we get the results obtained by Al-Shaqsi and Darus (see [10]).
- For $\quad l=1 \quad$ in Theorem 1, we get the results of Mustafa and Darus (see [14])

Theorem 2. If $\sigma_{1} \leq \mu \leq \sigma_{2}$, then in view of Lemma 1, Theorem 1 can be improved. Let σ_{3} be given by

$$
\sigma_{3}=\frac{2^{\alpha}(n+1)(l+q+\lambda)^{2 m}\left[B_{2}+B_{1}^{2}\right]}{3^{\alpha} B_{1}^{2}(l+q)^{m}(l+q+2 \lambda)^{m}(n+2)}
$$

If $\sigma_{1} \leq \mu \leq \sigma_{3}$, then

$$
\begin{gathered}
\left|a_{3}-\mu a_{2}^{2}\right|+\frac{2^{\alpha}(n+1)(l+q+\lambda)^{2 m}}{3^{\alpha} B_{1}^{2}(l+q)^{m}(l+q+2 \lambda)^{m}(n+2)} \\
{\left[B_{1}-B_{2}+\frac{\left(3^{\alpha} B_{1}^{2}(l+q)^{m}(l+q+2 \lambda)^{m}(n+2)+(n+1)(l+q+\lambda)^{2 m} B_{1}^{2}\right)}{2^{\alpha}(n+1)(l+q+\lambda)^{2 m}}\right]\left|a_{2}\right|^{2}} \\
\leq \frac{B_{1}(l+q)^{m}}{3^{\alpha}(n+1)(n+2)(l+q+2 \lambda)^{m}}
\end{gathered}
$$

If $\sigma_{3} \leq \mu \leq \sigma_{2}$, then

$$
\begin{gathered}
\left|a_{3}-\mu a_{2}^{2}\right|+\frac{2^{\alpha}(n+1)(l+q+\lambda)^{2 m}}{3^{\alpha} B_{1}^{2}(l+q)^{m}(l+q+2 \lambda)^{m}(n+2)} \\
{\left[B_{1}+B_{2}-\frac{\left(3^{\alpha} B_{1}^{2}(l+q)^{m}(l+q+2 \lambda)^{m}(n+2)+(n+1)(l+q+\lambda)^{2 m} B_{1}^{2}\right)}{2^{\alpha}(n+1)(l+q+\lambda)^{2 m}}\right]\left|a_{2}\right|^{2}} \\
\leq \frac{B_{1}(l+q)^{m}}{3^{\alpha}(n+1)(n+2)(l+q+2 \lambda)^{m}}
\end{gathered}
$$

A. Eghbiq, M. Darus - Fekete-Szegö theorem for a class of functions . . .

Proof. For the values of $\sigma_{1} \leq \mu \leq \sigma_{3}$, we have

$$
\begin{aligned}
\left|a_{3}-\mu a_{2}^{2}\right|+\left(\mu-\sigma_{1}\right)\left|a_{2}\right|^{2} & =\frac{B_{1}(l+q)^{m}}{2\left(3^{\alpha}\right)(n+1)(n+2)(l+q+2 \lambda)^{m}}\left[c_{2}-\nu c_{1}^{2}\right] \\
& +\left(\mu-\sigma_{1}\right) \frac{B_{1}^{2}(l+q)^{2 m}}{2^{2(\alpha+1)}(n+1)^{2}(l+q+\lambda)^{2 m}}\left|c_{1}\right|^{2} \\
& =\frac{B_{1}(l+q)^{m}}{2\left(3^{\alpha}\right)(n+1)(n+2)(l+q+2 \lambda)^{m}}\left[c_{2}-\nu c_{1}^{2}\right] \\
& +\left(\mu-\frac{2^{\alpha}(n+1)(l+q+\lambda)^{2 m}\left[B_{1}-B_{2}+B_{1}^{2}\right]}{3^{\alpha} B_{1}^{2}(l+q)^{m}(l+q+2 \lambda)^{m}(n+2)}\right) \\
& \times\left(\frac{B_{1}^{2}(l+q)^{2 m}}{2^{2(\alpha+1)}(n+1)^{2}(l+q+\lambda)^{2 m}}\right)\left|c_{1}\right|^{2} \\
& =\frac{B_{1}(l+q)^{m}}{\left(3^{\alpha}\right)(n+1)(n+2)(l+q+2 \lambda)^{m}}\left[\frac{1}{2}\left[\left|c_{2}-\nu c_{1}^{2}\right|+\nu\left|c_{1}\right|^{2}\right]\right] \\
& \leq \frac{B_{1}(l+q)^{m}}{\left(3^{\alpha}\right)(n+1)(n+2)(l+q+2 \lambda)^{m}}
\end{aligned}
$$

