SOME SANDWICH-TYPE RESULTS FOR ϕ-LIKE FUNCTIONS

P. Kaur, S. Singh Billing

Abstract. Using the technique of differential subordination, we here obtain certain results for ϕ-like, starlike and close-to-convex functions.

2010 Mathematics Subject Classification: 30C45.
Keywords: analytic function, ϕ-like functions, starlike function, differential subordination, differential superordination.

1. Introduction

Let \mathcal{H} be the class of functions analytic in $\mathbb{E}=\{z:|z|<1\}$ and $\mathcal{H}[a, n]$ be the subclass of \mathcal{H} consisting functions of the form

$$
f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\cdots .
$$

Let \mathcal{A} be the subclass of \mathcal{H} consisting of functions f, analytic in the open unit disk $\mathbb{E}=\{z:|z|<1\}$ and normalized by the conditions $f(0)=f^{\prime}(0)-1=0$. A function $f \in \mathcal{A}$ is said to be starlike of order $\beta, 0 \leq \beta<1$, if and only if

$$
\Re\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\beta, z \in \mathbb{E} .
$$

The class of such functions is denoted by $\mathcal{S}^{*}(\beta)$. Note that $\mathcal{S}^{*}(0)=\mathcal{S}^{*}$, the class of univalent starlike functions.
A function $f \in \mathcal{A}$ is said to be close-to-convex in \mathbb{E} if it satisfies the condition

$$
\Re\left(\frac{z f^{\prime}(z)}{g(z)}\right)>0, z \in \mathbb{E}, \text { for } g \in \mathcal{S}^{*}
$$

The class of close-to-convex functions is denoted by \mathcal{C}. Noshiro [2] and Warchawski [6] independently proved in 1934-35 that f is close-to-convex if

$$
\Re\left(f^{\prime}(z)\right)>0 .
$$

Let $\Phi: \mathbb{C}^{2} \times \mathbb{E} \rightarrow \mathbb{C}$ be an analytic function, p be an analytic function in \mathbb{E} with $\left(p(z), z p^{\prime}(z) ; z\right) \in \mathbb{C}^{2} \times \mathbb{E}$ for all $z \in \mathbb{E}$ and h be univalent in \mathbb{E}. Then the function p is said to satisfy first order differential subordination if

$$
\begin{equation*}
\Phi\left(p(z), z p^{\prime}(z) ; z\right) \prec h(z), \quad \Phi(p(0), 0 ; 0)=h(0) . \tag{1}
\end{equation*}
$$

A univalent function q is called a dominant of the differential subordination (1) if $p(0)=q(0)$ and $p \prec q$ for all p satisfying (1). A dominant \tilde{q} that satisfies $\tilde{q} \prec q$ for all dominants q of (1) is said to be the best dominant of (1).
Let $\Psi: \mathbb{C}^{2} \times \mathbb{E} \rightarrow \mathbb{C}$ be analytic and univalent in domain $\mathbb{C}^{2} \times \mathbb{E}, h$ be analytic in \mathbb{E}, p be analytic and univalent in \mathbb{E}, with $\left(p(z), z p^{\prime}(z) ; z\right) \in \mathbb{C}^{2} \times \mathbb{E}$ for all $z \in \mathbb{E}$. Then p is called a solution of the first order differential superordination if

$$
\begin{equation*}
h(z) \prec \Psi\left(p(z), z p^{\prime}(z) ; z\right), h(0)=\Psi(p(0), 0 ; 0) . \tag{2}
\end{equation*}
$$

An analytic function q is called a subordinant of the differential superordination (2), if $q \prec p$ for all p satisfying (2). A univalent subordinant \tilde{q} that satisfies $q \prec \tilde{q}$ for all subordinants q of (2) is said to be the best subordinant of (2).
The function $f \in \mathcal{A}$ is called ϕ-like in the open unit disk \mathbb{E}, if

$$
\Re\left(\frac{z f^{\prime}(z)}{\phi(f(z))}\right)>0, z \in \mathbb{E},
$$

where ϕ is analytic in a domain containing $f(\mathbb{E}), \phi(0)=0=\phi^{\prime}(0)-1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \backslash\{0\}$. This concept was first introduced by Brickman [1] and he established that a function $f \in \mathcal{A}$ is univalent if and only if f is ϕ-like for some ϕ.
Using the concept of differential subordination Ruscheweyh [9] introduced and studied the following more general class of ϕ-like functions:
Let ϕ be analytic function in the domain containing $f(\mathbb{E}), \phi(0)=0=\phi^{\prime}(0)-1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \backslash\{0\}$. Then $f \in \mathbb{A}$ is called ϕ-like w.r.t. a univalent function $q(z)$ if $\frac{z f^{\prime}(z)}{\phi(f(z))} \prec q(z), z \in \mathbb{E}$.
In 2005, Ravichandran et al.[10] proved the following result for ϕ-like functions:
Let $\alpha \neq 0$ be a complex number and $q(z)$ be a convex univalent function in \mathbb{E}. Suppose $h(z)=\alpha q^{2}(z)+(1-\alpha) q(z)+\alpha z q^{\prime}(z)$ and

$$
\Re\left\{\frac{1-\alpha}{\alpha}+2 q(z)+\left(1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}\right)\right\}>0, z \in \mathbb{E} .
$$

