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1. Introduction

Let A denote the class of functions f(z) of the form:

f(z) = z +
∞∑
n=2

anz
n, (1)

which are analytic in the open unit disc U = {z : z ∈ C and |z| < 1}, and let S be
the subclass of all functions in A, which are univalent. For g(z) ∈ A of the form

g(z) = z +

∞∑
n=2

bnz
n,

the Hadamard product (or convolution) of two power series f(z) and g(z) is given
by (see [3])

(f ∗ g)(z) = z +

∞∑
n=2

anbnz
n = (g ∗ f)(z).

Definition 1. For two functions f(z) and g(z) analytic in U, we say that the
function f(z) is subordinate to g(z) in U and written f(z) ≺ g(z), if there ex-
ists a Schwarz function w(z), analytic in U with w(0) = 0 and w(z) < 1 such that
f(z) = g(w(z)) (z ∈ U). Furthermore, if the function g(z) is univalent in U, then
we have the following equivalence (see [9]):

f(z) ≺ g(z)⇔ f(0) = g(0) and f(U) ⊂ g(U).
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Let S∗(α) and K(α) denote the subclasses of starlike and convex functions of
order α, respectively. We note that S∗(0) = S∗ and K(0) = K, the subclasses of
starlike and convex functions (see [8, 11, 13, 15, 16] and [19]).

Kanas and Wisniowska [6, 7] introduced the classes k − ST and k − UCV are
uniformly starlike functions and uniformly convex functions, respectively, as follow-
ing:

Definition 2. A function f(z) of the form (1) is in the class k − ST if it satisfies
the following condition:

<
{

1 +
zf ′(z)

f(z)

}
≥ k

∣∣∣∣zf ′(z)f(z)

∣∣∣∣ (k ≥ 0; z ∈ U).

Definition 3. A function f(z) of the form (1) is in the class k−UCV if it satisfies
the following condition:

<
{

1 +
zf ′′(z)

f ′(z)

}
≥ k

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ (k ≥ 0; z ∈ U).

Definition 4. [1] with p = 1 For −1 ≤ A < B ≤ 1, |θ| < π
2 and 0 ≤ α < 1,

the function f(z) ∈ A is in the class L(A,B, θ;α) if it satisfies the subordination
condition

eiθf ′(z) ≺ cos θ

[
(1− α)

1 +Az

1 +Bz
+ α

]
+ i sin θ.

Using the principle of subordination, f(z) ∈ L(A,B, θ;α) if and only if there
exists function w(z) satisfying w(0) = 0 and |w(z)| < 1 (z ∈ U) such that

eiθf ′(z) = cos θ

[
(1− α)

1 +Aw(z)

1 +Bw(z)
+ α

]
+ i sin θ.

or, equivalently,∣∣∣∣ eiθ(f ′(z)− 1)

Beiθf ′(z)− [Beiθ + (A−B)(1− α) cos θ]

∣∣∣∣ < 1 (z ∈ U).

For suitable choices of A, B and α, we obtain some subclasses as following:

1. Let A = −1 and B = 1, we obtain L(−1, 1, θ;α) = L(θ;α) (0 ≤ α < 1) the
class of functions f(z) ∈ A satisfying the condition∣∣∣∣ eiθ(f ′(z)− 1)

eiθf ′(z)− [eiθ − 2(1− α) cos θ]

∣∣∣∣ < 1,

which introduce by [5].
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2. Let α = 0, we obtain L(A,B, θ; 0) = L(A,B, θ) (−1 ≤ A < B ≤ 1, |θ| < π
2 )

the class of functions f(z) ∈ A satisfying the condition∣∣∣∣ eiθ(f ′(z)− 1)

Beiθf ′(z)− [Beiθ − (A−B) cos θ]

∣∣∣∣ < 1,

which introduce by [17].

3. Let A = −β, B = β and θ = 0, we obtain L(−β, β, 0;α) = R(β, α) the class
of functions f(z) ∈ A satisfying the condition∣∣∣∣ f ′(z)− 1

f ′(z) + 1− 2α

∣∣∣∣ < β (0 < β ≤ 1, 0 ≤ α < 1; z ∈ U),

which introduce by [4].

