QUANTUM CODES FROM CYCLIC CODES OVER A_{3}

A. Dertli, Y. Cengellenmis

Abstract. In this paper, the quantum codes over F_{2} are constructed by using the cyclic codes over $A_{3}=F_{2}+u F_{2}+v F_{2}+w F_{2}+u v F_{2}+u w F_{2}+v w F_{2}+u v w F_{2}$ with $u^{2}=u, v^{2}=v, w^{2}=w, u v=v u, u w=w u, v w=w v$. Moreover, the parameters of quantum codes over F_{2} are determined.

2010 Mathematics Subject Classification: 94B15, 81P68, 94B60.
Keywords: cyclic codes, quantum codes, gray map, rings.

1. Introduction

Quantum error correcting codes are used in quantum computing to protect quantum information from errrors. The first error correcting code was discovered by Shor in [14] and independently by Steane in [1]. Although the theory quantum error correcting codes has differences from theory classical error correcting codes, Calderbank et al, gave a way to construct quantum error correcting codes from classical error correcting codes.

Many quantum error correcting codes have been constructed by using classical error correcting codes over many finite rings [2-16].

In [17], the finite ring $A_{k}=F_{2}\left[v_{1}, \ldots, v_{k}\right] /\left\langle v_{i}^{2}=v_{i}, v_{i} v_{j}=v_{j} v_{i}\right\rangle, 1 \leq i, j \leq k$ was introduced.

In this paper, we give some knowledges about the ring A_{3}, in section 2. A necessary and sufficient condition for cyclic codes over A_{3} that contains its dual is given in section 3. The parameters of quantum error correcting codes are obtained from cyclic codes over A_{3}. Some examples are given.

2. Preliminaries

In [17], the finite ring $A_{k}=F_{2}\left[v_{1}, \ldots, v_{k}\right] /\left\langle v_{i}^{2}=v_{i}, v_{i} v_{j}=v_{j} v_{i}\right\rangle, 1 \leq i, j \leq k$ was introduced firstly. By taking $k=3$, we get the finite ring

$$
\begin{aligned}
A_{3} & =F_{2}+u F_{2}+v F_{2}+w F_{2}+u v F_{2}+u w F_{2}+v w F_{2}+u v w F_{2} \\
& =\left\{\begin{array}{c}
a_{1}+u a_{2}+v a_{3}+w a_{4}+u v a_{5}+u w a_{6}+v w a_{7} \\
+u v w a_{8}: a_{i} \in F_{2}, 1 \leq i \leq 8
\end{array}\right\}
\end{aligned}
$$

with $u^{2}=u, v^{2}=v, w^{2}=w, u v=v u, u w=w u, v w=w v$. This ring has characteristic 2 and cardinality $2^{2^{3}}$. It is not a local ring. The only unit in the ring A_{3} is 1 . It is a principal ideal ring. Moreover, it is clear that A_{3} is isomorphic to $F_{2}[a, b, c] /\left\langle a^{2}-a, b^{2}-b, c^{2}-c, a b-b a, a c-c a, b c-c b\right\rangle$.

We define the Gray map Φ from A_{3} to F_{2}^{8} as follows,

$$
\begin{gathered}
\Phi: A_{3} \longrightarrow F_{2}^{8} \\
a_{1}+u a_{2}+v a_{3}+w a_{4}+u v a_{5}+u w a_{6}+v w a_{7}+u v w a_{8} \longmapsto \zeta
\end{gathered}
$$

where $\zeta=\left(a_{8}, a_{6}+a_{7}, a_{5}+a_{7}, a_{4}+a_{5}+a_{6}+a_{7}, a_{3}+a_{7}, a_{2}+a_{3}+a_{6}+a_{7}, a_{1}+a_{3}+\right.$ $\left.a_{5}+a_{7}, a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}+a_{8}\right)$.

This map Φ can be extended to A_{3}^{n} in obvious way.

Theorem 1. The Gray map Φ is a distance preserving map from A_{3}^{n} (Lee distance) to $F_{2}^{8 n}$ (Hamming distance) and it is also F_{2}-linear.

The Hamming distance $d_{H}(x, y)$ between two vector x and y over F_{2} is the Hamming weight of the vector $x-y$.