If $f \in \mathcal{A}$ satisfies

$$
\frac{z f^{\prime}(z)}{\phi(f(z)}\left(1+\frac{\alpha z f^{\prime \prime}(z)}{f^{\prime}(z)}+\frac{\alpha\left(f^{\prime}(z)-(\phi(f(z)))^{\prime}\right.}{\phi(f(z))}\right) \prec h(z)
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(f(z))} \prec q(z), \quad z \in \mathbb{E}
$$

and $q(z)$ is best dominant.
Recently, Shanmugam et al. [5] and Ibrahim [3] also obtained the results for ϕ-like functions parallel to the results of Ravichandran [10] stated above.
In the present paper, we investigate the differential operator

$$
a \frac{z f^{\prime}(z)}{\phi(g(z))}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(g(z))^{\prime}\right.}{\phi(g(z))}\right),
$$

where $f, g \in \mathcal{A}$ and ϕ is an analytic function in a domain containing $g(\mathbb{E})$ such that $\phi(0)=0=\phi^{\prime}(0)-1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \backslash\{0\}$, for real numbers a and $b(\neq 0)$. We, here, obtain some sufficient conditions for ϕ-like, starlike and close-to-convex functions.

2. Preliminaries

We shall need the following definition and Lemmas to prove our main results.
Definition 1. [7, Def. 2.2b, p.21]. We denote by Q the set of functions p that are analytic and injective in $\overline{\mathbb{E}} \backslash \mathbb{B}(p)$, where

$$
\mathbb{B}(p)=\left\{\zeta \in \partial \mathbb{E}: \lim _{z \rightarrow \zeta} p(z)=\infty\right\}
$$

are such that $p^{\prime}(\zeta) \neq 0$ for $\zeta \in \partial \mathbb{E} \backslash \mathbb{B}(p)$.
Lemma 1. [7, Theorem 3.4h, p.132]. Let q be univalent in \mathbb{E} and let θ and φ be analytic in a domain \mathbb{D} containing $q(\mathbb{E})$, with $\varphi(w) \neq 0$, when $w \in q(\mathbb{E})$. Set $Q_{1}(z)=z q^{\prime}(z) \varphi[q(z)], h(z)=\theta[q(z)]+Q_{1}(z)$ and suppose that either
(i) h is convex, or
(ii) Q_{1} is starlike.

In addition, assume that
(iii) $\Re\left(\frac{z h^{\prime}(z)}{Q_{1}(z)}\right)>0$.

If p is analytic in \mathbb{E}, with $p(0)=q(0), p(\mathbb{E}) \subset \mathbb{D}$ and

$$
\theta[p(z)]+z p^{\prime}(z) \varphi[p(z)] \prec \theta[q(z)]+z q^{\prime}(z) \varphi[q(z)],
$$

then $p(z) \prec q(z)$ and $q(z)$ is the best dominant.

Lemma 2. [4]. Let q be univalent in \mathbb{E} and let θ and φ be analytic in a domain \mathbb{D} containing $q(\mathbb{E})$. Set $Q_{1}(z)=z q^{\prime}(z) \varphi[q(z)], h(z)=\theta[q(z)]+Q_{1}(z)$ and suppose that (i) Q_{1} is starlike in \mathbb{E} and
(ii) $\Re\left[\frac{\theta^{\prime}(q(z))}{\varphi(q(z))}\right]>0, z \in \mathbb{E}$.

If $p \in \mathcal{H}[q(0), 1] \cap Q$, with $p(\mathbb{E}) \subset \mathbb{D}$ and $\theta[p(z)]+z p^{\prime}(z) \varphi[p(z)]$ is univalent in \mathbb{E} and

$$
\theta[q(z)]+z q^{\prime}(z) \varphi[q(z)] \prec \theta[p(z)]+z p^{\prime}(z) \varphi[p(z)], \quad z \in \mathbb{E}
$$

then $q(z) \prec p(z)$ and $q(z)$ is the best subordinant.

3. Main Results

Theorem 3. Let $q, q(z) \neq 0$ be a univalent function in \mathbb{E} and satisfies the condition

$$
\begin{equation*}
\Re\left(1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}-\frac{z q^{\prime}(z)}{q(z)}\right)>\max \left\{0,-\frac{a}{b} \Re(q(z))\right\} \tag{3}
\end{equation*}
$$

where a and $b(\neq 0)$ are real numbers. Let ϕ be analytic function in a domain containing $g(\mathbb{E}), \phi(0)=0=\phi^{\prime}(0)-1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \backslash\{0\}$. If $f, g \in$ $\mathcal{A}, \frac{z f^{\prime}(z)}{\phi(g(z))} \neq 0, z \in \mathbb{E}$, satisfy the differential subordination

$$
\begin{equation*}
a \frac{z f^{\prime}(z)}{\phi(g(z))}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(g(z))^{\prime}\right.}{\phi(g(z))}\right) \prec a q(z)+b \frac{z q^{\prime}(z)}{q(z)} \tag{4}
\end{equation*}
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(g(z))} \prec q(z), z \in \mathbb{E}
$$

and $q(z)$ is the best dominant.
Proof. Define the function $p(z)$ by

$$
p(z)=\frac{z f^{\prime}(z)}{\phi(g(z))}
$$

Therefore

$$
\frac{z p^{\prime}(z)}{p(z)}=1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(g(z))^{\prime}\right.}{\phi(g(z))}
$$

and (4) reduces to

$$
a p(z)+b \frac{z p^{\prime}(z)}{p(z)} \prec a q(z)+b \frac{z q^{\prime}(z)}{q(z)}
$$