4. Let A = −β, B = β, θ = 0 and α = 0, we obtain L(−β, β, 0; 0) = D(β) the
class of functions f(z) ∈ A satisfying the condition∣∣∣∣f ′(z)− 1

f ′(z) + 1

∣∣∣∣ < β (0 < β ≤ 1; z ∈ U),

which introduce by [2, 10].

Very recently, Porwal [12] introduce a power series whose coefficients are proba-
bilities of Poisson distribution:

H(m; z) = z +
∞∑
n=2

mn−1

(n− 1)!
e−mzn, (z ∈ U). (2)

Also, we define the function

ψ(m,µ; z) = (1− µ)H(m; z) + µz(H(m; z))′

= z +

∞∑
n=2

[1 + µ(n− 1)]
mn−1

(n− 1)!
e−mzn (µ ≥ 0).

and

N (m,µ, λ; z) = (1− µ+ λ)H(m; z) + (µ− λ)z(H(m; z))′

+ µλz2(H(m; z))′′ (z ∈ U ; µ, λ ≥ 0;µ ≥ λ)

= z +
∞∑
n=2

[1 + (n− 1)(µ− λ+ nµλ)]
mn−1

(n− 1)!
e−mzn.
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The properties of a function ψ(m,µ; z) was studied by Shukla and Shukla [18] and
Tang and Deng [20] with p = 1.

Now, we defined the linear operator Xm : A → A defined by

[Xm(f)](z) =M(m, z) ∗ f(z)

= z +

∞∑
n=2

mn−1

(n− 1)!
ane
−mzn.

In this paper, we obtained some condition on Poisson distribution series and
some related series to be in subclasses of analytic function.

2. Main Results

Unless otherwise mentioned, we assume that 0 ≤ α < 1, k ≥ 0, |θ| < π
2 , −1 ≤ A <

B ≤ 1, m > 0, µ, λ ≥ 0 and µ ≥ λ. To prove our results, we will need the following
lemmas.

Lemma 1. [1] [Theorem 4, with p = 1] A sufficient condition for f(z) defined by
(1) to be in the class L(A,B, θ;α) is:

∞∑
n=2

n(1 + |B|)|an| ≤ (B −A)(1− α) cos θ.

Lemma 2. [1] [Theorem 1, with p = 1] A sufficient condition for f(z) defined by
(1) to be in the class L(A,B, θ;α) is:

|an| ≤
(B −A)(1− α) cos θ

n
(n ≥ 2).

Lemma 3. [7] Let f(z) ∈ A. For some k, the following inequality

∞∑
n=2

n(n− 1)|an| ≤
1

k + 2
,

holds, then f ∈ UCV(k). The number 1
k+2 cannot be increased.

Lemma 4. [6] Let f(z) ∈ A. For some k, the following inequality

∞∑
n=2

(n+ k(n− 1))|an| ≤ 1,

holds, then f ∈ T S(k).
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Theorem 5. The sufficient condition for H(m; z) to be in the class L(A,B, θ;α) is

m− e−m + 1 ≤ (B −A)(1− α) cos θ

1 + |B|
. (3)

Proof. Since

H(m; z) = z +
∞∑
n=2

mn−1

(n− 1)!
e−mzn, (z ∈ U).

By applying Lemma 1, we need to prove that

∞∑
n=2

n(1 + |B|)
∣∣∣∣ mn−1

(n− 1)!
e−m

∣∣∣∣ ≤ (B −A)(1− α) cos θ.

Thus,

I =

∞∑
n=2

n(1 + |B|) mn−1

(n− 1)!
e−m

= (1 + |B|)e−m
[ ∞∑
n=2

(n− 1)
mn−1

(n− 1)!
+
∞∑
n=2

mn−1

(n− 1)!

]

= (1 + |B|)e−m
[ ∞∑
n=2

mn−1

(n− 2)!
+

∞∑
n=2

mn−1

(n− 1)!

]

= (1 + |B|)e−m
[
m
∞∑
n=0

mn

n!
+
∞∑
n=1

mn

n!

]

= (1 + |B|)e−m
[
m
∞∑
n=0

mn

n!
+
∞∑
n=0

mn

n!
− 1

]
= (1 + |B|)[m+ 1− e−m].