Similarly, if $\sigma_{3} \leq \mu \leq \sigma_{2}$, we can write

$$
\begin{aligned}
\mid a_{3} & -\left.\mu a_{2}^{2}\left|+\left(\sigma_{2}-\mu\right)\right| a_{2}\right|^{2}=\frac{B_{1}(l+q)^{m}}{2\left(3^{\alpha}\right)(n+1)(n+2)(l+q+2 \lambda)^{m}}\left[c_{2}-\nu_{1}^{2}\right] \\
& +\left(\sigma_{2}-\mu\right) \frac{B_{1}^{2}(l+q)^{2 m}}{2^{2(\alpha+1)}(n+1)^{2}(l+q+\lambda)^{2} m}\left|c_{1}\right|^{2} \\
& =\frac{B_{1}(l+q)^{m}}{2\left(3^{\alpha}\right)(n+1)(n+2)(l+q+2 \lambda)^{m}}\left[c_{2}-\nu c_{1}^{2}\right] \\
& +\left(\frac{2^{\alpha}(n+1)(l+q+\lambda)^{2 m}\left[B_{1}+B_{2}+B_{1}^{2}\right]}{3^{\alpha} B_{1}^{2}(l+q)^{m}(l+q+2 \lambda)^{m}(n+2)}-\mu\right) \\
& \times\left(\frac{B_{1}^{2}(l+q)^{2 m}}{2^{2(\alpha+1)}(n+1)^{2}(l+q+\lambda)^{2} m}\right)\left|c_{1}\right|^{2} \\
& =\frac{B_{1}(l+q)^{m}}{\left(3^{\alpha}\right)(n+1)(n+2)(l+q+2 \lambda)^{m}}\left[\frac{1}{2}\left[\left|c_{2}-\nu c_{1}^{2}\right|+(1-\nu)\left|c_{1}\right|^{2}\right]\right] \\
& \leq \frac{B_{1}(1+q)^{m}}{\left(3^{\alpha}\right)(n+1)(n+2)(l+q+2 \lambda)^{m}} .
\end{aligned}
$$

Using the above method for the class $S^{\alpha, n}(m, l, q, \lambda,(1+A z) /(1+B z))$, we give the following corollary.

Corollary 1. Let $-1 \leq B<A \leq 1$. Let the function f be given by (1) and belongs to the class $S^{\alpha, n}(m, l, q, \lambda,(1+A z) /(1+B z))$. Then

where

$$
\begin{gathered}
\sigma_{1}=\frac{2^{\alpha}(n+1)(l+q+\lambda)^{2 m}[(A-B)(1-2 B+A]}{3^{\alpha}(A-B)^{2}(l+q)^{m}(l+q+2 \lambda)^{m}(n+2)}, \\
\sigma_{2}=\frac{2^{\alpha}(n+1)(l+q+\lambda)^{2 m}[(A-B)(1+A)]}{3^{\alpha}(A-B)^{2}(l+q)^{m}(l+q+2 \lambda)^{m}(n+2)} .
\end{gathered}
$$

Making use of Lemma 2, and equation (4), we immediately obtain the following result.
Corollary 2. Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+\cdots$ and the function f be given by (1) and belongs to the class $S^{\alpha, n}(m, l, q, \lambda, \phi)$. For a complex number μ

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{B_{1}(l+q)^{m}}{\left(3^{\alpha}\right)(n+1)(n+2)(l+q+2 \lambda)^{m}} \max \left\{1,\left[-B_{1}-\frac{B_{2}}{B_{1}}+\mu \frac{3^{\alpha}(l+q)^{m}(n+2)(l+q+2 \lambda)^{m}}{2^{2 \alpha}(n+1)(l+q+\lambda)^{m}}\right]\right\}
$$

The next result is motivated by Srivastava and Mishra (see [7]). The methods of proving are similar [7]. Here we define the class $S^{\alpha, n, \eta}(m, l, q, \lambda, \phi)$. This will require the following definition.