Define θ and φ as $\theta(w)=a w \& \varphi(w)=\frac{b}{w}$. Both θ and φ are analytic in $\mathbb{C} \backslash\{0\}$ and $\varphi(w) \neq 0, w \in \mathbb{C} \backslash\{0\}$. Therefore $Q_{1}(z)=z q^{\prime}(z) \varphi(q(z))=b \frac{z q^{\prime}(z)}{q(z)}$ and

$$
h(z)=\theta(q(z))+Q_{1}(z)=a q(z)+b \frac{z q^{\prime}(z)}{q(z)} .
$$

A little calculation yields

$$
\frac{z Q_{1}(z)}{Q_{1}(z)}=1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}-\frac{z q^{\prime}(z)}{q(z)}
$$

and

$$
\frac{z h^{\prime}(z)}{Q_{1}(z)}=\frac{a}{b} q(z)+1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}-\frac{z q^{\prime}(z)}{q(z)} .
$$

In view of Condition 3, we have $Q_{1}(z)$ is starlike in \mathbb{E} and $\Re\left(\frac{z h^{\prime}(z)}{Q_{1}(z)}\right)>0$.
The proof, now, follows from the Lemma 1.
On taking $\phi(z)=z$ in Theorem 3, we have the following result:
Theorem 4. Let $q, q(z) \neq 0$, be a univalent function in \mathbb{E}, satisfying the Condition 3 of Theorem 3 for real numbers $a, b(\neq 0)$. If $f, g \in \mathcal{A}, \frac{z f^{\prime}(z)}{g(z)} \neq 0, z \in \mathbb{E}$, satisfy the differential subordination

$$
a \frac{z f^{\prime}(z)}{g(z)}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z g^{\prime}(z)}{g(z)}\right) \prec a q(z)+b \frac{z q^{\prime}(z)}{q(z)}
$$

then

$$
\frac{z f^{\prime}(z)}{g(z)} \prec q(z), z \in \mathbb{E},
$$

and $q(z)$ is the best dominant.
On taking $\phi(z)=z$ and $g(z)=f(z)$ in Theorem 3, we have the following result:
Theorem 5. Let $q, q(z) \neq 0$ be a univalent function in \mathbb{E} and satisfies the Condition 3 of Theorem 3 for real numbers a and $b(\neq 0)$. If $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{f(z)} \neq 0, z \in \mathbb{E}$, satisfies

$$
(a-b) \frac{z f^{\prime}(z)}{f(z)}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec a q(z)+b \frac{z q^{\prime}(z)}{q(z)},
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec q(z), z \in \mathbb{E}
$$

and $q(z)$ is the best dominant.

On selecting $a=1$ and $b=\alpha$ in the Theorem 5, we get the following result for the class of α-convex functions.

Theorem 6. Let α be a non zero real number and let $q, q(z) \neq 0$ be a univalent function in \mathbb{E} satisfying the Condition 3 of Theorem 3. If $f \in \mathcal{A}, z \in \mathbb{E}$, satisfies

$$
(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec q(z)+\alpha \frac{z q^{\prime}(z)}{q(z)}
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec q(z), z \in \mathbb{E},
$$

and $q(z)$ is the best dominant.
By defining $\phi(z)=g(z)=z$ in Theorem 3, we obtain the following result:
Theorem 7. Let $q, q(z) \neq 0$ be a univalent function in \mathbb{E} and satisfying the Condition 3 of Theorem 3 for real numbers $a, b(\neq 0)$. If $f \in \mathcal{A}, f^{\prime}(z) \neq 0, z \in \mathbb{E}$, satisfies the differential subordination

$$
a f^{\prime}(z)+b \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec a q(z)+b \frac{z q^{\prime}(z)}{q(z)},
$$

then

$$
f^{\prime}(z) \prec q(z), z \in \mathbb{E},
$$

and $q(z)$ is the best dominant.
Remark 1. It is easy to verify that dominant $q(z)=\left(\frac{1+z}{1-z}\right)^{\delta}, 0<\delta \leq 1$, satisfies the Condition 3 of Theorem 3, for real numbers a and $b(\neq 0)$. Consequently, we get:

Theorem 8. Let ϕ be analytic function in the domain containing $g(\mathbb{E})$ such that $\phi(0)=0=\phi^{\prime}(0)-1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \backslash\{0\}$. If $f, g \in \mathcal{A}, \frac{z f^{\prime}(z)}{\phi(g(z))} \neq$ $0, z \in \mathbb{E}$, and for real numbers a and $b(\neq 0)$, satisfy

$$
a \frac{z f^{\prime}(z)}{\phi(g(z))}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(g(z))^{\prime}\right.}{\phi(g(z))}\right) \prec a\left(\frac{1+z}{1-z}\right)^{\delta}+\frac{2 b \delta z}{1-z^{2}}
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(g(z))} \prec\left(\frac{1+z}{1-z}\right)^{\delta}, \quad z \in \mathbb{E}, 0<\delta \leq 1
$$

On taking $\phi(z)=z$ in above theorem, we obtain:
P. Kaur, S. Singh Billing - Some sandwich-type results ...

Corollary 9. Let a and $b(\neq 0)$ are real numbers and $0<\delta \leq 1$. If $f, g \in$ $\mathcal{A}, \frac{z f^{\prime}(z)}{g(z)} \neq 0, z \in \mathbb{E}$, satisfy

$$
a \frac{z f^{\prime}(z)}{g(z)}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z g^{\prime}(z)}{g(z)}\right) \prec a\left(\frac{1+z}{1-z}\right)^{\delta}+\frac{2 b \delta z}{1-z^{2}},
$$

then

$$
\frac{z f^{\prime}(z)}{g(z)} \prec\left(\frac{1+z}{1-z}\right)^{\delta}, z \in \mathbb{E} .
$$