The Lee weight $w_{L}(x)$ of $x=\left(x_{0}, x_{1}, \ldots, x_{n-1}\right) \in A_{3}^{n}$ is defined as $w_{L}(x)=$ $w_{H}(\Phi(x))$. The Lee distance $d_{L}(x, y)$ is given by $d_{L}(x, y)=w_{L}(x-y)$ for any $x, y \in A_{3}^{n}$.

A linear code C of length n over A_{3} is a A_{3}-submodule of A_{3}^{n}.
Lemma 2. Let C be a linear code of length n over A_{3} with rank k and minimum Lee distance d, then $\Phi(C)$ is a $[8 n, k, d]$ linear code over F_{2}.

For any $x=\left(x_{0}, \ldots, x_{n-1}\right), y=\left(y_{0}, \ldots, y_{n-1}\right)$ the inner product is defined as

$$
x y=\sum_{i=0}^{n-1} x_{i} y_{i}
$$

If $x y=0$, then x and y are said to be orthogonal. Let C be a linear code of length n over R, the dual of C

$$
C^{\perp}=\{x: \forall y \in C, x y=0\}
$$

A. Dertli, Y. Cengellenmis - Quantum Codes from Cyclic Codes over A_{3}
which is also a linear code over R of length n. A code C is self orthogonal, if $C \subset C^{\perp}$ and self dual, if $C=C^{\perp}$.
Theorem 3. Let C be a linear code of length n over A_{3}. If C is self orthogonal, so is $\Phi(C)$.

Proof. It is proved that as in [3].
Let

$$
\begin{aligned}
& \lambda_{1}=1+u+v+u v+w+u w+v w+u v w \\
& \lambda_{2}=u+u v+u w+u v w \\
& \lambda_{3}=v+u v+v w+u v w \\
& \lambda_{4}=w+u w+v w+u v w \\
& \lambda_{5}=u v+u v w \\
& \lambda_{6}=u w+u v w \\
& \lambda_{7}=v w+u v w \\
& \lambda_{8}=u v w
\end{aligned}
$$

It is easy to show that $\lambda_{i}^{2}=\lambda_{i}, \lambda_{i} \lambda_{j}=0$ and $\sum_{k=1}^{8} \lambda_{k}=1$, where $i, j=1,2, \ldots, 8$ and $i \neq j$. This show that $A_{3}=\sum_{k=1}^{8} \lambda_{k} F_{2}$. Therefore, for any $a \in A_{3}, a$ can be expressed uniquely as $a=\sum_{k=1}^{8} \lambda_{k} a_{k}$, where $a_{k} \in F_{2}$, for $k=1,2, \ldots, 8$.

If $B_{i}(i=1,2, \ldots, 8)$ are codes over F_{2}, we denote their direct sum by

$$
B_{1} \oplus B_{2} \oplus \ldots \oplus B_{8}=\left\{b_{1}+\ldots+b_{8}: b_{i} \in B_{i}, i=1, \ldots, 8\right\}
$$

Definition 1. Let C be a linear code of length n over A_{3}, we define

$$
\begin{aligned}
& C_{1}=\left\{a \in F_{2}^{n}: \exists b, c, d, e, f, g, h \in F_{2}^{n}, \gamma \in C\right\} \\
& C_{2}=\left\{b \in F_{2}^{n}: \exists a, c, d, e, f, g, h \in F_{2}^{n}, \gamma \in C\right\} \\
& C_{3}=\left\{c \in F_{2}^{n}: \exists a, b, d, e, f, g, h \in F_{2}^{n}, \gamma \in C\right\} \\
& C_{4}=\left\{d \in F_{2}^{n}: \exists a, b, c, e, f, g, h \in F_{2}^{n}, \gamma \in C\right\} \\
& C_{5}=\left\{e \in F_{2}^{n}: \exists a, b, c, d, f, g, h \in F_{2}^{n}, \gamma \in C\right\} \\
& C_{6}=\left\{f \in F_{2}^{n}: \exists a, b, c, d, e, g, h \in F_{2}^{n}, \gamma \in C\right\} \\
& C_{7}=\left\{g \in F_{2}^{n}: \exists a, b, c, d, e, f, h \in F_{2}^{n}, \gamma \in C\right\} \\
& C_{8}=\left\{h \in F_{2}^{n}: \exists a, b, c, d, e, f, g \in F_{2}^{n}, \gamma \in C\right\}
\end{aligned}
$$

where $\gamma=\lambda_{1} a+\lambda_{2} b+\lambda_{3} c+\lambda_{4} d+\lambda_{5} e+\lambda_{6} f+\lambda_{7} g+\lambda_{8} h$.