Definition 2. (Srivastava and Owa [8]) Let the function f be analytic in a simply connected region of the z-plane \mathbb{C} containing the origin and $0 \leq \alpha<1$, then the fractional derivative of order α is defined by

$$
D_{z}^{\alpha} f(z)=\frac{1}{\Gamma(1-\alpha)} \frac{d}{d z} \int_{0}^{z} \frac{f(\alpha)}{(z-t)^{\alpha}} d t ; \quad 0 \leq \alpha<1
$$

where the multiplicity of $(z-t)^{-\alpha}$ is removed by requiring $\log (z-t)$ to be real when $z-t>0$.

Srivastava and Owa[8] introduced and studied the operator $\Omega^{\alpha}: \mathcal{A} \rightarrow \mathcal{A}$ defined by

$$
\Omega^{\alpha} f(z)=\Gamma(2-\alpha) z^{\alpha} D_{z}^{\alpha} f(z), \quad(\alpha \neq 2,3,4, \ldots)
$$

where D_{z}^{α} is the fractional derivative of f of order α.
A. Eghbiq, M. Darus - Fekete-Szegö theorem for a class of functions ...

The class $S^{\alpha, n, \eta}(m, l, q, \lambda, \phi)$ consists of the functions $f \in \mathcal{A}$ for which $\Omega^{\eta} f \in$ $S^{\alpha, n}(m, l, q, \lambda, \phi)$. Note that $S^{\alpha, n, \eta}(m, l, q, \lambda, \phi)$ is a special case of the class $S^{\alpha, n, g}(m, l, q, \lambda, \phi)$ when

$$
g(z)=z+\sum_{k=2}^{\infty} \frac{\Gamma(k+1) \Gamma((2-\eta)}{\Gamma((k+1-\eta)} z^{k} .
$$

Let

$$
g(z)=z+\sum_{k=2}^{\infty} g_{k} z^{k} \quad\left(g_{k}>0\right)
$$

Since

$$
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \in S^{\alpha, n, g}(m, l, q, \lambda)
$$

if and only if

$$
(f * g)(z)=z+\sum_{k=2}^{\infty} a_{k} g_{k} z^{k} \in S^{\alpha, n}(m, l, q, \lambda, \phi) .
$$

The coefficient estimate for functions in the class $S^{\alpha, n, g}(m, l, q, \lambda, \phi)$ is obtained from the corresponding estimate of functions in the class $S^{\alpha, n}(m, l, q, \lambda)$. Applying Theorem 1 for the function $(f * g)(z)=z+a_{2} g_{2} z^{2}+a_{3} g_{3} z^{3}+\ldots$, we have Theorem 2 below after some changes of the parameter μ.

Theorem 2 Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+\cdots$, where B_{k} are real with $B_{1}>0$. Let the function f be given by (1) and belongs to the class $S^{\alpha, n, g}(m, l, q, \lambda, \phi)$. Then
$\left|a_{3}-\mu a_{2}^{2}\right| \leq$
$\left\{\begin{array}{l}\frac{1}{g_{3}}\left[\frac{B_{1}^{2}(l+q)^{m}}{3^{\alpha}(n+1)(n+2)(l+q+2 \lambda)^{m}}+\frac{B_{2}(l+q)^{m}}{3^{\alpha}(n+1)(n+2)(l+q+2 \lambda)^{m}}-\frac{\mu g_{3} B_{1}^{2}(l+q)^{m}}{g_{2}^{2} 2^{2 \alpha}(n+1)^{2}(l+q+\lambda)^{m}}\right] \quad \text { if } \quad \mu \leq \sigma_{1}, \\ \frac{1}{g_{3}}\left[\frac{B_{1}(l+q)^{m}}{3^{\alpha}(n+1)(n+2)(l+q+2 \lambda)^{m}}\right] \quad i f \sigma_{1} \leq \mu \geq \sigma_{2},\end{array} \quad \begin{array}{l}B_{1}^{2}(l+q)^{m} \\ \frac{1}{g_{3}}\left[-\frac{B_{2}(l+q)^{m}}{3^{\alpha}(n+1)(n+2)(l+q+2 \lambda)^{m}}-\frac{g_{3} \mu B_{1}^{2}(l+q)^{m}}{3^{\alpha}(n+1)(n+2)(l+q+2 \lambda)^{m}}+\frac{B_{2}^{2} 2^{2 \alpha}(n+1)^{2}(l+q+\lambda)^{m}}{g_{2}^{2}}\right] \quad \text { if } \quad \mu \leq \sigma_{2},\end{array}\right.$
where