For $\phi(z)=z$ and $g(z)=f(z)$ in Theorem 8, we obtain the following result:
Corollary 10. Let a and $b(\neq 0)$ are real numbers and $0<\delta \leq 1$. If $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{f(z)} \neq$ $0, z \in \mathbb{E}$, satisfies the differential subordination

$$
(a-b) \frac{z f^{\prime}(z)}{f(z)}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec a\left(\frac{1+z}{1-z}\right)^{\delta}+\frac{2 b \delta z}{1-z^{2}},
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{\delta}, z \in \mathbb{E},
$$

and hence $f(z)$ is starlike.
Selecting $a=1$ and $b=\alpha$ in above corollary, we get the following result for the class of α-convex functions:

Corollary 11. Let α be a non-zero real number. If $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{f(z)} \neq 0, z \in \mathbb{E}$, satisfies

$$
(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec\left(\frac{1+z}{1-z}\right)^{\delta}+\frac{2 b \delta z}{1-z^{2}},
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{\delta}, \quad z \in \mathbb{E}, \quad 0<\delta \leq 1 .
$$

Hence $f(z)$ is strongly starlike.
On taking $\phi(z)=g(z)=z$ in Theorem 8, we have:
P. Kaur, S. Singh Billing - Some sandwich-type results ...

Corollary 12. Let a and $b(\neq 0)$ are real numbers. If $f \in \mathcal{A}, f^{\prime}(z) \neq 0, z \in \mathbb{E}$, satisfies

$$
a f^{\prime}(z)+b \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec a\left(\frac{1+z}{1-z}\right)^{\delta}+\frac{2 b \delta z}{1-z^{2}},
$$

then

$$
f^{\prime}(z) \prec\left(\frac{1+z}{1-z}\right)^{\delta}, z \in \mathbb{E}, 0<\delta \leq 1,
$$

and hence $f(z)$ is close-to-convex.
Remark 2. When we select the dominant $q(z)=e^{z}$, then this dominant satisfies the Condition 3 of Theorem 3 for non-zero real numbers a and b such that $\Re\left(e^{z}\right)>-\frac{b}{a}$. Consequently, we obtain the following result:

Theorem 13. Let a and b be non-zero real numbers such that $\Re\left(e^{z}\right)>-\frac{b}{a}$ and let ϕ be analytic function in a domain containing $g(\mathbb{E}), \phi(0)=0=\phi^{\prime}(0)-1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \backslash\{0\}$. If $f, g \in \mathcal{A}, \frac{z f^{\prime}(z)}{\phi(g(z))} \neq 0, z \in \mathbb{E}$, satisfy

$$
a \frac{z f^{\prime}(z)}{\phi(g(z))}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(g(z))^{\prime}\right.}{\phi(g(z)}\right) \prec a e^{z}+b z
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(g(z))} \prec e^{z}, \quad z \in \mathbb{E} .
$$

On choosing $\phi(z)=z$ in above theorem, we obtain:
Corollary 14. Let a and b non-zero real numbers such that $\Re\left(e^{z}\right)>-\frac{b}{a}$. If $f, g \in$ $\mathcal{A}, \frac{z f^{\prime}(z)}{g(z)} \neq 0, z \in \mathbb{E}$, satisfy the differential subordination

$$
a \frac{z f^{\prime}(z)}{g(z)}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z g^{\prime}(z)}{g(z)}\right) \prec a e^{z}+b z
$$

then

$$
\frac{z f^{\prime}(z)}{g(z)} \prec e^{z}, z \in \mathbb{E} .
$$

On selecting $\phi(z)=z$ and $g(z)=f(z)$ in Theorem 13, we get:

Corollary 15. Let a and b are non-zero real numbers such that $\Re\left(e^{z}\right)>-\frac{b}{a}$. If $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{f(z)} \neq 0, z \in \mathbb{E}$, satisfies the differential subordination

$$
(a-b) \frac{z f^{\prime}(z)}{f(z)}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec a e^{z}+b z,
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec e^{z}, \quad z \in \mathbb{E},
$$

and hence $f(z)$ is starlike.
on choosing $a=1$ and $b=\alpha$ in above corollary, we obtain:
Corollary 16. Let α be a non-zero real number such that $\Re\left(e^{z}\right)>-\alpha$. If $f \in$ $\mathcal{A}, \frac{z f^{\prime}(z)}{f(z)} \neq 0, z \in \mathbb{E}$, satisfies

$$
\begin{gathered}
(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec e^{z}+\alpha z \\
\frac{z f^{\prime}(z)}{f(z)} \prec e^{z}, z \in \mathbb{E} .
\end{gathered}
$$

Therefore, $f \in \mathcal{S}^{*}$.
For $\phi(z)=g(z)=z$ in Theorem 13, we obtain the following result:
Corollary 17. Let a and b are non-zero real numbers such that $\Re\left(e^{z}\right)>-\frac{b}{a}$. If $f \in \mathcal{A}, f^{\prime}(z) \neq 0, z \in \mathbb{E}$, satisfies

$$
a f^{\prime}(z)+b \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec a e^{z}+b z,
$$

then

$$
f^{\prime}(z) \prec e^{z}, z \in \mathbb{E},
$$

and hence $f(z)$ is close-to-convex.
Remark 3. By selecting the dominant $q(z)=1+m z, 0<m \leq 1$, we observed that the Condition 3 of Theorem 3 holds for all real numbers a and $b(\neq 0)$ having same sign. Thus from Theorem 3, we have the following result:

Theorem 18. Let ϕ be analytic function in the domain containing $g(\mathbb{E})$, where $\phi(0)=0=\phi^{\prime}(z)-1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \backslash\{0\}$. Let real numbers a and $b(\neq 0)$ be such that $\frac{a}{b}>0$. If $f, g \in \mathcal{A}, \frac{z f^{\prime}(z)}{\phi(g(z))} \neq 0, z \in \mathbb{E}$, satisfy

$$
a \frac{z f^{\prime}(z)}{\phi(g(z))}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(g(z))^{\prime}\right.}{\phi(g(z)}\right) \prec a(1+m z)+\frac{b m z}{1+m z},
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(g(z))} \prec 1+m z, \text { where } 0<m \leq 1, z \in \mathbb{E} .
$$

Taking $\phi(z)=z$ in above theorem, we get the following result:
Corollary 19. Let a and b are non-zero real numbers having same sign and $0<$ $m \leq 1$. If $f, g \in \mathcal{A}, \frac{z f^{\prime}(z)}{g(z)} \neq 0, z \in \mathbb{E}$, satisfy

$$
a \frac{z f^{\prime}(z)}{g(z)}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z g^{\prime}(z)}{g(z)}\right) \prec a(1+m z)+\frac{b m z}{1+m z},
$$

then

$$
\frac{z f^{\prime}(z)}{g(z)} \prec 1+m z, \quad z \in \mathbb{E} .
$$

From Theorem 18, for $\phi(z)=z$ and $g(z)=f(z)$, we obtain:
Corollary 20. Let a and b be non-zero real numbers having same sign and $0<$ $m \leq 1$. If $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{f(z)} \neq 0, z \in \mathbb{E}$, satisfies

$$
(a-b) \frac{z f^{\prime}(z)}{f(z)}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec a(1+m z)+\frac{b m z}{1+m z},
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec 1+m z, z \in \mathbb{E},
$$

and hence $f(z)$ is starlike.
On selecting $a=1$ and $b=\alpha$ in above corollary, we get the following result:
Corollary 21. For $\alpha>0$, if $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{f(z)} \neq 0, z \in \mathbb{E}$, satisfies the differential subordination

$$
(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec(1+m z)+\frac{\alpha m z}{1+m z},
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec 1+m z, \quad 0<m \leq 1,
$$

and hence $f(z)$ is starlike.
Selecting $\phi(z)=g(z)=z$, in Theorem 18, we have:
Corollary 22. Let a and $b(\neq 0)$ be real numbers having same sign. If $f \in \mathcal{A}, f^{\prime}(z) \neq$ $0, z \in \mathbb{E}$, satisfies

$$
a f^{\prime}(z)+b \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec a(1+m z)+\frac{b m z}{1+m z},
$$

then

$$
f^{\prime}(z) \prec 1+m z, \quad 0<m \leq 1, \quad z \in \mathbb{E},
$$

and hence $f(z)$ is close-to-convex.
Remark 4. Let $q(z)=\frac{\beta(1-z)}{\beta-z}$, then

$$
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right)=\Re\left(\frac{\beta-z^{2}}{(\beta-z)(1-z)}\right)>0, \text { for } \beta>1
$$

and

$$
\Re q(z)=\Re\left(\frac{\beta(1-z)}{\beta-z}\right)>0 .
$$

In view of the above calculations, the Conditon 3 of Theorem 3 is satisfied for real numbers a and $b(\neq 0)$ such that $\frac{a}{b}>0$. Consequently, we obtain the following result:

Theorem 23. Let ϕ be analytic function in the domain containing $g(\mathbb{E})$, where $\phi(0)=0=\phi^{\prime}(z)-1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \backslash\{0\}$. If $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{\phi(g(z))} \neq 0, z \in \mathbb{E}$, for real numbers a, and $b(\neq 0)$ such that $\frac{a}{b}>0$, satisfies

$$
a \frac{z f^{\prime}(z)}{\phi(g(z))}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(g(z))^{\prime}\right.}{\phi(g(z)}\right) \prec a \frac{\beta(1-z)}{\beta-z}+b \frac{(1-\beta) z}{(\beta-z)(1-z)}
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(g(z))} \prec \frac{\beta(1-z)}{\beta-z}, z \in \mathbb{E}, \text { where } \beta>1 \text {. }
$$

Taking $\phi(z)=z$, we get the following result from above theorem:

Corollary 24. If $f, g \in \mathcal{A}, \frac{z f^{\prime}(z)}{g(z)} \neq 0, z \in \mathbb{E}$, satisfy the differential subordination

$$
a \frac{z f^{\prime}(z)}{g(z)}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z g^{\prime}(z)}{g(z)}\right) \prec \frac{a \beta(1-z)}{\beta-z}+\frac{b(1-\beta) z}{(\beta-z)(1-z)},
$$

then

$$
\frac{z f^{\prime}(z)}{g(z)} \prec \frac{\beta(1-z)}{\beta-z}, z \in \mathbb{E},
$$

where $\beta>1$ and $a, b(\neq 0)$ are real numbers having same sign.
On selecting $\phi(z)=z$ and $g(z)=f(z)$ in Theorem 23, we obtain:
Corollary 25. Let a and $b(\neq 0)$ be real numbers having same sign and $\beta>1$. If $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{f(z)} \neq 0, z \in \mathbb{E}$, satisfies

$$
(a-b) \frac{z f^{\prime}(z)}{f(z)}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec \frac{a \beta(1-z)}{\beta-z}+\frac{b(1-\beta) z}{(\beta-z)(1-z)},
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{\beta(1-z)}{\beta-z}, z \in \mathbb{E},
$$

and hence $f(z)$ is starlike.
Choosing $a=1$ and $b=\alpha$ in above corollary, we get:
Corollary 26. For $\alpha>0$, if $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{f(z)} \neq 0, z \in \mathbb{E}$, satisfies the differential subordination

$$
(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec \frac{\beta(1-z)}{\beta-z}+\frac{\alpha(1-\beta) z}{(\beta-z)(1-z)}
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{\beta(1-z)}{\beta-z}, \quad \beta>1, z \in \mathbb{E}
$$

i.e. $f \in \mathcal{S}^{*}$.

