SOME SANDWICH-TYPE RESULTS FOR ϕ -LIKE FUNCTIONS

P. KAUR, S. SINGH BILLING

ABSTRACT. Using the technique of differential subordination, we here obtain certain results for ϕ -like, starlike and close-to-convex functions.

2010 Mathematics Subject Classification: 30C45.

Keywords: analytic function, ϕ -like functions, starlike function, differential subordination, differential superordination.

1. INTRODUCTION

Let \mathcal{H} be the class of functions analytic in $\mathbb{E} = \{z : |z| < 1\}$ and $\mathcal{H}[a, n]$ be the subclass of \mathcal{H} consisting functions of the form

$$f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots$$

Let \mathcal{A} be the subclass of \mathcal{H} consisting of functions f, analytic in the open unit disk $\mathbb{E} = \{z : |z| < 1\}$ and normalized by the conditions f(0) = f'(0) - 1 = 0. A function $f \in \mathcal{A}$ is said to be starlike of order β , $0 \le \beta < 1$, if and only if

$$\Re\left(\frac{zf'(z)}{f(z)}\right) > \beta, \ z \in \mathbb{E}.$$

The class of such functions is denoted by $\mathcal{S}^*(\beta)$. Note that $\mathcal{S}^*(0) = \mathcal{S}^*$, the class of univalent starlike functions.

A function $f \in \mathcal{A}$ is said to be close-to-convex in \mathbb{E} if it satisfies the condition

$$\Re\left(\frac{zf'(z)}{g(z)}\right) > 0, \ z \in \mathbb{E}, \ \text{for } g \in \mathcal{S}^*.$$

The class of close-to-convex functions is denoted by C. Noshiro [2] and Warchawski [6] independently proved in 1934-35 that f is close-to-convex if

$$\Re(f'(z)) > 0.$$

Let $\Phi : \mathbb{C}^2 \times \mathbb{E} \to \mathbb{C}$ be an analytic function, p be an analytic function in \mathbb{E} with $(p(z), zp'(z); z) \in \mathbb{C}^2 \times \mathbb{E}$ for all $z \in \mathbb{E}$ and h be univalent in \mathbb{E} . Then the function p is said to satisfy first order differential subordination if

$$\Phi(p(z), zp'(z); z) \prec h(z), \quad \Phi(p(0), 0; 0) = h(0).$$
(1)

A univalent function q is called a dominant of the differential subordination (1) if p(0) = q(0) and $p \prec q$ for all p satisfying (1). A dominant \tilde{q} that satisfies $\tilde{q} \prec q$ for all dominants q of (1) is said to be the best dominant of (1).

Let $\Psi : \mathbb{C}^2 \times \mathbb{E} \to \mathbb{C}$ be analytic and univalent in domain $\mathbb{C}^2 \times \mathbb{E}$, h be analytic in \mathbb{E} , p be analytic and univalent in \mathbb{E} , with $(p(z), zp'(z); z) \in \mathbb{C}^2 \times \mathbb{E}$ for all $z \in \mathbb{E}$. Then p is called a solution of the first order differential superordination if

$$h(z) \prec \Psi(p(z), zp'(z); z), \ h(0) = \Psi(p(0), 0; 0).$$
 (2)

An analytic function q is called a subordinant of the differential superordination (2), if $q \prec p$ for all p satisfying (2). A univalent subordinant \tilde{q} that satisfies $q \prec \tilde{q}$ for all subordinants q of (2) is said to be the best subordinant of (2).

The function $f \in \mathcal{A}$ is called ϕ -like in the open unit disk \mathbb{E} , if

$$\Re\left(rac{zf'(z)}{\phi(f(z))}
ight) > 0, \, \, z \in \mathbb{E},$$

where ϕ is analytic in a domain containing $f(\mathbb{E})$, $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \setminus \{0\}$. This concept was first introduced by Brickman [1] and he established that a function $f \in \mathcal{A}$ is univalent if and only if f is ϕ -like for some ϕ .

Using the concept of differential subordination Ruscheweyh [9] introduced and studied the following more general class of ϕ -like functions:

Let ϕ be analytic function in the domain containing $f(\mathbb{E})$, $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in f(\mathbb{E}) \setminus \{0\}$. Then $f \in \mathbb{A}$ is called ϕ -like w.r.t. a univalent function q(z) if $\frac{zf'(z)}{\phi(f(z))} \prec q(z), z \in \mathbb{E}$.

In 2005, Ravichandran et al.[10] proved the following result for ϕ -like functions: Let $\alpha \neq 0$ be a complex number and q(z) be a convex univalent function in \mathbb{E} . Suppose $h(z) = \alpha q^2(z) + (1 - \alpha)q(z) + \alpha zq'(z)$ and

$$\Re\left\{\frac{1-\alpha}{\alpha}+2q(z)+\left(1+\frac{zq''(z)}{q'(z)}\right)\right\}>0,\ z\in\mathbb{E}.$$

If $f \in \mathcal{A}$ satisfies

$$\frac{zf'(z)}{\phi(f(z))} \left(1 + \frac{\alpha zf''(z)}{f'(z)} + \frac{\alpha(f'(z) - (\phi(f(z)))'}{\phi(f(z))} \right) \prec h(z)$$

$$\frac{zf'(z)}{\phi(f(z))} \prec q(z), \ z \in \mathbb{E}$$

and q(z) is best dominant.

Recently, Shanmugam et al. [5] and Ibrahim [3] also obtained the results for ϕ -like functions parallel to the results of Ravichandran [10] stated above.