$$
\begin{aligned}
& \sigma_{1}=\frac{g_{2}^{2} 2^{\alpha}(n+1)(l+q+\lambda)^{2 m}\left[B_{1}-B_{2}+B_{1}^{2}\right]}{g_{3} 3^{\alpha} B_{1}^{2}(l+q)^{m}(l+q+2 \lambda)^{m}(n+2)} \\
& \sigma_{2}=\frac{g_{2}^{2} 2^{\alpha}(n+1)(l+q+\lambda)^{2 m}\left[B_{1}+B_{2}+B_{1}^{2}\right]}{g_{3} 3^{\alpha} B_{1}^{2}(l+q)^{m}(l+q+2 \lambda)^{m}(n+2)}
\end{aligned}
$$

A. Eghbiq, M. Darus - Fekete-Szegö theorem for a class of functions . . .

Since

$$
\Omega^{\eta} D^{\alpha, n}(m, l, q, \lambda)=z+\sum_{k=2}^{\infty} \frac{\Gamma(k+1) \Gamma(2-\eta)}{\Gamma(k+1-\eta)}\left[k^{\alpha}\left(1+\frac{k-1}{l+q} \lambda\right)^{m} c(n, k)\right] a_{k} z^{k} .
$$

We have

$$
\begin{gathered}
g_{2}=\frac{\Gamma(3) \Gamma(2-\eta)}{\Gamma(3-\eta)}=\frac{2}{(2-\eta)}, \\
g_{3}=\frac{\Gamma(4) \Gamma(2-\eta)}{\Gamma(4-\eta)}=\frac{6}{(2-\eta)(3-\eta)},
\end{gathered}
$$

for g_{2} and g_{3} given by the above equalities, Theorem 2 gives to the following.
Theorem 3 Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+\ldots$, where B_{k} are real with $B_{1}>0$. Let the function f be given by (1) and belongs to the class $S^{\alpha, n, \eta}(m, l, q, \lambda, \phi)$. Then

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq
$$

where

$$
\begin{aligned}
& \sigma_{1}=\frac{2(3-\eta) 2^{\alpha}(n+1)(l+q+\lambda)^{2 m}\left[B_{1}-B_{2}+B_{1}^{2}\right]}{3(2-\eta) 3^{\alpha} B_{1}^{2}(l+q)^{m}(l+q+2 \lambda)^{m}(n+2)}, \\
& \sigma_{2}=\frac{2(3-\eta) 2^{\alpha}(n+1)(l+q+\lambda)^{2 m}\left[B_{1}+B_{2}+B_{1}^{2}\right]}{3(2-\eta) 3^{\alpha} B_{1}^{2}(l+q)^{m}(l+q+2 \lambda)^{m}(n+2)} .
\end{aligned}
$$

Remark 2. When $\lambda=0, \quad n=0, \quad m=0, \quad B_{1}=\frac{8}{\pi^{2}}, \quad B_{2}=\frac{16}{3 \pi^{2}}$, the above Theorem 2 reduces to the work of Srivastava and Mishra (see [7]) for a class of functions for which $\Omega^{\eta} f(z)$ is a parabolic starlike function (see [3]).
Acknowledgement: The work here is supported by MOHE grant:
FRGS/1/2016/STG06/UKM/01/1.

