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ON A FIBONACCI-LIKE SEQUENCE ASSOCIATED WITH
K-LUCAS SEQUENCE
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ABSTRACT. In the present article we consider a new generalization of classical
Fibonacci sequence and we call it as Fibonacci-Like sequence (V} ,) and then we
study Fibonacci-Like sequence (V} ) and k-Lucas sequence (Ly ) side by side by
introducing two special matrices for these two sequences. After that by using these
matrices we obtain Binet formulae for Fibonacci-Like sequence and for k-Lucas
sequence, we also give Cassini’s identity for Fibonacci-Like sequence.
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1. INTRODUCTION

The Fibonacci sequence (Fn>n20 is the sequence of integers given by
Foio=Fo1+ F, Fo=0and F1 =1 (1.1)

Classical Fibonacci numbers have been generalized by lot of the authors in different
ways. The two most important generalizations of Fibonacci numbers are k-Fibonacci
numbers (Fj, ) [1] and k-Lucas numbers (Ly, ,,) [2].

Especially some authors used matrix technique to study these numbers. In 1979,
Silvester [3] obtained some properties of classical Fibonacci numbers by matrix meth-
ods, particularly here the author used diagonaliztion of 2 x 2 matrix to obtain Binet
formula for classical Fibonacci numbers. In [4] Kilic introduced Binet formula, sums,
combinatorial representations and generating function for the generalized Fibonacci
p-numbers by using matrix technique, these numbers are defined by the following
recurrence relation:

Fon)=F,(n—-1)+F,(n—p—1), n>p+1 (1.2)
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With initial conditions
F)=F@) = =F{)=Fp+1)=1

Jun and Choi [5] presented some basic properties for generalized Fibonacci sequence
(@n)pen- Ying et al. [6] studied the generalized Fibonacci numbers by two differ-
ent matrix methods via the method of diagonalization and the method of matrix
collation. Akyuz and Halici [7] considered Horadam sequence (see [7] ) and showed
interest towards two cases of Horadam sequence i.e. the sequences (Uy) and (V,,),
which are delineated by

Up=pUp1—qUp 2, n>2and Uy =0, Uy =1

1.3
Vo=pVh1—qVh_ o, n>2and V=2, Vi1 =p (1.3)

where p and ¢ are integers with p > 0, ¢ # 0, in [7] the authors derived some
combinatorial identities, the determinant and the n*" power of 2x2 matrix. In [8] the
authors found some well-known equalities and Binet formula for Jacobsthal numbers
by matrix methods. Some divisible properties have been obtained for the generalized
Fibonacci sequence by Yalciner [9]. Borges et al. [10] obtained Cassini’s identities
and Binet formulae for k-Fibonacci and k-Lucas sequences by using some tools of
matrix algebra. In [11, 12] the authors also used matrix terminology to deduce
Cassini’s identities and Binet formulae for the k-Pell and k-Pell-Lucas Sequences.
Srisawat and Sripad [13] applied matrix technique to investigate some generalizations
of Pell and Pell-Lucas numbers as (s,t)-Pell and (s,t)-Pell-Lucas numbers, these
numbers are defined respectively by

Pr(s,t) = 25Pp_1(s,t) + tPp_o(s,t)for n > 2

Qn (8,t) =28Q,-1(s,t) +tQp_2(s,t)for n > 2 (1.4)

with initial conditions Py (s,t) =0, P1(s,t) =1 and Qp (s,t) =2, Py (s,t) = 2s.

2. PRELIMINARIES

First of all, we consider a sequence (G, ) which is defined by the following recurrence
relation:

Gk,n+2 = ka,n+1 + Gk,na n > 1 and Gk70 =a, GkJ =b (2.1)

where k € R and a,b € ZT.
For the present study we are interested in the two cases of the sequence (G ):
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(i) Fibonacci-Like sequence (V}, ,,) is defined by the following equation:

Vin+2 = EVing1 + Vi, n>0and Vi o =2m, Vi1 =p+mk (2.2)

(ii) k-Lucas sequence (Lj p)[2] is defined recurrently by
Lk,n+2 = kLk,n—H + Lk,m n > 0 and Lk,() =2, Lk71 =k (23)

Both the recurrence relations (2.2) and (2.3) have same characteristic equation z? —

kx —1=0. Let r and s be its roots and are given as

k+Vk*+4 k—Vk*+4
=g and S=——5 (2.4)

We can see easily r and s holds the following properties:
(a) rs=—-1,r+s=kandr—s=+vk?+4
(b) r2—1=+Fkrand s> — 1 = ks
(c)r?’+1=kr+2=(r—s)rand s’ +1=ks+2=—(r—s)s

Also we introduce two special 2 x 2 matrices V and L which are given by

k1 K +2 k
V= and L = (2.5)
10 k 2
3. n'» POWERS OF THE MATRICES
Theorem 1. Forn € Z™", we have the following result
2mVi g2 — (P +mk) Vg1 2mVipp1 — (0 + mk) Vi,
. m2k2 + 4m? — p? m2k2 + 4m?2 — p? 51)
2ka,n+1 — (p + mk) Vk,n 2ka,n — (p + mk:) Vk,n—l .
m2k2 + dm? — p? m2k2 + 4m?2 — p?