In the present paper, we investigate the differential operator

$$a\frac{zf'(z)}{\phi(g(z))} + b\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z))'}{\phi(g(z))}\right)$$

where $f, g \in \mathcal{A}$ and ϕ is an analytic function in a domain containing $g(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \setminus \{0\}$, for real numbers a and $b(\neq 0)$. We, here, obtain some sufficient conditions for ϕ -like, starlike and close-to-convex functions.

2. Preliminaries

We shall need the following definition and Lemmas to prove our main results.

Definition 1. [7, Def. 2.2b, p.21]. We denote by Q the set of functions p that are analytic and injective in $\overline{\mathbb{E}} \setminus \mathbb{B}(p)$, where

$$\mathbb{B}(p) = \left\{ \zeta \in \partial \mathbb{E} : \lim_{z \to \zeta} p(z) = \infty \right\},\$$

are such that $p'(\zeta) \neq 0$ for $\zeta \in \partial \mathbb{E} \setminus \mathbb{B}(p)$.

Lemma 1. [7, Theorem 3.4h, p.132]. Let q be univalent in \mathbb{E} and let θ and φ be analytic in a domain \mathbb{D} containing $q(\mathbb{E})$, with $\varphi(w) \neq 0$, when $w \in q(\mathbb{E})$. Set $Q_1(z) = zq'(z)\varphi[q(z)], h(z) = \theta[q(z)] + Q_1(z)$ and suppose that either (i) h is convex, or (ii) Q_1 is starlike. In addition, assume that

(iii)
$$\Re\left(\frac{zh'(z)}{Q_1(z)}\right) > 0.$$

If p is analytic in \mathbb{E} , with $p(0) = q(0), \ p(\mathbb{E}) \subset \mathbb{D}$ and

$$\theta[p(z)] + zp'(z)\varphi[p(z)] \prec \theta[q(z)] + zq'(z)\varphi[q(z)],$$

then $p(z) \prec q(z)$ and q(z) is the best dominant.

Lemma 2. [4]. Let q be univalent in \mathbb{E} and let θ and φ be analytic in a domain \mathbb{D} containing $q(\mathbb{E})$. Set $Q_1(z) = zq'(z)\varphi[q(z)], h(z) = \theta[q(z)] + Q_1(z)$ and suppose that (i) Q_1 is starlike in \mathbb{E} and $\begin{bmatrix} \theta'(q(z)) \end{bmatrix}$

(i) $\Re \left[\frac{\theta'(q(z))}{\varphi(q(z))} \right] > 0, \ z \in \mathbb{E}.$ If $p \in \mathcal{H}[q(0), 1] \cap Q$, with $p(\mathbb{E}) \subset \mathbb{D}$ and $\theta[p(z)] + zp'(z)\varphi[p(z)]$ is univalent in \mathbb{E} and

 $\theta[q(z)] + zq'(z)\varphi[q(z)] \prec \theta[p(z)] + zp'(z)\varphi[p(z)], \ z \in \mathbb{E},$

then $q(z) \prec p(z)$ and q(z) is the best subordinant.

3. Main results

Theorem 3. Let $q, q(z) \neq 0$ be a univalent function in \mathbb{E} and satisfies the condition

$$\Re\left(1+\frac{zq''(z)}{q'(z)}-\frac{zq'(z)}{q(z)}\right) > \max\left\{0, -\frac{a}{b}\Re(q(z))\right\},\tag{3}$$

where a and $b(\neq 0)$ are real numbers. Let ϕ be analytic function in a domain containing $g(\mathbb{E})$, $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \setminus \{0\}$. If $f, g \in \mathcal{A}, \frac{zf'(z)}{\phi(g(z))} \neq 0, z \in \mathbb{E}$, satisfy the differential subordination

$$a\frac{zf'(z)}{\phi(g(z))} + b\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z))'}{\phi(g(z))}\right) \prec aq(z) + b\frac{zq'(z)}{q(z)},\tag{4}$$

then

$$\frac{zf'(z)}{\phi(g(z))} \prec q(z), \ z \in \mathbb{E}$$

and q(z) is the best dominant.

Proof. Define the function p(z) by

$$p(z) = \frac{zf'(z)}{\phi(g(z))}.$$

Therefore

$$\frac{zp'(z)}{p(z)} = 1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z))'}{\phi(g(z))}$$

and (4) reduces to

$$ap(z) + b \frac{zp'(z)}{p(z)} \prec aq(z) + b \frac{zq'(z)}{q(z)}.$$

Define θ and φ as $\theta(w) = aw \& \varphi(w) = \frac{b}{w}$. Both θ and φ are analytic in $\mathbb{C} \setminus \{0\}$ and $\varphi(w) \neq 0, w \in \mathbb{C} \setminus \{0\}$. Therefore $Q_1(z) = zq'(z)\varphi(q(z)) = b\frac{zq'(z)}{q(z)}$ and

$$h(z) = \theta(q(z)) + Q_1(z) = aq(z) + b \frac{zq'(z)}{q(z)}$$

A little calculation yields

$$\frac{zQ_1(z)}{Q_1(z)} = 1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)}$$

and

$$\frac{zh'(z)}{Q_1(z)} = \frac{a}{b}q(z) + 1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)}.$$

In view of Condition 3, we have $Q_1(z)$ is starlike in \mathbb{E} and $\Re\left(\frac{zh'(z)}{Q_1(z)}\right) > 0$. The proof, now, follows from the Lemma 1.