References

[1] A. Catas, On a certain differential sandwich theorem a ssociated with a new generalized derivative operator, General Mathematics, vol. 17(4), pp. 83-95, 2009.
[2] A. Eghbiq and M. Darus, Univalence criteria of certain integral operator, Journal of Quality Measurement and Analysis (JQMA), 12(1-2)(2016), 107-114.
[3] A.W. Goodman, Uniformly convex functions, Annales Polonici Mathematici, vol. 65, pp. 87-92, 1991.
[4] B.A. Uralegaddi and C. Somanatha, Certain classes of univalent functions, In: Current Topics in Analaytic Function Theory. Eds. H.M. Srivastava and S. Owa. World Scientific Publishing Company, Singapore, pp. 371-374, 1992.
[5] F.M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, International Journal of Mathematics and Mathematical Sciences, vol. 27, pp. 1429-1436, 2004.
[6] G.S. Sălăgean, Subclasses of univalent Functions, Lecture Notes in Mathematics 1013, Spriger-Verlag, pp. 362-372, 1983.
[7] H.M. Srivastava and A.K. Mishra, Applications of fractional calculus to parabolic starlike and uniformly convex functions Computers and Mathematics with Applications, vol. 39, pp. 57-69, 2000.
[8] H.M. Srivastava and S. Owa, Univalent Functions, Fractional Calculus and Their Applications New Jersey: John Wiley and Sons, 1989.
[9] K. Al-Shaqsi and M. Darus, On univalent functions with respect to k-symmetric points defined by a generalized Ruscheweyh derivatives operator Journal of Analysis and Applications, vol. 7, pp. 53-61, 2009.
[10] K. Al-Shaqsi and M. Darus, On Fekete-Szeg problems for certain subclass of analytic functions, Applied Mathematical Sciences, vol. 2, pp. 431-441, 2008.
[11] M. Darus and K. Al-Shaqsi, Differential sandwich theorems with generalised derivative operator Journal of Computational and Mathematical Sciences, vol. 2(2), pp. 75-78, 2008.
[12] N.E. Cho and T.H. Kim, Multiplier transformations and strongly close-toconvex functions. Bulletin of the Korean Mathematical Society, vol. 40(3). pp. 399410, 2003.
[13] N.M. Mustafa and M. Darus, Differential subordination and superordination for a new linear derivative operator International Journal of Pure and Applied Mathematics, vol. 70(6), pp. 825-835, 2011.
[14] N.M. Mustafa and M. Darus, The Fekete-Szeg problem for starlike functions of order associated with generalised derivative operator, AIP Conference Proceedings, vol. 1522, pp. 938-944, 2013.
[15] P.L. Duren, Univalent functions, in: A series of comperhensive studies in Mathematics Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983.
[16] R. Singh and S. Singh, Integrals of certain univalent functions Proceedings of the American Mathematical Society, vol. 77, pp. 336-340, 1979.
[17] S. Owa, S. Fukui, K. Sakaguchi and K. Ogawa, An application of the Ruscheweyh derivatives. International Journal of Mathematics and Mathematical Soc, vol. 9. pp. 721-730, 1986.
[18] S. Ruscheweyh, New criteria for univalent functions Proc. Amer. Math Soc, vol. 49, pp. 109-115, 1975.
[19] T.M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities Journal of Mathematical Analysis and Applications Soc 38, pp. 746-765, 1972.
[20] W. Janowski, Some extremal problems for certain families of analytic functions Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom Phys, vol. 21, pp. 17-25, 1973.
[21] W. Ma and D. Minda, A unified treatment of some special classes of univalent functions In. Z. Li, F. Ren, L. Yang and S. Zhang Proceedings of the conference on complex analysis, pp. 157-169, 1994.

Abdussalam Eghbiq

1,2 School of Mathematical Sciences Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 UKM Bangi Selangor, Malaysia
email: eghbiq@gmail.com
Maslina Darus
School of Mathematical Sciences Faculty of Science and Technology, Universiti Kebangsaan Malaysia
43600 UKM Bangi Selangor, Malaysia
email: maslina@ukm.edu.my (Corresponding author)