Taking $\phi(z)=g(z)=z$ in Theorem 23, we have:

Corollary 27. Let $a, b(\neq 0)$ be real numbers having same sign and $\beta>1$. If $f \in \mathcal{A}, f^{\prime}(z) \neq 0, z \in \mathbb{E}$, satisfies

$$
a f^{\prime}(z)+b \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \frac{a \beta(1-z)}{\beta-z}+\frac{b(1-\beta) z}{(\beta-z)(1-z)},
$$

then

$$
f^{\prime}(z) \prec \frac{\beta(1-z)}{\beta-z}, z \in \mathbb{E},
$$

and hence $f(z)$ is close-to-convex.
Remark 5. On selecting the dominant $q(z)=1+\frac{2}{3} z^{2}$ in Theorem 3, it is easy to check that this dominant satisfies the Condition 3 of Theorem 3 for real numbers a and b of same sign, as

$$
\Re\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right)=2 \Re\left(1+\frac{2}{3} z^{2}\right)^{-1}>0
$$

and

$$
\Re q(z)=\Re\left(1+\frac{2}{3} z^{2}\right)>0 .
$$

Consequently, we obtain the following result:
Theorem 28. For real numbers a and $b(\neq 0)$ of same sign, if $f, g \in \mathcal{A}, \frac{z f^{\prime}(z)}{\phi(g(z))} \neq$ $0, z \in \mathbb{E}$, satisfy

$$
a \frac{z f^{\prime}(z)}{\phi(g(z))}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(g(z))^{\prime}\right.}{\phi(g(z)}\right) \prec a\left(1+\frac{2}{3} z^{2}\right)+\frac{4 b z^{2}}{3+2 z^{2}},
$$

then

$$
\frac{z f^{\prime}(z)}{\phi(g(z))} \prec 1+\frac{2}{3} z^{2}, z \in \mathbb{E} .
$$

Here, ϕ is an analytic function in the domain containing $g(\mathbb{E})$, such that $\phi(0)=0=$ $\phi^{\prime}(z)-1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \backslash\{0\}$.

By selecting $\phi(z)=z$ in above theorem, we obtain:
Corollary 29. Let a and $b(\neq 0)$ be real numbers such that $\frac{a}{b}>0$. If $f, g \in$ $\mathcal{A}, \frac{z f^{\prime}(z)}{g(z)} \neq 0, z \in \mathbb{E}$, satisfy

$$
a \frac{z f^{\prime}(z)}{g(z)}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z g^{\prime}(z)}{g(z)}\right) \prec a\left(1+\frac{2}{3} z^{2}\right)+\frac{4 b z^{2}}{3+2 z^{2}},
$$

then

$$
\frac{z f^{\prime}(z)}{g(z)} \prec 1+\frac{2}{3}, z^{2} z \in \mathbb{E} .
$$

On taking $\phi(z)=z$ and $g(z)=f(z)$ in Theorem 28, we have:
Corollary 30. Let a and $b(\neq 0)$ be real numbers such that $\frac{a}{b}>0$. If $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{f(z)} \neq$ $0, z \in \mathbb{E}$, satisfies

$$
(a-b) \frac{z f^{\prime}(z)}{f(z)}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec a\left(1+\frac{2}{3} z^{2}\right)+\frac{4 b z^{2}}{3+2 z^{2}},
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec 1+\frac{2}{3} z^{2}, z \in \mathbb{E},
$$

and hence $f(z)$ is starlike.
If we take $a=1$ and $b=\alpha$ in above corollary, we get:
Corollary 31. For $\alpha>0$, if $f \in \mathcal{A}, \frac{z f^{\prime}(z)}{f(z)} \neq 0, z \in \mathbb{E}$, satisfies the differential subordination

$$
(1-\alpha) \frac{z f^{\prime}(z)}{f(z)}+\alpha\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \prec\left(1+\frac{2}{3} z^{2}\right)+\frac{4 \alpha z^{2}}{3+2 z^{2}},
$$

then

$$
\frac{z f^{\prime}(z)}{f(z)} \prec 1+\frac{2}{3} z^{2}, z \in \mathbb{E},
$$

and hence $f \in \mathcal{S}^{*}$.
In Theorem 28, by selecting $\phi(z)=g(z)=z$, we obtain:
Corollary 32. Let real numbers a and $b(\neq 0)$ be such that, $\frac{a}{b}>0$. If $f \in \mathcal{A}, f^{\prime}(z) \neq$ $0, z \in \mathbb{E}$, satisfies

$$
a f^{\prime}(z)+b \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec a\left(1+\frac{2}{3} z^{2}\right)+\frac{4 b z^{2}}{3+2 z^{2}},
$$

then

$$
f^{\prime}(z) \prec 1+\frac{2}{3} z^{2}, z \in \mathbb{E},
$$

and hence $f(z)$ is close-to-convex.