On taking $\phi(z) = z$ in Theorem 3, we have the following result:

Theorem 4. Let $q, q(z) \neq 0$, be a univalent function in \mathbb{E} , satisfying the Condition 3 of Theorem 3 for real numbers $a, b(\neq 0)$. If $f, g \in \mathcal{A}, \frac{zf'(z)}{g(z)} \neq 0, z \in \mathbb{E}$, satisfy the differential subordination

$$a\frac{zf'(z)}{g(z)} + b\left(1 + \frac{zf''(z)}{f'(z)} - \frac{zg'(z)}{g(z)}\right) \prec aq(z) + b\frac{zq'(z)}{q(z)},$$

then

$$\frac{zf'(z)}{g(z)} \prec q(z), \ z \in \mathbb{E},$$

and q(z) is the best dominant.

On taking $\phi(z) = z$ and g(z) = f(z) in Theorem 3, we have the following result: **Theorem 5.** Let $q, q(z) \neq 0$ be a univalent function in \mathbb{E} and satisfies the Condition 3 of Theorem 3 for real numbers a and $b(\neq 0)$. If $f \in \mathcal{A}$, $\frac{zf'(z)}{f(z)} \neq 0$, $z \in \mathbb{E}$, satisfies

$$(a-b)\frac{zf'(z)}{f(z)} + b\left(1 + \frac{zf''(z)}{f'(z)}\right) \prec aq(z) + b\frac{zq'(z)}{q(z)}$$

then

$$\frac{zf'(z)}{f(z)} \prec q(z), \ z \in \mathbb{E},$$

and q(z) is the best dominant.

On selecting a = 1 and $b = \alpha$ in the Theorem 5, we get the following result for the class of α -convex functions.

Theorem 6. Let α be a non zero real number and let q, $q(z) \neq 0$ be a univalent function in \mathbb{E} satisfying the Condition 3 of Theorem 3. If $f \in \mathcal{A}$, $z \in \mathbb{E}$, satisfies

$$(1-\alpha)\frac{zf'(z)}{f(z)} + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right) \prec q(z) + \alpha\frac{zq'(z)}{q(z)},$$

then

$$\frac{zf'(z)}{f(z)} \prec q(z), \ z \in \mathbb{E},$$

and q(z) is the best dominant.

By defining $\phi(z) = g(z) = z$ in Theorem 3, we obtain the following result:

Theorem 7. Let $q, q(z) \neq 0$ be a univalent function in \mathbb{E} and satisfying the Condition 3 of Theorem 3 for real numbers $a, b(\neq 0)$. If $f \in \mathcal{A}, f'(z) \neq 0, z \in \mathbb{E}$, satisfies the differential subordination

$$af'(z) + b\frac{zf''(z)}{f'(z)} \prec aq(z) + b\frac{zq'(z)}{q(z)},$$

then

$$f'(z) \prec q(z), \ z \in \mathbb{E},$$

and q(z) is the best dominant.

Remark 1. It is easy to verify that dominant $q(z) = \left(\frac{1+z}{1-z}\right)^{\delta}$, $0 < \delta \le 1$, satisfies the Condition 3 of Theorem 3, for real numbers a and $b(\ne 0)$. Consequently, we get: **Theorem 8.** Let ϕ be analytic function in the domain containing $g(\mathbb{E})$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \ne 0$ for $w \in g(\mathbb{E}) \setminus \{0\}$. If $f, g \in \mathcal{A}, \frac{zf'(z)}{\phi(g(z))} \ne 0$, $z \in \mathbb{E}$, and for real numbers a and $b(\ne 0)$, satisfy

$$a\frac{zf'(z)}{\phi(g(z))} + b\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z))'}{\phi(g(z))}\right) \prec a\left(\frac{1+z}{1-z}\right)^{\delta} + \frac{2b\delta z}{1-z^2},$$

then

$$\frac{zf'(z)}{\phi(g(z))} \prec \left(\frac{1+z}{1-z}\right)^{\delta}, \ z \in \mathbb{E}, \ 0 < \delta \le 1.$$

On taking $\phi(z) = z$ in above theorem, we obtain:

Corollary 9. Let a and $b \neq 0$ are real numbers and $0 < \delta \leq 1$. If $f, g \in \mathcal{A}, \frac{zf'(z)}{g(z)} \neq 0, z \in \mathbb{E}$, satisfy

$$a\frac{zf'(z)}{g(z)} + b\left(1 + \frac{zf''(z)}{f'(z)} - \frac{zg'(z)}{g(z)}\right) \prec a\left(\frac{1+z}{1-z}\right)^{\delta} + \frac{2b\delta z}{1-z^2},$$

then

$$\frac{zf'(z)}{g(z)} \prec \left(\frac{1+z}{1-z}\right)^{\delta}, \ z \in \mathbb{E}.$$

For $\phi(z) = z$ and g(z) = f(z) in Theorem 8, we obtain the following result:

Corollary 10. Let a and $b(\neq 0)$ are real numbers and $0 < \delta \leq 1$. If $f \in \mathcal{A}$, $\frac{zf'(z)}{f(z)} \neq 0$, $z \in \mathbb{E}$, satisfies the differential subordination

$$(a-b)\frac{zf'(z)}{f(z)} + b\left(1 + \frac{zf''(z)}{f'(z)}\right) \prec a\left(\frac{1+z}{1-z}\right)^{\delta} + \frac{2b\delta z}{1-z^2}$$

then

$$\frac{zf'(z)}{f(z)} \prec \left(\frac{1+z}{1-z}\right)^{\delta}, \ z \in \mathbb{E},$$

and hence f(z) is starlike.