But this last equation is bounded by (B − A)(1 − α) cos θ if Eq. (3) is holds.
This completes the prove of theorem 5.

Corollary 6. Let A = −1 and B = 1 in Theorem 5, then the sufficient condition
for H(m; z) to be in the class L(θ;α) is

m− e−m + 1 ≤ (1− α) cos θ.

Corollary 7. Let α = 0 in Theorem 5, then the sufficient condition for H(m; z) to
be in the class L(A,B, θ) is

m− e−m + 1 ≤ (B −A) cos θ

1 + |B|
.
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Corollary 8. Let A = −β, B = β, θ = 0 and α = 0 in Theorem 5, then the
sufficient condition for H(m; z) to be in the class L(−β, β, 0; 0) = D(β) is

m− e−m + 1 ≤ 2β

1 + |β|
.

Corollary 9. Let A = −β, B = β and θ = 0 in Theorem 5, then the sufficient
condition for H(m; z) to be in the class R(β;α) is

m− e−m + 1 ≤ 2β(1− α)

1 + |β|
.

Theorem 10. The sufficient condition for ψ(m,µ; z) to be in the class L(A,B, θ;α)
is

µm2 + (1 + 2µ)m− e−m + 1 ≤ (B −A)(1− α) cos θ

1 + |B|
. (4)

Proof. Since

ψ(m,µ; z) = z +
∞∑
n=2

[1 + µ(n− 1)]
mn−1

(n− 1)!
e−mzn, (z ∈ U).

By applying Lemma 1, we need to prove that

∞∑
n=2

n(1 + |B|)
∣∣∣∣[1 + µ(n− 1)]

mn−1

(n− 1)!
e−m

∣∣∣∣ ≤ (B −A)(1− α) cos θ.

Thus,

I1 =

∞∑
n=2

n(1 + |B|)[1 + µ(n− 1)]
mn−1

(n− 1)!
e−m

= (1 + |B|)e−m
[ ∞∑
n=2

(1 + 2µ)(n− 1)
mn−1

(n− 1)!
+

∞∑
n=2

mn−1

(n− 1)!
+

∞∑
n=2

µ(n− 1)(n− 2)
mn−1

(n− 1)!

]

= (1 + |B|)e−m
[ ∞∑
n=2

(1 + 2µ)
mn−1

(n− 2)!
+
∞∑

n=2

mn−1

(n− 1)!
+ µ

∞∑
n=3

mn−1

(n− 3)!

]

= (1 + |B|)e−m
[
m(1 + 2µ)

∞∑
n=0

mn

n!
+

∞∑
n=1

mn

n!
+ µm2

∞∑
n=0

mn

n!

]

= (1 + |B|)e−m
[
m(1 + 2µ)

∞∑
n=0

mn

n!
+

∞∑
n=0

mn

n!
− 1 + µm2

∞∑
n=0

mn

n!

]
= (1 + |B|)[µm2 + (1 + 2µ)m+ 1− e−m].

But this last equation is bounded by (B −A)(1− α) cos θ if Eq. (4) is holds. This
completes the prove of theorem 10.
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Corollary 11. Let A = −1 and B = 1 in Theorem 10, then the sufficient condition
for H(m; z) to be in the class L(θ;α) is

µm2 + (1 + 2µ)m− e−m + 1 ≤ (1− α) cos θ.

Corollary 12. Let α = 0 in Theorem 10, then the sufficient condition for H(m; z)
to be in the class L(A,B, θ) is

µm2 + (1 + 2µ)m− e−m + 1 ≤ (B −A) cos θ

1 + |B|
.

Corollary 13. Let A = −β, B = β, θ = 0 and α = 0 in Theorem 10, then the
sufficient condition for H(m; z) to be in the class L(−β, β, 0; 0) = D(β) is

µm2 + (1 + 2µ)m− e−m + 1 ≤ 2β

1 + |β|
.

Corollary 14. Let A = −β, B = β and θ = 0 in Theorem 10, then the sufficient
condition for H(m; z) to be in the class R(β;α) is

µm2 + (1 + 2µ)m− e−m + 1 ≤ 2β(1− α)

1 + |β|
.