A. Dertli, Y. Cengellenmis - Quantum Codes from Cyclic Codes over A_{3}

It is noted that $C_{i}(i=1, \ldots, 8)$ are linear codes over F_{2}. Moreover, $C=\lambda_{1} C_{1} \oplus$ $\ldots \oplus \lambda_{8} C_{8}$ and $|C|=\left|C_{1}\right|\left|C_{2}\right| \ldots\left|C_{8}\right|$.

Theorem 4. Let $C=\sum_{i=1}^{8} \lambda_{i} C_{i}$ be a linear code of length n over A_{3}. Then $C^{\perp}=$ $\sum_{i=1}^{8} \lambda_{i} C_{i}^{\perp}$.

Lemma 5. If G_{i} are generator matrices of binary linear codes $C_{i}(i=1, \ldots, 8)$, then the generator matrix of C is

$$
G=\left[\begin{array}{c}
\lambda_{1} G_{1} \\
\lambda_{2} G_{2} \\
\vdots \\
\lambda_{8} G_{8}
\end{array}\right]
$$

Let d_{L} minimum Lee weight of linear code C over A_{3}. Then,

$$
d_{L}=d_{H}(\Phi(C))=\min \left\{d_{H}\left(C_{1}\right), d_{H}\left(C_{2}\right), \ldots, d_{H}\left(C_{8}\right)\right\}
$$

where $d_{H}\left(C_{i}\right)$ denotes the minimum Hamming weights of codes $C_{1}, C_{2}, \ldots, C_{8}$, respectively.

Proposition 1. Let $C=\sum_{i=1}^{8} \lambda_{i} C_{i}$ be a linear code of length n over A_{3}, where C_{i} are codes over F_{2} of length n for $i=1, \ldots, 8$. Then C is a cyclic code over A_{3} iff $C_{i}, i=1, \ldots, 8$ are all cyclic codes over F_{2}.

Proof. Let $\left(a_{0}^{i}, a_{1}^{i}, \ldots, a_{n-1}^{i}\right) \in C_{i}$, where $i=1, \ldots, 8$. Assume that $m_{i}=\lambda_{1} a_{i}^{1}+\lambda_{2} a_{i}^{2}+$ $\ldots+\lambda_{8} a_{i}^{8}$ for $i=0,1, \ldots, n-1$. Then $\left(m_{0}, m_{1}, \ldots, m_{n-1}\right) \in C$. Since C is a cyclic code, it follows that $\left(m_{n-1}, m_{0}, \ldots, m_{n-2}\right) \in C$. Note that $\left(m_{n-1}, m_{0}, \ldots, m_{n-2}\right)=$ $\lambda_{1}\left(a_{n-1}^{1}, a_{0}^{1}, \ldots, a_{n-2}^{1}\right)+\ldots+\lambda_{8}\left(a_{n-1}^{8}, a_{0}^{8}, \ldots, a_{n-2}^{8}\right)$. Hence $\left(a_{n-1}^{i}, a_{0}^{i}, \ldots, a_{n-2}^{i}\right) \in C_{i}$,for $i=1, \ldots, 8$. Therefore, $C_{1}, C_{2}, \ldots, C_{8}$ are cyclic codes over F_{2}.