Selecting a = 1 and $b = \alpha$ in above corollary, we get the following result for the class of α -convex functions:

Corollary 11. Let α be a non-zero real number. If $f \in \mathcal{A}$, $\frac{zf'(z)}{f(z)} \neq 0$, $z \in \mathbb{E}$, satisfies

$$(1-\alpha)\frac{zf'(z)}{f(z)} + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right) \prec \left(\frac{1+z}{1-z}\right)^{\delta} + \frac{2b\delta z}{1-z^2},$$

then

$$\frac{zf'(z)}{f(z)} \prec \left(\frac{1+z}{1-z}\right)^{\delta}, \ z \in \mathbb{E}, \ 0 < \delta \le 1.$$

Hence f(z) is strongly starlike.

On taking $\phi(z) = g(z) = z$ in Theorem 8, we have:

Corollary 12. Let a and $b(\neq 0)$ are real numbers. If $f \in A$, $f'(z) \neq 0$, $z \in \mathbb{E}$, satisfies

$$af'(z) + b\frac{zf''(z)}{f'(z)} \prec a\left(\frac{1+z}{1-z}\right)^{\delta} + \frac{2b\delta z}{1-z^2},$$

then

$$f'(z) \prec \left(\frac{1+z}{1-z}\right)^{\delta}, \ z \in \mathbb{E}, \ 0 < \delta \le 1,$$

and hence f(z) is close-to-convex.

Remark 2. When we select the dominant $q(z) = e^z$, then this dominant satisfies the Condition 3 of Theorem 3 for non-zero real numbers a and b such that $\Re(e^z) > -\frac{b}{a}$. Consequently, we obtain the following result:

Theorem 13. Let a and b be non-zero real numbers such that $\Re(e^z) > -\frac{b}{a}$ and let ϕ be analytic function in a domain containing $g(\mathbb{E})$, $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \setminus \{0\}$. If $f, g \in \mathcal{A}, \frac{zf'(z)}{\phi(g(z))} \neq 0, z \in \mathbb{E}$, satisfy

$$a\frac{zf'(z)}{\phi(g(z))} + b\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z))')}{\phi(g(z))}\right) \prec ae^{z} + bz.$$

then

$$\frac{zf'(z)}{\phi(g(z))} \prec e^z, \ z \in \mathbb{E}.$$

On choosing $\phi(z) = z$ in above theorem, we obtain:

Corollary 14. Let a and b non-zero real numbers such that $\Re(e^z) > -\frac{b}{a}$. If $f, g \in \mathcal{A}, \frac{zf'(z)}{g(z)} \neq 0, z \in \mathbb{E}$, satisfy the differential subordination

$$a\frac{zf'(z)}{g(z)} + b\left(1 + \frac{zf''(z)}{f'(z)} - \frac{zg'(z)}{g(z)}\right) \prec ae^z + bz$$

then

$$\frac{zf'(z)}{g(z)} \prec e^z, \ z \in \mathbb{E}.$$

On selecting $\phi(z) = z$ and g(z) = f(z) in Theorem 13, we get:

Corollary 15. Let a and b are non-zero real numbers such that $\Re(e^z) > -\frac{b}{a}$. If $f \in \mathcal{A}, \ \frac{zf'(z)}{f(z)} \neq 0, \ z \in \mathbb{E}$, satisfies the differential subordination

$$(a-b)\frac{zf'(z)}{f(z)} + b\left(1 + \frac{zf''(z)}{f'(z)}\right) \prec ae^z + bz,$$

then

$$\frac{zf'(z)}{f(z)} \prec e^z, \ z \in \mathbb{E},$$

and hence f(z) is starlike.

on choosing a = 1 and $b = \alpha$ in above corollary, we obtain:

Corollary 16. Let α be a non-zero real number such that $\Re(e^z) > -\alpha$. If $f \in \mathcal{A}$, $\frac{zf'(z)}{f(z)} \neq 0$, $z \in \mathbb{E}$, satisfies $(1-\alpha)\frac{zf'(z)}{f(z)} + \alpha \left(1 + \frac{zf''(z)}{f'(z)}\right) \prec e^z + \alpha z$,

$$\frac{f(z)}{f(z)} \prec e^z, \ z \in \mathbb{E}.$$

Therefore, $f \in S^*$.

For $\phi(z) = g(z) = z$ in Theorem 13, we obtain the following result:

Corollary 17. Let a and b are non-zero real numbers such that $\Re(e^z) > -\frac{b}{a}$. If $f \in \mathcal{A}, f'(z) \neq 0, z \in \mathbb{E}$, satisfies

$$af'(z) + b\frac{zf''(z)}{f'(z)} \prec ae^z + bz$$

then

$$f'(z) \prec e^z, \ z \in \mathbb{E},$$

and hence f(z) is close-to-convex.

Remark 3. By selecting the dominant q(z) = 1 + mz, $0 < m \le 1$, we observed that the Condition 3 of Theorem 3 holds for all real numbers a and $b(\ne 0)$ having same sign. Thus from Theorem 3, we have the following result:

Theorem 18. Let ϕ be analytic function in the domain containing $g(\mathbb{E})$, where $\phi(0) = 0 = \phi'(z) - 1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \setminus \{0\}$. Let real numbers a and $b(\neq 0)$ be such that $\frac{a}{b} > 0$. If $f, g \in \mathcal{A}, \frac{zf'(z)}{\phi(g(z))} \neq 0, z \in \mathbb{E}$, satisfy

$$a\frac{zf'(z)}{\phi(g(z))} + b\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z))'}{\phi(g(z))}\right) \prec a(1+mz) + \frac{bmz}{1+mz},$$

then

$$\frac{zf'(z)}{\phi(g(z))} \prec 1 + mz, \text{ where } 0 < m \le 1, \ z \in \mathbb{E}.$$