Theorem 15. The sufficient condition for N (m,µ, λ; z) to be in the class L(A,B, θ;α)
is

µλm3+(µ−λ+5µλ)m2+(2µ−2λ+1)m+4µλ−e−m+1 ≤ (B −A)(1− α) cos θ

1 + |B|
. (5)

Proof. Since

N (m,µ, λ; z) = z +

∞∑
n=2

[1 + (n− 1)(µ− λ+ nµλ)]
mn−1

(n− 1)!
e−mzn, (z ∈ U).

By applying Lemma 1, we need to prove that

∞∑
n=2

n(1 + |B|)
∣∣∣∣[1 + (n− 1)(µ− λ+ nµλ)]

mn−1

(n− 1)!
e−m

∣∣∣∣ ≤ (B −A)(1− α) cos θ.
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Thus,

I2 =
∞∑

n=2

n(1 + |B|)[1 + (n− 1)(µ− λ + nµλ)]
mn−1

(n− 1)!
e
−m

= (1 + |B|)e−m
[ ∞∑
n=2

(1 + 2µ− 2λ)(n− 1)
mn−1

(n− 1)!
+
∞∑

n=2

mn−1

(n− 1)!

+
∞∑

n=2

(µ− λ + 5µλ)(n− 1)(n− 2)
mn−1

(n− 1)!
+
∞∑

n=2

µλ(n− 1)(n− 2)(n− 3)
mn−1

(n− 1)!

]

= (1 + |B|)e−m
[ ∞∑
n=2

(1 + 2µ− 2λ)m
mn−2

(n− 2)!
+
∞∑

n=2

mn−1

(n− 1)!
+
∞∑

n=3

(µ− λ + 5µλ)m
2 mn−3

(n− 3)!

+
∞∑

n=2

µλm
3 mn−4

(n− 4)!

]

= (1 + |B|)e−m

[
(1 + 2µ− 2λ)m

∞∑
n=0

mn

n!
+
∞∑

n=1

mn

n!
+ (µ− λ + 5µλ)m

2
∞∑

n=0

mn

n!
+ µλm

3
∞∑

n=0

mn

n!

]

= (1 + |B|)e−m

[
m(1 + 2µ− 2λ)

∞∑
n=0

mn

n!
+
∞∑

n=0

mn

n!
− 1 + (µ− λ + 5µλ)m

2
∞∑

n=0

mn

n!
+ µλm

3
∞∑

n=0

mn

n!

]

= (1 + |B|)[µλm3
+ (µ− λ + 5µλ)m

2
+ (1 + 2µ− 2λ)m + 1 + 4µλ− e−m

].

But this last equation is bounded by (B −A)(1− α) cos θ if Eq. (5) is holds. This
completes the prove of theorem 15.

Corollary 16. Let A = −1 and B = 1 in Theorem 15, then the sufficient condition
for H(m; z) to be in the class L(θ;α) is

µλm3 + (µ− λ+ 5µλ)m2 + (2µ− 2λ+ 1)m+ 4µλ− e−m + 1 ≤ (1− α) cos θ.

Corollary 17. Let α = 0 in Theorem 15, then the sufficient condition for H(m; z)
to be in the class L(A,B, θ) is

µλm3 + (µ− λ+ 5µλ)m2 + (2µ− 2λ+ 1)m+ 4µλ− e−m + 1 ≤ (B −A) cos θ

1 + |B|
.

Corollary 18. Let A = −β, B = β, θ = 0 and α = 0 in Theorem 15, then the
sufficient condition for H(m; z) to be in the class L(−β, β, 0; 0) = D(β) is

µλm3 + (µ− λ+ 5µλ)m2 + (2µ− 2λ+ 1)m+ 4µλ− e−m + 1 ≤ 2β

1 + |β|
.

Corollary 19. Let A = −β, B = β and θ = 0 in Theorem 15, then the sufficient
condition for H(m; z) to be in the class R(β;α) is

µλm3 + (µ− λ+ 5µλ)m2 + (2µ− 2λ+ 1)m+ 4µλ− e−m + 1 ≤ 2β(1− α)

1 + |β|
.
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3. Inclusion Properties

Theorem 20. If condition

m2 + 3m− e−m + 1 ≤ (B −A)(1− α) cos θ

1 + |B|
. (6)

holds, then [Xm(f)](z) maps the class S or (S∗) to the class L(A,B, θ;α).