Conversely, suppose that $C_{1}, C_{2}, \ldots, C_{8}$ are cyclic codes over F_{2}. Let $\left(m_{0}, m_{1}, \ldots, m_{n-1}\right) \in$ C, where $m_{i}=\lambda_{1} a_{i}^{1}+\lambda_{2} a_{i}^{2}+\ldots+\lambda_{8} a_{i}^{8}$ for $i=0,1, \ldots, n-1$. Then $\left(a_{0}^{i}, a_{1}^{i}, \ldots, a_{n-1}^{i}\right) \in$ C_{i} for $i=1, \ldots, 8$. Note that $\left(m_{n-1}, m_{0}, \ldots, m_{n-2}\right)=\lambda_{1}\left(a_{n-1}^{1}, a_{0}^{1}, \ldots, a_{n-2}^{1}\right)+\ldots+$ $\lambda_{8}\left(a_{n-1}^{8}, a_{0}^{8}, \ldots, a_{n-2}^{8}\right) \in C=\lambda_{1} C_{1} \oplus \ldots \oplus \lambda_{8} C_{8}$. So, C is a cyclic code over A_{3}.

Proposition 2. Suppose that $C=\sum_{i=1}^{8} \lambda_{i} C_{i}$ is a cyclic code of length n over A_{3}. Then

$$
C=\left\langle\lambda_{1} f_{1}, \lambda_{2} f_{2}, \ldots, \lambda_{8} f_{8}\right\rangle
$$

where $f_{1}, f_{2}, \ldots, f_{8}$ are generator polynomials of $C_{1}, C_{2}, \ldots, C_{8}$ respectively.
Lemma 6. For any cyclic code $C=\sum_{i=1}^{8} \lambda_{i} C_{i}$ of length n over A_{3}, there exist a unique polynomial $f(x)$ such that $C=\langle f(x)\rangle$ and $f(x) \mid x^{n}-1$ where $f_{i}(x)$ are the generator polynomials of $C_{i}, i=1,2, \ldots, 8$ and $f(x)=\lambda_{1} f_{1}(x)+\lambda_{2} f_{2}(x)+\ldots+$ $\lambda_{8} f_{8}(x)$.

Lemma 7. Let $C=\sum_{i=1}^{8} \lambda_{i} C_{i}$ be a cyclic code of length n over A_{3}, where $C_{1}, C_{2}, \ldots, C_{8}$ are binary codes.Then

$$
C^{\perp}=\left\langle\lambda_{1} h_{1}^{*}+\lambda_{2} h_{2}^{*}+\ldots+\lambda_{8} h_{8}^{*}\right\rangle
$$

where for $h_{i}^{*}(x)$ are the reciprocal polynomials of $h_{i}(x)=\left(x^{n}-1\right) / f_{i}(x)$, that is, $h_{i}^{*}(x)=x^{\operatorname{deg} h_{i}(x)} h_{i}\left(x^{-1}\right)$ for $i=1,2, \ldots, 8$.
Lemma 8. A cyclic code C with generator polynomial $f(x)$ contains its dual code iff

$$
x^{n}-1 \equiv 0\left(\bmod f f^{*}\right)
$$

where $f^{*}(x)$ is the reciprocal polynomial of $f(x),[7]$.

3. Quantum codes from cyclic codes over A_{3}

Lemma 9. Let C_{1} and C_{2} be linear codes over F_{q} with parameters $\left[n, k_{1}, d_{1}\right]_{q}$ and $\left[n, k_{2}, d_{2}\right]_{q}$, respectively and $C_{2}^{\perp} \subseteq C_{1}$. Furthermore, let

$$
d=\min \left\{w_{t}(v): v \in\left(C_{1} \backslash C_{2}^{\perp}\right) \cup\left(C_{2} \backslash C_{1}^{\perp}\right)\right\} \geq \min \left\{d_{1}, d_{2}\right\}
$$

Then, there exist a quantum error correcting code C with parameters $\left[\left[n, k_{1}+k_{2}-n, d\right]\right]_{q}$. In particular, if $C_{1}^{\perp} \subseteq C_{1}$, then there exist a quantum error correcting code C with parameter $\left[\left[n, 2 k_{1}-n, d\right]\right]$, where $d_{1}=\min \left\{w_{t}(v): v \in C_{1} \backslash C_{1}^{\perp}\right\}$, [11].
Theorem 10. Let C be a cyclic code of arbitrary length n over A_{3}, where $f(x)=$ $\lambda_{1} f_{1}(x)+\lambda_{2} f_{2}(x)+\ldots+\lambda_{8} f_{8}(x)$, then $C^{\perp} \subseteq C$ iff $x^{n}-1 \equiv 0\left(\bmod f_{i}(x) f_{i}^{*}(x)\right)$, where $f_{i}^{*}(x)$ are the reciprocal polynomials of $f_{i}(x)$ respectively, for $i=1,2, \ldots, 8$.