Taking $\phi(z) = z$ in above theorem, we get the following result:

Corollary 19. Let a and b are non-zero real numbers having same sign and
$$0 < m \le 1$$
. If $f, g \in \mathcal{A}, \frac{zf'(z)}{g(z)} \ne 0, z \in \mathbb{E}$, satisfy
$$a\frac{zf'(z)}{g(z)} + b\left(1 + \frac{zf''(z)}{f'(z)} - \frac{zg'(z)}{g(z)}\right) \prec a(1 + mz) + \frac{bmz}{1 + mz},$$

then

$$\frac{zf'(z)}{g(z)} \prec 1 + mz, \ z \in \mathbb{E}.$$

From Theorem 18, for $\phi(z) = z$ and g(z) = f(z), we obtain:

Corollary 20. Let a and b be non-zero real numbers having same sign and $0 < m \le 1$. If $f \in \mathcal{A}$, $\frac{zf'(z)}{f(z)} \neq 0$, $z \in \mathbb{E}$, satisfies $(a-b)\frac{zf'(z)}{f(z)} + b\left(1 + \frac{zf''(z)}{f'(z)}\right) \prec a(1+mz) + \frac{bmz}{1+mz}$,

then

$$\frac{zf'(z)}{f(z)} \prec 1 + mz, \ z \in \mathbb{E},$$

and hence f(z) is starlike.

On selecting a = 1 and $b = \alpha$ in above corollary, we get the following result:

Corollary 21. For $\alpha > 0$, if $f \in \mathcal{A}$, $\frac{zf'(z)}{f(z)} \neq 0$, $z \in \mathbb{E}$, satisfies the differential subordination

$$(1-\alpha)\frac{zf'(z)}{f(z)} + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right) \prec (1+mz) + \frac{\alpha mz}{1+mz},$$

$$\frac{zf'(z)}{f(z)} \prec 1 + mz, \quad 0 < m \le 1,$$

and hence f(z) is starlike.

Selecting $\phi(z) = g(z) = z$, in Theorem 18, we have:

Corollary 22. Let a and $b \neq 0$ be real numbers having same sign. If $f \in A$, $f'(z) \neq 0$, $z \in \mathbb{E}$, satisfies

$$af'(z) + b\frac{zf''(z)}{f'(z)} \prec a(1+mz) + \frac{bmz}{1+mz},$$

then

$$f'(z) \prec 1 + mz, \quad 0 < m \le 1, \ z \in \mathbb{E},$$

and hence f(z) is close-to-convex.

Remark 4. Let
$$q(z) = \frac{\beta(1-z)}{\beta-z}$$
, then
 $\Re\left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)}\right) = \Re\left(\frac{\beta-z^2}{(\beta-z)(1-z)}\right) > 0$, for $\beta > 1$

and

$$\Re q(z) = \Re \left(\frac{\beta(1-z)}{\beta-z} \right) > 0.$$

In view of the above calculations, the Conditon 3 of Theorem 3 is satisfied for real numbers a and $b(\neq 0)$ such that $\frac{a}{b} > 0$. Consequently, we obtain the following result:

Theorem 23. Let ϕ be analytic function in the domain containing $g(\mathbb{E})$, where $\phi(0) = 0 = \phi'(z) - 1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \setminus \{0\}$. If $f \in \mathcal{A}$, $\frac{zf'(z)}{\phi(g(z))} \neq 0$, $z \in \mathbb{E}$, for real numbers a, and $b(\neq 0)$ such that $\frac{a}{b} > 0$, satisfies

$$a\frac{zf'(z)}{\phi(g(z))} + b\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z))')}{\phi(g(z))}\right) \prec a\frac{\beta(1-z)}{\beta-z} + b\frac{(1-\beta)z}{(\beta-z)(1-z)},$$

then

$$\frac{zf'(z)}{\phi(g(z))} \prec \frac{\beta(1-z)}{\beta-z}, \ z \in \mathbb{E}, \ where \ \beta > 1$$

Taking $\phi(z) = z$, we get the following result from above theorem:

Corollary 24. If $f, g \in \mathcal{A}, \frac{zf'(z)}{g(z)} \neq 0, z \in \mathbb{E}$, satisfy the differential subordination

$$a\frac{zf'(z)}{g(z)} + b\left(1 + \frac{zf''(z)}{f'(z)} - \frac{zg'(z)}{g(z)}\right) \prec \frac{a\beta(1-z)}{\beta-z} + \frac{b(1-\beta)z}{(\beta-z)(1-z)},$$

then

$$\frac{zf'(z)}{g(z)} \prec \frac{\beta(1-z)}{\beta-z}, \ z \in \mathbb{E},$$

where $\beta > 1$ and $a, b \neq 0$ are real numbers having same sign.

On selecting $\phi(z) = z$ and g(z) = f(z) in Theorem 23, we obtain:

Corollary 25. Let a and $b(\neq 0)$ be real numbers having same sign and $\beta > 1$. If $f \in \mathcal{A}, \ \frac{zf'(z)}{f(z)} \neq 0, \ z \in \mathbb{E}, \ satisfies$

$$(a-b)\frac{zf'(z)}{f(z)} + b\left(1 + \frac{zf''(z)}{f'(z)}\right) \prec \frac{a\beta(1-z)}{\beta-z} + \frac{b(1-\beta)z}{(\beta-z)(1-z)}$$

then

$$\frac{zf'(z)}{f(z)} \prec \frac{\beta(1-z)}{\beta-z}, \ z \in \mathbb{E},$$

and hence f(z) is starlike.