Proof. Since

[Xm(f)](z) = z +
∞∑
n=2

mn−1

(n− 1)!
e−manz

n, (z ∈ U).

By applying Lemma 1, we need to prove that

∞∑
n=2

n(1 + |B|)
∣∣∣∣ mn−1

(n− 1)!

∣∣∣∣ |an|e−m ≤ (B −A)(1− α) cos θ.

Using f(z) ∈ S, then the inequality |an| ≤ n holds, we obtain that

I3 ≤
∞∑
n=2

n2(1 + |B|) mn−1

(n− 1)!
e−m

= (1 + |B|)e−m
[ ∞∑
n=2

(n− 1)(n− 2)
mn−1

(n− 1)!
+
∞∑
n=2

3(n− 1)
mn−1

(n− 1)!
+
∞∑
n=2

mn−1

(n− 1)!

]

= (1 + |B|)e−m
[ ∞∑
n=2

mn−1

(n− 3)!
+ 3

∞∑
n=2

mn−1

(n− 2)!
+

∞∑
n=2

mn−1

(n− 1)!

]

= (1 + |B|)e−m
[
m2

∞∑
n=0

mn

n!
+ 3m

∞∑
n=0

mn

n!
+
∞∑
n=1

mn

n!

]

= (1 + |B|)e−m
[
m2

∞∑
n=0

mn

n!
+ 3m

∞∑
n=0

mn

n!
+

∞∑
n=0

mn

n!
− 1

]
= (1 + |B|)[m2 + 3m+ 1− e−m].

But this last equation is bounded by (B − A)(1 − α) cos θ if Eq. (6) is holds. This
completes the prove of theorem 20.

Corollary 21. Let A = −1 and B = 1 in Theorem 20, then [Xm(f)](z) maps the
class S or (S∗) to the class L(θ;α) if

m2 + 3m− e−m + 1 ≤ (1− α) cos θ

is true.
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Corollary 22. Let α = 0 in Theorem 20, then [Xm(f)](z) maps the class S or (S∗)
to the class L(A,B, θ) if

m2 + 3m− e−m + 1 ≤ (B −A) cos θ

1 + |B|
,

is true

Corollary 23. Let A = −β, B = β, θ = 0 and α = 0 in Theorem 20, then
[Xm(f)](z) maps the class S or (S∗) to the class L(−β, β, 0; 0) = D(β) if

m2 + 3m− e−m + 1 ≤ 2β

1 + |β|
,

is true.

Corollary 24. Let A = −β, B = β and θ = 0 in Theorem 20, then [Xm(f)](z)
maps the class S or (S∗) to the class R(β;α) if

m2 + 3m− e−m + 1 ≤ 2β(1− α)

1 + |β|
,

is true.

Theorem 25. If condition in Eq. (3) satisfied, then [Xm(f)](z) maps the class K
to the class L(A,B, θ;α).

Proof. Since

[Xm(f)](z) = z +
∞∑
n=2

mn−1

(n− 1)!
e−manz

n, (z ∈ U).

By applying Lemma 1, we need to prove that

∞∑
n=2

n(1 + |B|)
∣∣∣∣ mn−1

(n− 1)!

∣∣∣∣ |an|e−m ≤ (B −A)(1− α) cos θ.

Using f(z) ∈ S, then the inequality |an| ≤ 1 holds, we obtain the required result.
This completes the prove of theorem 25.

Theorem 26. If condition

(B −A)(1− α)m cos θ ≤ 1

k + 2
, (7)

holds, then [Xm(f)](z) maps the class L(A,B, θ;α) to the class k − UCV .
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Proof. Since

[Xm(f)](z) = z +

∞∑
n=2

mn−1

(n− 1)!
e−manz

n, (z ∈ U).

By applying Lemma 3, we need to prove that

∞∑
n=2

n(n− 1)

∣∣∣∣ mn−1

(n− 1)!

∣∣∣∣ |an|e−m ≤ 1

k + 2
.

Thus,

I4 ≤
∞∑
n=2

(n− 1)
mn−1

(n− 1)!
e−m(B −A)(1− α) cos θ

= (B −A)(1− α)e−m cos θ
∞∑
n=2

mn−1

(n− 2)!