4. Sandwich Type Results

Theorem 33. Let a and $b(\neq 0)$ be real numbers such that $\frac{a}{b}>0$. Let $q, q(z) \neq 0$ be univalent function in the unit disk \mathbb{E}, with $q(0)=1$ such that $\frac{z q^{\prime}(z)}{q(z)}$ is starlike univalent in \mathbb{E} and $\Re q(z)>0$. Let ϕ be analytic function in the domain containing $g(\mathbb{E})$, where $\phi(0)=0=\phi^{\prime}(0)-1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \backslash\{0\}$. If $f, g \in \mathcal{A}$, $\frac{z f^{\prime}(z)}{\phi(g(z))} \in \mathcal{H}[q(0), 1] \cap Q$ with $\frac{z f^{\prime}(z)}{\phi(g(z))}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(g(z))^{\prime}\right.}{\phi(g(z))}\right)$ is univalent in \mathbb{E}, satisfy

$$
\begin{equation*}
a q(z)+b \frac{z q^{\prime}(z)}{q(z)} \prec a \frac{z f^{\prime}(z)}{\phi(g(z)}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(g(z))^{\prime}\right.}{\phi(g(z)}\right), \tag{5}
\end{equation*}
$$

then

$$
q(z) \prec \frac{z f^{\prime}(z)}{\phi(g(z))}, z \in \mathbb{E},
$$

and $q(z)$ is the best subordinant.
Proof: Write $p(z)=\frac{z f^{\prime}(z)}{\phi(g(z))}$, then (5) becomes

$$
a q(z)+b \frac{z q^{\prime}(z)}{q(z)} \prec a p(z)+b \frac{z p^{\prime}(z)}{p(z)}
$$

By defining θ and φ as $\theta(w)=a w$ and $\varphi(w)=\frac{b}{w}$, where θ and φ are analytic in $\mathbb{C} \backslash\{0\}$ and $\varphi(w) \neq 0, w \in \mathbb{C} \backslash\{0\}$. Therefore,

$$
Q_{1}(z)=z q^{\prime}(z) \varphi(q(z))=b \frac{z q^{\prime}(z)}{q(z)}
$$

A little calculation yields

$$
\frac{z Q_{1}(z)}{Q_{1}(z)}=1+\frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}-\frac{z q^{\prime}(z)}{q(z)}
$$

and

$$
\frac{\theta^{\prime}(q(z))}{\varphi(q(z))}=\frac{a q(z)}{b}
$$

In view of the given conditions, $Q_{1}(z)$ is starlike and $\Re\left[\frac{\theta^{\prime}(q(z))}{\varphi(q(z))}\right]>0, z \in \mathbb{E}$. Hence the proof, now, follows from Lemma 2.

Theorem 34. Let $q_{1}(z) \neq 0$ and $q_{2}(z) \neq 0$ be univalent in \mathbb{E} such that $q_{1}(z)$ satisfies the condition of Theorem 33 whereas $q_{2}(z)$ satisfies the Condition 3 of Theorem 3. Let $\phi(z)$ be analytic function in the domain containing $g(\mathbb{E})$ such that $\phi(0)=0=$ $\phi^{\prime}(0)-1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \backslash\{0\}$. Let $f, g \in \mathcal{A}, \frac{z f^{\prime}(z)}{\phi(g(z))} \in \mathcal{H}[1,1] \cap Q$ and $a \frac{z f^{\prime}(z)}{\phi(g(z))}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(g(z))^{\prime}\right.}{\phi(g(z))}\right)$ be univalent in \mathbb{E}, where a and $b(\neq 0)$ are real numbers. Further, if

$$
a q_{1}(z)+b \frac{z q_{1}^{\prime}(z)}{q_{1}(z)} \prec a \frac{z f^{\prime}(z)}{\phi(g(z))}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(g(z))^{\prime}\right.}{\phi(g(z))}\right) \prec a q_{2}(z)+b \frac{z q_{2}^{\prime}(z)}{q_{2}(z)}
$$

then

$$
q_{1}(z) \prec \frac{z f^{\prime}(z)}{\phi(g(z))} \prec q_{2}(z), z \in \mathbb{E}
$$

Moreover, $q_{1}(z)$ and $q_{2}(z)$ are the best subordinant and the best dominant respectively.

Taking $q_{1}(z)=1+m z$ and $q_{2}(z)=1+n z, 0<m<n \leq 1$, in Theorem 33, we have the following result:

Corollary 35. Let $\phi(z)$ be a analytic function in the domain containing $g \in \mathbb{E}$ such that $\phi(0)=0=\phi^{\prime}(0)-1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \backslash\{0\}$. Let $a, b(\neq 0)$ be real numbers such that $\frac{a}{b}>0$. If $f, g \in \mathcal{A}$ be such that $\frac{z f^{\prime}(z)}{\phi(g(z))} \in \mathcal{H}[1,1] \cap Q$ with $a \frac{z f^{\prime}(z)}{\phi(g(z))}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(g(z))^{\prime}\right.}{\phi(g(z))}\right)$ is univalent in \mathbb{E} and satisfy
$a(1+m z)+\frac{b m z}{1+m z} \prec a \frac{z f^{\prime}(z)}{\phi(g(z))}+b\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(g(z))^{\prime}\right.}{\phi(g(z))}\right) \prec a(1+n z)+\frac{b n z}{1+n z}$
then

$$
1+m z \prec \frac{z f^{\prime}(z)}{\phi(g(z))} \prec 1+n z, \quad z \in \mathbb{E},
$$

where m and n are real numbers, such that $0<m<n \leq 1$.
On selecting $m=1 / 4, n=1 / 2$ and $a=1=b$ in above corollary, we obtain:
Example 1. Let $\phi(z)$ be a analytic function in the domain containing $g(\mathbb{E})$, where $\phi(0)=0=\phi^{\prime}(0)-1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \backslash\{0\}$. Let $f, g \in \mathcal{A}$ be such that $\frac{z f^{\prime}(z)}{\phi(g(z))} \in \mathcal{H}[1,1] \cap Q$ with $1+\frac{z f^{\prime}(z)}{\phi(g(z))}+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(g(z))^{\prime}\right.}{\phi(g(z))}$ is univalent in \mathbb{E}, and satisfy

$$
\begin{equation*}
\frac{z}{4}+\frac{z}{4+z} \prec \frac{z f^{\prime}(z)}{\phi(g(z))}+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(g(z))^{\prime}\right.}{\phi(g(z))} \prec \frac{z}{2}+\frac{z}{2+z} \tag{6}
\end{equation*}
$$

then

$$
\begin{equation*}
1+\frac{z}{4} \prec \frac{z f^{\prime}(z)}{\phi(g(z))} \prec 1+\frac{z}{2}, z \in \mathbb{E} . \tag{7}
\end{equation*}
$$