Choosing a = 1 and $b = \alpha$ in above corollary, we get:

Corollary 26. For $\alpha > 0$, if $f \in \mathcal{A}$, $\frac{zf'(z)}{f(z)} \neq 0$, $z \in \mathbb{E}$, satisfies the differential subordination

$$(1-\alpha)\frac{zf'(z)}{f(z)} + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right) \prec \frac{\beta(1-z)}{\beta-z} + \frac{\alpha(1-\beta)z}{(\beta-z)(1-z)},$$

then

$$\frac{zf'(z)}{f(z)} \prec \frac{\beta(1-z)}{\beta-z}, \quad \beta > 1, \ z \in \mathbb{E},$$

i.e. $f \in \mathcal{S}^*$.

Taking $\phi(z) = g(z) = z$ in Theorem 23, we have:

Corollary 27. Let a, $b(\neq 0)$ be real numbers having same sign and $\beta > 1$. If $f \in \mathcal{A}, f'(z) \neq 0, z \in \mathbb{E}$, satisfies

$$af'(z) + b\frac{zf''(z)}{f'(z)} \prec \frac{a\beta(1-z)}{\beta-z} + \frac{b(1-\beta)z}{(\beta-z)(1-z)}$$

then

$$f'(z) \prec \frac{\beta(1-z)}{\beta-z}, \ z \in \mathbb{E},$$

and hence f(z) is close-to-convex.

Remark 5. On selecting the dominant $q(z) = 1 + \frac{2}{3}z^2$ in Theorem 3, it is easy to check that this dominant satisfies the Condition 3 of Theorem 3 for real numbers a and b of same sign, as

$$\Re\left(1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)}\right) = 2\Re\left(1 + \frac{2}{3}z^2\right)^{-1} > 0$$

and

$$\Re q(z) = \Re \left(1 + \frac{2}{3}z^2 \right) > 0.$$

Consequently, we obtain the following result:

Theorem 28. For real numbers a and $b(\neq 0)$ of same sign, if $f, g \in \mathcal{A}, \frac{zf'(z)}{\phi(g(z))} \neq 0, z \in \mathbb{E}$, satisfy

$$a\frac{zf'(z)}{\phi(g(z))} + b\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z))'}{\phi(g(z))}\right) \prec a\left(1 + \frac{2}{3}z^2\right) + \frac{4bz^2}{3 + 2z^2},$$

then

$$\frac{zf'(z)}{\phi(g(z))} \prec 1 + \frac{2}{3}z^2, \ z \in \mathbb{E}.$$

Here, ϕ is an analytic function in the domain containing $g(\mathbb{E})$, such that $\phi(0) = 0 = \phi'(z) - 1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \setminus \{0\}$.

By selecting $\phi(z) = z$ in above theorem, we obtain:

Corollary 29. Let a and $b(\neq 0)$ be real numbers such that $\frac{a}{b} > 0$. If $f, g \in \mathcal{A}, \frac{zf'(z)}{g(z)} \neq 0, z \in \mathbb{E}$, satisfy $a\frac{zf'(z)}{g(z)} + b\left(1 + \frac{zf''(z)}{f'(z)} - \frac{zg'(z)}{g(z)}\right) \prec a\left(1 + \frac{2}{3}z^2\right) + \frac{4bz^2}{3 + 2z^2},$

$$\frac{zf'(z)}{g(z)} \prec 1 + \frac{2}{3}, \ z^2 \ z \in \mathbb{E}.$$

On taking $\phi(z) = z$ and g(z) = f(z) in Theorem 28, we have:

Corollary 30. Let a and $b \neq 0$ be real numbers such that $\frac{a}{b} > 0$. If $f \in \mathcal{A}$, $\frac{zf'(z)}{f(z)} \neq 0$, $z \in \mathbb{E}$, satisfies

$$(a-b)\frac{zf'(z)}{f(z)} + b\left(1 + \frac{zf''(z)}{f'(z)}\right) \prec a\left(1 + \frac{2}{3}z^2\right) + \frac{4bz^2}{3+2z^2}$$

then

$$\frac{zf'(z)}{f(z)} \prec 1 + \frac{2}{3}z^2, \ z \in \mathbb{E},$$

and hence f(z) is starlike.

If we take a = 1 and $b = \alpha$ in above corollary, we get:

Corollary 31. For $\alpha > 0$, if $f \in \mathcal{A}$, $\frac{zf'(z)}{f(z)} \neq 0$, $z \in \mathbb{E}$, satisfies the differential subordination

$$(1-\alpha)\frac{zf'(z)}{f(z)} + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right) \prec \left(1 + \frac{2}{3}z^2\right) + \frac{4\alpha z^2}{3+2z^2},$$

then

$$\frac{zf'(z)}{f(z)} \prec 1 + \frac{2}{3}z^2, \ z \in \mathbb{E},$$

and hence $f \in S^*$.

In Theorem 28, by selecting $\phi(z) = g(z) = z$, we obtain:

Corollary 32. Let real numbers a and $b(\neq 0)$ be such that, $\frac{a}{b} > 0$. If $f \in A$, $f'(z) \neq 0$, $z \in \mathbb{E}$, satisfies

$$af'(z) + b\frac{zf''(z)}{f'(z)} \prec a\left(1 + \frac{2}{3}z^2\right) + \frac{4bz^2}{3+2z^2},$$

then

$$f'(z) \prec 1 + \frac{2}{3}z^2, \ z \in \mathbb{E},$$

and hence f(z) is close-to-convex.