Proof. Let $x^{n}-1 \equiv 0\left(\bmod f_{i}(x) f_{i}^{*}(x)\right)$ for $i=1,2, \ldots, 8$. By using Lemma 8 $C_{i}^{\perp} \subseteq C_{i}$ for $i=1,2, \ldots, 8$. By using this, we get

$$
\lambda_{i} C_{i}^{\perp} \subseteq \lambda_{i} C_{i}
$$

for $i=1,2, \ldots, 8$. Hence, $\sum_{j=1}^{8} \lambda_{j} C_{j}^{\perp} \subseteq \sum_{j=1}^{8} \lambda_{j} C_{j}$. So, we have $\left\langle\sum_{j=1}^{8} \lambda_{j} h_{j}^{*}(x)\right\rangle \subseteq$ $\left\langle\sum_{j=1}^{8} \lambda_{j} f_{j}(x)\right\rangle$. This implies that $C^{\perp} \subseteq C$.

Conversely, if $C^{\perp} \subseteq C$, then $\sum_{j=1}^{8} \lambda_{j} C_{j}^{\perp} \subseteq \sum_{j=1}^{8} \lambda_{j} C_{j}$. Since C_{i} are the binary codes such that $\lambda_{i} C_{i}$ is equal to $C \bmod \lambda_{i}, i=1, \ldots, 8$, we have $C_{i}^{\perp} \subseteq C_{i}, i=1, \ldots, 8$. So, $x^{n}-1 \equiv 0\left(\bmod f_{i}(x) f_{i}^{*}(x)\right), i=1, \ldots, 8$.

Theorem 11. Let $C=\sum_{i=1}^{8} \lambda_{i} C_{i}$ be a cyclic code of length n over A_{3}. If $C_{i}^{\perp} \subseteq C_{i}$ where $i=1,2, \ldots, 8$, then $C^{\perp} \subseteq C$ and there exists a quantum error-correcting code with parameters $\left[\left[8 n, 2 k-8 n, d_{L}\right]\right]$, where d_{L} is the minimum Lee weight of the code C and k is the dimension of the code $\Phi(C)$.

4. Examples

Example 1. Let $n=7$

$$
x^{7}-1=(x+1)\left(x^{3}+x+1\right)\left(x^{3}+x^{2}+1\right) \in F_{2}[x]
$$

Let $f_{i}(x)=x^{3}+x+1, i=1,2, \ldots, 8$. Thus C_{i} are $[7,4,3]$ linear codes of length 7 . So, $\Phi(C)$ is $[56,32,3]$ linear code. Clearly, $C^{\perp} \subseteq C$. Hence we obtain a quantum code with parameters $[[56,8,3]]$.

n	C_{i}	$\phi(C)$	$[[N, K, D]]$
4	$[4,3,2]$	$[32,24,2]$	$[[32,16,2]]$
8	$[8,6,2]$	$[64,48,2]$	$[[64,32,2]]$
14	$[14,11,3]$	$[112,88,3]$	$[[112,64,3]]$
15	$[15,8,4]$	$[120,64,4]$	$[[120,8,4]]$
30	$[30,17,6]$	$[240,136,6]$	$[[240,32,6]]$
31	$[31,21,5]$	$[248,168,5]$	$[[248,88,5]]$
31	$[31,16,7]$	$[248,128,7]$	$[[248,8,7]]$
64	$[64,45,8]$	$[512,360,8]$	$[[512,208,8]]$

5. Conclusion

In this paper, we have given the structure of cyclic codes over $A_{3}=F_{2}+u F_{2}+$ $v F_{2}+w F_{2}+u v F_{2}+u w F_{2}+v w F_{2}+u v w F_{2}$ with $u^{2}=u, v^{2}=v, w^{2}=w, u v=$ $v u, u w=w u, v w=w v$. to obtain quantum codes from cyclic codes over this ring. We have established a method to obtain self-orthogonal codes over F_{2} as the Gray images of cyclic codes over the ring A_{3}. Finally, we have constructed some examples of quantum codes to illustrate the main result in which some of them are new in literature.