In Example 1, on taking $\phi(z)=z$, we get:
Example 2. Let $f, g \in \mathcal{A}$ be such that $\frac{z f^{\prime}(z)}{g(z)} \in \mathcal{H}[1,1] \cap Q$ with $1+\frac{z f^{\prime}(z)}{g(z)}+$ $\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z g^{\prime}(z)}{g(z)}$ is univalent in \mathbb{E} and satisfy

$$
\frac{z}{4}+\frac{z}{4+z} \prec \frac{z f^{\prime}(z)}{g(z)}+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z g^{\prime}(z)}{g(z)} \prec \frac{z}{2}+\frac{z}{2+z}
$$

then

$$
1+\frac{z}{4} \prec \frac{z f^{\prime}(z)}{g(z)} \prec 1+\frac{z}{2}, z \in \mathbb{E} .
$$

On selecting $\phi(z)=z$ and $g(z)=f(z)$ in Example 1, we get:
Example 3. Suppose $f \in \mathcal{A}$ is such that $\frac{z f^{\prime}(z)}{f(z)} \in \mathcal{H}[1,1] \cap Q$ with $1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}$ is univalent in \mathbb{E} and satisfies

$$
\frac{z}{4}+\frac{z}{4+z} \prec \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec \frac{z}{2}+\frac{z}{2+z}
$$

then

$$
1+\frac{z}{4} \prec \frac{z f^{\prime}(z)}{f(z)} \prec 1+\frac{z}{2}, z \in \mathbb{E} .
$$

On taking $\phi(z)=g(z)=z$ in Example 1, we have:
Example 4. Suppose $f \in \mathcal{A}$ is such that $f^{\prime}(z) \in \mathcal{H}[1,1] \cap Q$ with $f^{\prime}(z)+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}$ is univalent in \mathbb{E} and satisfies

$$
1+\frac{z}{4}+\frac{z}{4+z} \prec f^{\prime}(z)+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec 1+\frac{z}{2}+\frac{z}{2+z}
$$

then

$$
1+\frac{z}{4} \prec f^{\prime}(z) \prec 1+\frac{z}{2}, z \in \mathbb{E} .
$$

Figure 1

Figure 2
Using Mathematica 10.0, we plot the images of the unit disk under the functions $\frac{z}{4}+\frac{z}{4+z}$ and $\frac{z}{2}+\frac{z}{2+z}$ of (6) in Figure 1 and $1+\frac{z}{4}$ and $1+\frac{z}{2}$ of (7) in Figure 2. It follows that if $\frac{z f^{\prime}(z)}{\phi(g(z))}+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z\left(\phi(g(z))^{\prime}\right.}{\phi(g(z))}$ takes values in the light shaded portion
of Figure 1, then $\frac{z f^{\prime}(z)}{\phi(g(z))}$ will take values in the light shaded portion of Figure 2. Consequently, in view of Example 3 and Example 4, f is starlike and close to convex respectively.

References

[1] L.Brickman, ϕ-like functions I, Bull. Amer. Math. Soc. 79(1973), 555-558.
[2] K. Noshiro, On the theory of schlicht functions, J. Fac. Sci., Hokkaido Univ. 2(1934-35), 129-155.
[3] Rabha W. Ibrahim, On certain univalent class associated with first order differential subordinations, Tamkang Journal of Mathematics 42, 4(2011), 445-451.
[4] T. Bulboaca, Classes of first order Differential superordination-preserving integral operators, Demonstratio Mathematica 35, 2(2002), 287-292.
[5] T.N. Shanmugam, S. Sivassubramanian and Maslina Darus, Subordination and superordination results for ϕ-like functions, Journal of ineq. in pure and applied mathematics 8, 1(2007), Art.20, 6pp
[6] S. E. Warchawski, On the higher derivatives at the boundary in conformal mappings, Trans. Amer. Math. Soc. 38, 2 (1935), 310-340.
[7] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Marcel Dekker, New York and Basel, (2000).
[8] S. S. Miller, P. T. Mocanu and M. O. Reade, All α - convex functions are univalent and starlike, Proc. Amer. Math. Soc. 37, (1973), 553-554.
[9] St. Ruscheweyh, A subordination theorem for ϕ-like functions, J. London Math. Soc. 2, 13 (1976), 275-280.
[10] V. Ravichandran, N. Mahesh and R. Rajalakshmi, On Certain Applications of Differential Subordinations for ϕ-like Functions, Tamkang J. Math. 36, 2 (2005), 137-142.

Pardeep kaur
Department of Applied Sciences,
Baba Banda Singh Bahadur Engineering College,
Fatehgarh Sahib-140407, Punjab, India.
e-mail: aradhitadhiman@gmail.com
Sukhwinder Singh Billing
Department of Mathematics,
P. Kaur, S. Singh Billing - Some sandwich-type results ...

Sri Guru Granth Shaib World University, Fatehgarh Sahib-140407, Punjab, India.
e-mail:ssbilling@gmail.com