4. SANDWICH TYPE RESULTS

Theorem 33. Let a and $b(\neq 0)$ be real numbers such that $\frac{a}{b} > 0$. Let q, $q(z) \neq 0$ be univalent function in the unit disk \mathbb{E} , with q(0) = 1 such that $\frac{zq'(z)}{q(z)}$ is starlike univalent in \mathbb{E} and $\Re q(z) > 0$. Let ϕ be analytic function in the domain containing $g(\mathbb{E})$, where $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \setminus \{0\}$. If $f, g \in \mathcal{A}$, $\frac{zf'(z)}{\phi(g(z))} \in \mathcal{H}[q(0), 1] \cap Q$ with $\frac{zf'(z)}{\phi(g(z))} \left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z))')}{\phi(g(z))}\right)$ is univalent in \mathbb{E} , satisfy $zq'(z) = zf'(z) = \left(z + \frac{zf''(z)}{g(z)} - \frac{z(\phi(g(z))')}{g(g(z))}\right)$

$$aq(z) + b\frac{zq'(z)}{q(z)} \prec a\frac{zf'(z)}{\phi(g(z))} + b\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z))')}{\phi(g(z))}\right),$$
(5)

then

$$q(z) \prec \frac{zf'(z)}{\phi(g(z))}, \ z \in \mathbb{E},$$

and q(z) is the best subordinant.

Proof: Write $p(z) = \frac{zf'(z)}{\phi(g(z))}$, then (5) becomes

$$aq(z) + b\frac{zq'(z)}{q(z)} \prec ap(z) + b\frac{zp'(z)}{p(z)}$$

By defining θ and φ as $\theta(w) = aw$ and $\varphi(w) = \frac{b}{w}$, where θ and φ are analytic in $\mathbb{C} \setminus \{0\}$ and $\varphi(w) \neq 0$, $w \in \mathbb{C} \setminus \{0\}$. Therefore,

$$Q_1(z) = zq'(z)\varphi(q(z)) = b\frac{zq'(z)}{q(z)}.$$

A little calculation yields

$$\frac{zQ_1(z)}{Q_1(z)} = 1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)}$$

and

$$\frac{\theta'(q(z))}{\varphi(q(z))} = \frac{aq(z)}{b}.$$

In view of the given conditions, $Q_1(z)$ is starlike and $\Re\left[\frac{\theta'(q(z))}{\varphi(q(z))}\right] > 0, \ z \in \mathbb{E}$. Hence the proof, now, follows from Lemma 2.

Theorem 34. Let $q_1(z) \neq 0$ and $q_2(z) \neq 0$ be univalent in \mathbb{E} such that $q_1(z)$ satisfies the condition of Theorem 33 whereas $q_2(z)$ satisfies the Condition 3 of Theorem 3. Let $\phi(z)$ be analytic function in the domain containing $g(\mathbb{E})$ such that $\phi(0) = 0 =$ $\phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \setminus \{0\}$. Let $f, g \in \mathcal{A}, \frac{zf'(z)}{\phi(g(z))} \in \mathcal{H}[1,1] \cap Q$ and $a\frac{zf'(z)}{\phi(g(z))} + b\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z))'}{\phi(g(z))}\right)$ be univalent in \mathbb{E} , where a and $b(\neq 0)$ are real numbers. Further, if

$$aq_1(z) + b\frac{zq_1'(z)}{q_1(z)} \prec a\frac{zf'(z)}{\phi(g(z))} + b\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z))'}{\phi(g(z))}\right) \prec aq_2(z) + b\frac{zq_2'(z)}{q_2(z)},$$

then

$$q_1(z) \prec \frac{zf'(z)}{\phi(g(z))} \prec q_2(z), \ z \in \mathbb{E}.$$

Moreover, $q_1(z)$ and $q_2(z)$ are the best subordinant and the best dominant respectively.

Taking $q_1(z) = 1 + mz$ and $q_2(z) = 1 + nz$, $0 < m < n \le 1$, in Theorem 33, we have the following result:

Corollary 35. Let $\phi(z)$ be a analytic function in the domain containing $g \in \mathbb{E}$ such that $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \setminus \{0\}$. Let $a, b(\neq 0)$ be real numbers such that $\frac{a}{b} > 0$. If $f, g \in \mathcal{A}$ be such that $\frac{zf'(z)}{\phi(g(z))} \in \mathcal{H}[1,1] \cap Q$ with $a\frac{zf'(z)}{\phi(g(z))} + b\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z))'}{\phi(g(z))}\right)$ is univalent in \mathbb{E} and satisfy $a(1+mz) + \frac{bmz}{1+mz} \prec a\frac{zf'(z)}{\phi(g(z))} + b\left(1 + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z))'}{\phi(g(z))}\right) \prec a(1+nz) + \frac{bnz}{1+nz}$

then

$$1 + mz \prec \frac{zf'(z)}{\phi(g(z))} \prec 1 + nz, \ z \in \mathbb{E},$$

where m and n are real numbers, such that $0 < m < n \le 1$.