References

[1] A. M. Steane, Simple quantum error correcting codes, Phys. Rev. A, 54 (1996), 4741-4751.
[2] A. R. Calderbank, E. M. Rains, P. M. Shor, N. J. A. Sloane, Quantum error correction via codes over $G F(4)$, IEEE Trans. Inf. Theory, 44 (1998), 1369-1387.
[3] A. Dertli, Y. Cengellenmis, S. Eren, On quantum codes obtained from cyclic codes over A_{2}, International Journal of Quantum Information, 13 (2015), 1550031.
[4] A. Dertli, Y. Cengellenmis, S. Eren, Quantum Codes over the Ring $F_{2}+u F_{2}+$ $u^{2} F_{2}+\ldots+u^{m} F_{2}$, International Journal of Algebra, 9 (2015), 115-121.
[5] A. Dertli, Y. Cengellenmis, S. Eren, On the linear codes over the ring R_{p}, Discrete Mathematics, Algorithms and Applications, (2016), 1650036.
[6] A. Dertli, Y. Cengellenmis, S. Eren, On the Codes over a Semilocal Finite Ring, Intern. J. of Adv. Computer Science \& Appl., DOI: 10.14569/IJACSA.2015.061038.
[7] A. Dertli, Y. Cengellenmis, S. Eren, Some results on the linear codes over the finite ring $F_{2}+v_{1} F_{2}+\cdots+v_{r} F_{2}$, International Journal of Quantum Information, (2016), 1650012.
[8] A. Dertli, Y. Cengellenmis, S. Eren, Quantum Codes Over $F_{2}+u F_{2}+v F_{2}$, Palestine Journal of Mathematics, 4 (2015), 547-552.
[9] J. Qian, Quantum codes from cyclic codes over $F_{2}+v F_{2}$, Journal of Inform.\& computational Science 6 (2013), 1715-1722.
[10] J. Qian, W. Ma, W. Gou, Quantum codes from cyclic codes over finite ring, Int. J. Quantum Inform., 7 (2009), 1277-1283.
[11] M. Ashraf, G. Mohammad, Quantum codes from cyclic codes over $F_{3}+v F_{3}$, International Journal of Quantum Information, 6 (2014), 1450042.
[12] M. Ashraf, G. Mohammad, Construction of quantum codes from cyclic codes over $F_{p}+v F_{p}$, International Journal of Information and Coding Theory, 2 (2015), 137-144.
[13] M. Ashraf, G. Mohammad, Quantum codes from cyclic codes over $F_{q}+u F_{q}+$ $v F_{q}+u v F_{q}$, Quantum Information Proc., DOI:10.1007/s11128-016-1379-8.
[14] P. W. Shor, Scheme for reducing decoherence in quantum memory, Phys. Rev. A, 52 (1995), 2493-2496.
[15] X. Kai, S. Zhu, Quaternary construction of quantum codes from cyclic codes over $F_{4}+u F_{4}$, Int. J. Quantum Inform., 9 (2011), 689-700.
[16] X. Yin, W. Ma, Gray Map And Quantum Codes Over The Ring $F_{2}+u F_{2}+u^{2} F_{2}$, International Joint Conferences of IEEE TrustCom-11, (2011).
[17] Y. Cengellenmis, A. Dertli and S. T. Dougherty, Codes over an infinite family of rings with a Gray map, Designs, codes and cryptography 72 (2014), 559-580.

Abdullah Dertli
Department of Mathematics, Faculty of Art and Science, University of Ondokuz Mayıs,
Samsun, Turkey
email: abdullah.dertli@gmail.com
A. Dertli, Y. Cengellenmis - Quantum Codes from Cyclic Codes over A_{3}

Yasemin Cengellenmis
Department of Mathematics, Faculty of Science, University of Trakya,
Edirne, Turkey
email: ycengellenmis@gmail.com