= (B −A)(1− α)e−mm cos θ

∞∑
n=0

mn

n!

= (B −A)(1− α)m cos θ.

But this last equation is bounded by 1
k+2 if Eq. (7) is holds. This completes the

prove of theorem 26.

Corollary 27. Let A = −1 and B = 1 in Theorem 26, then [Xm(f)](z) maps the
class L(θ;α) to the class k − UCV if

2(1− α)m cos θ ≤ 1

k + 2
,

is true.

Corollary 28. Let α = 0 in Theorem 26, then [Xm(f)](z) maps the class L(A,B, θ)
to the class k − UCV if

(B −A)m cos θ ≤ 1

k + 2
,

is true

Corollary 29. Let A = −β, B = β, θ = 0 and α = 0 in Theorem 26, then
[Xm(f)](z) maps the class L(−β, β, 0; 0) = D(β) to the class k − UCV if

2βm ≤ 1

k + 2
,

is true.
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Corollary 30. Let A = −β, B = β and θ = 0 in Theorem 26, then [Xm(f)](z)
maps the class R(β;α) to the class k − UCV if

2β(1− α)m ≤ 1

k + 2
,

is true.

Theorem 31. If condition

(B −A)(1− α) cos θ

[
(k + 1− k

m
)(1− e−m) + ke−m

]
≤ 1, (8)

holds, then [Xm(f)](z) maps the class L(A,B, θ;α) to the class k − ST .

Proof. Since

[Xm(f)](z) = z +

∞∑
n=2

mn−1

(n− 1)!
e−manz

n, (z ∈ U).

By applying Lemma 4, we need to prove that

∞∑
n=2

(n(1 + k)− k)

∣∣∣∣ mn−1

(n− 1)!

∣∣∣∣ |an|e−m ≤ 1.

Thus,

I5 ≤
∞∑
n=2

(n(1 + k)− k)
mn−1

(n− 1)!
e−m

(B −A)(1− α) cos θ

n

= (B −A)(1− α)e−m cos θ

[ ∞∑
n=2

(1 + k)
mn−1

(n− 1)!
−
∞∑
n=2

k
mn−1

n!

]

= (B −A)(1− α)e−m cos θ

[
(k + 1)

∞∑
n=1

mn

n!
− k

m

∞∑
n=2

mn

n!

]

= (B −A)(1− α)e−m cos θ

[
(k + 1)

( ∞∑
n=0

mn

n!
− 1

)
− k

m

( ∞∑
n=0

mn

n!
− 1−m

)]

= (B −A)(1− α) cos θ

[
(k + 1− k

m
)(1− e−m) + ke−m

]
.

But this last equation is bounded by 1 if Eq. (8) is holds. This completes the prove
of theorem 31.
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Corollary 32. Let A = −1 and B = 1 in Theorem 31, then [Xm(f)](z) maps the
class L(θ;α) to the class k − ST if

(1− α) cos θ

[
(k + 1− k

m
)(1− e−m) + ke−m

]
≤ 1

2
,

is true.

Corollary 33. Let α = 0 in Theorem 31, then [Xm(f)](z) maps the class L(A,B, θ)
to the class k − ST if

(B −A) cos θ

[
(k + 1− k

m
)(1− e−m) + ke−m

]
≤ 1,

is true

Corollary 34. Let A = −β, B = β, θ = 0 and α = 0 in Theorem 31, then
[Xm(f)](z) maps the class L(−β, β, 0; 0) = D(β) to the class k − ST if[

(k + 1− k

m
)(1− e−m) + ke−m

]
≤ 1

2β
,

is true.

Remark 1. Putting β = 1 and k = 0 in Corollary 34, we obtain the result obtained
by Porwal and Kumar [14] Theorem 3.2, with A = 1, B = −1, |τ | = 1, λ = 0 and
α = 0.

Corollary 35. Let A = −β, B = β and θ = 0 in Theorem 31, then [Xm(f)](z)
maps the class R(β;α) to the class k − ST if

(1− α)

[
(k + 1− k

m
)(1− e−m) + ke−m

]
≤ 1

2β
,

is true.
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