On selecting m = 1/4, n = 1/2 and a = 1 = b in above corollary, we obtain:

Example 1. Let $\phi(z)$ be a analytic function in the domain containing $g(\mathbb{E})$, where $\phi(0) = 0 = \phi'(0) - 1$ and $\phi(w) \neq 0$ for $w \in g(\mathbb{E}) \setminus \{0\}$. Let $f, g \in \mathcal{A}$ be such that $\frac{zf'(z)}{\phi(g(z))} \in \mathcal{H}[1,1] \cap Q$ with $1 + \frac{zf'(z)}{\phi(g(z))} + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z))'}{\phi(g(z))}$ is univalent in \mathbb{E} , and satisfy $\frac{z}{4} + \frac{z}{4+z} \prec \frac{zf'(z)}{\phi(g(z))} + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z))'}{\phi(g(z))} \prec \frac{z}{2} + \frac{z}{2+z}, \tag{6}$

$$1 + \frac{z}{4} \prec \frac{zf'(z)}{\phi(g(z))} \prec 1 + \frac{z}{2}, \ z \in \mathbb{E}.$$
(7)

In Example 1, on taking $\phi(z) = z$, we get:

Example 2. Let $f, g \in \mathcal{A}$ be such that $\frac{zf'(z)}{g(z)} \in \mathcal{H}[1,1] \cap Q$ with $1 + \frac{zf'(z)}{g(z)} + \frac{zf''(z)}{f'(z)} - \frac{zg'(z)}{g(z)}$ is univalent in \mathbb{E} and satisfy

$$\frac{z}{4} + \frac{z}{4+z} \prec \frac{zf'(z)}{g(z)} + \frac{zf''(z)}{f'(z)} - \frac{zg'(z)}{g(z)} \prec \frac{z}{2} + \frac{z}{2+z}$$

then

$$1 + \frac{z}{4} \prec \frac{zf'(z)}{g(z)} \prec 1 + \frac{z}{2}, \ z \in \mathbb{E}.$$

On selecting $\phi(z) = z$ and g(z) = f(z) in Example 1, we get:

Example 3. Suppose $f \in \mathcal{A}$ is such that $\frac{zf'(z)}{f(z)} \in \mathcal{H}[1,1] \cap Q$ with $1 + \frac{zf''(z)}{f'(z)}$ is univalent in \mathbb{E} and satisfies

$$\frac{z}{4} + \frac{z}{4+z} \prec \frac{zf''(z)}{f'(z)} \prec \frac{z}{2} + \frac{z}{2+z}$$

then

$$1 + \frac{z}{4} \prec \frac{zf'(z)}{f(z)} \prec 1 + \frac{z}{2}, \ z \in \mathbb{E}.$$

On taking $\phi(z) = g(z) = z$ in Example 1, we have:

Example 4. Suppose $f \in \mathcal{A}$ is such that $f'(z) \in \mathcal{H}[1,1] \cap Q$ with $f'(z) + \frac{zf''(z)}{f'(z)}$ is univalent in \mathbb{E} and satisfies

$$1 + \frac{z}{4} + \frac{z}{4+z} \prec f'(z) + \frac{zf''(z)}{f'(z)} \prec 1 + \frac{z}{2} + \frac{z}{2+z}$$

then

$$1 + \frac{z}{4} \prec f'(z) \prec 1 + \frac{z}{2}, \ z \in \mathbb{E}.$$

Figure 2

Using Mathematica 10.0, we plot the images of the unit disk under the functions $\frac{z}{4} + \frac{z}{4+z}$ and $\frac{z}{2} + \frac{z}{2+z}$ of (6) in Figure 1 and $1 + \frac{z}{4}$ and $1 + \frac{z}{2}$ of (7) in Figure 2. It follows that if $\frac{zf'(z)}{\phi(g(z))} + \frac{zf''(z)}{f'(z)} - \frac{z(\phi(g(z))'}{\phi(g(z))}$ takes values in the light shaded portion

of Figure 1, then $\frac{zf'(z)}{\phi(g(z))}$ will take values in the light shaded portion of Figure 2. Consequently, in view of Example 3 and Example 4, f is starlike and close to convex respectively.

References

[1] L.Brickman, ϕ -like functions I, Bull. Amer. Math. Soc. 79(1973), 555-558.

[2] K. Noshiro, On the theory of schlicht functions, J. Fac. Sci., Hokkaido Univ. 2(1934-35), 129-155.

[3] Rabha W. Ibrahim, On certain univalent class associated with first order differential subordinations, Tamkang Journal of Mathematics 42, 4(2011), 445-451.

[4] T. Bulboaca, Classes of first order Differential superordination-preserving integral operators, Demonstratio Mathematica 35, 2(2002), 287-292.

[5] T.N. Shanmugam, S. Sivassubramanian and Maslina Darus, Subordination and superordination results for ϕ -like functions, Journal of ineq. in pure and applied mathematics 8, 1(2007), Art.20, 6pp

[6] S. E. Warchawski, On the higher derivatives at the boundary in conformal mappings, Trans. Amer. Math. Soc. 38, 2 (1935), 310-340.

[7] S. S. Miller and P. T. Mocanu, *Differential Subordinations: Theory and Applications*, Marcel Dekker, New York and Basel, (2000).

[8] S. S. Miller, P. T. Mocanu and M. O. Reade, All α - convex functions are univalent and starlike, Proc. Amer. Math. Soc. 37, (1973), 553-554.

[9] St. Ruscheweyh, A subordination theorem for ϕ -like functions, J. London Math. Soc. 2, 13 (1976), 275-280.

[10] V. Ravichandran, N. Mahesh and R. Rajalakshmi, On Certain Applications of Differential Subordinations for ϕ -like Functions, Tamkang J. Math. 36, 2 (2005), 137-142.

Pardeep kaur

Department of Applied Sciences, Baba Banda Singh Bahadur Engineering College, Fatehgarh Sahib-140407, Punjab, India. e-mail: *aradhitadhiman@gmail.com*

Sukhwinder Singh Billing Department of Mathematics, Sri Guru Granth Shaib World University, Fatehgarh Sahib-140407, Punjab, India. e-mail: ssbilling@gmail.com