Proof. We use principle of mathematical induction on n. Certainly the result is true
for n = 1.
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Assume that the result is true for all values j less than or equal n and then

2mVi pyo — (p+ mk) Ving1  2mVi 1 — (p+ mk) Vi,

pr m2k? + 4m?2 — p? m2k? + 4m?2 — p? ko1
2ka,n+1 - (P =+ mk) Vk:,n Qka,n - (p + mk;) Vk,n—l 1 0
m2k2 + 4m?2 — p? m2k2 + 4m?2 — p?
ay ag k1
Vn+1 — (m2k2 4 4m2 _p2)
as aq4 1 0
kai + a2 a;
Vn+1 — (m2k2 4 4m2 _p2)
kas + a4 ag
Here
kai +az = 2m (Vi nyo + Vint1) — (0 + mk) (Vins1 + Vin)
=2mViny3 — (p +mk) Vo
and
kaz +ag = 2m (EVini1 + Vi) — (0 +mk) (Vi + V1)
=2mVinte — (p+mk) Vi g1
Hence
2mVi gz — (P +mk) Vingo  2mVingo — (0 + mk) Vit
yntl — m?k? + 4m? — p? m2k? + 4m? — p?
2mVi g2 — (0 + mE) Ving1  2mVipgr — (0 + mk) Viey
m2k2 + 4m?2 — p? m2k? + 4m?2 — p?
as required.
v
Corollary 2. For lim kntl r, we have
n—o0 k.n
r?—kr—1=0 (3.2)

Proof. To prove the required result, we should use the concept of limits. Since

2mVi g2 — (0 +mk) Viner  2mVi g1 — (0 + mk) Viey

li vn li (msz + 4m? — p2) Vk,n—l (kaZ + 4m? — p2) Vk’,n—l
1m = l1m

n—=oo Vi1 n=oo | 2mVipir — (0 +mk) Vi 2mViy, — (0 + mk) Vit

(m2k2 4+ 4m? — p?) Vit (m2k2 +4m? — p?) Vi
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Now
2mV; — k) V,
lim 27 kndt2 (p+mk) Vi1 _ r? (2mr — p — mk)
n—00 Vien—1
2mV; - k) Vi
I MVt — (p+mk) Vi = (2mr — p — mk)
n—o0 Vk,n,1
2mVin — (p+mk) Vi1
lim =2mr —p—mk
n—00 Viem—1
Therefore,
n [P @mr —p—mk) r(2mr —p—mk
lim = (m?k? +4m? —p?)” [ ( b )

n—00 Vi1 r(2mr—p—mk)  2mr —p—mk

r(2mr — p — mk) 2mr — p — mk

— (lec2 + 4m? —pg)_1

(kr+1) (2mr —p —mk) r(2mr —p—mk)
r (2mr — p — mk) 2mr —p — mk
If we equate determinant on both sides, we obtain

0=Fkr+1—r?
r2—kr—1=0

Hence the result.

Theorem 3. For n € N, the following result holds

{ (r—s)"*U" if nis odd
"=

(r—s)"vm if nis even

where U™ =

Lk,n-{—l Lk,n ]

Lkz,n Lk,n—l

Proof. To prove the result, we use induction on n. First, we consider odd n. Let
n =1, we have

K +2 k
k 2

Lio Lia
Lry Ly
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Let us suppose that the result is true for all odd values i less than or equal n and
then

as required.
Now we consider even n. Let n = 2, we have

E*+5k24+4 K3+ 4k

L? =
k3 + 4k k?+4
E2+1 k
A I
= (r—s)V?

Assume that the result is true for all even values j less than or equal n and then

L2 = (r—s)2 VL2
= (r—s)"F V"V
=(r— s)nT“ yrt?

as needed.

Lemma 4. For n >0, we have
Vien
Vk0

Vk,n+1
Vk,n

%6 =

(3.4)

Proof. Here we shall use induction on n. Indeed the result is true for n = 0. Suppose
the result is true for all values ¢ less than or equal n and then

V?’L+1 Vk’l :an Vk’l
Vi,0 Vio

E 1 Vk,n+1

|1 oo] | Vi

ka,n+1 + Vk,n

Vk,n+1
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Vk,n+2

Vk,n+1

as required.

4. BINET FORMULAE

In this section we present Binet formulae for k-Lucas sequence (Ly, ,,) and for Fibonacci-
Like sequence (V). The most worth noticing point is here that we obtain Binet
formula for k-Lucas in a different way that did the authors in [2, 10].

Theorem 5. Forn € Zg, the n'" terms for (Lin) and (Vi) are respectively given

by
Lyyp=r"+s" (4.1)
P gn
Vi =p p— +m(r'" +s") (4.2)

where r and s are determined from equation (2.4).

Proof. To prove the needed result, we diagonalize the matrix L. Sine L is a square
matrix, by the Cayley Hamilton theorem the characteristic equation of L is given
by
det (L — xI3) =0
K2+2—2 kK
=0

k 2—x
2 — (K +4)z+ (K +4) =0
22— (r—s)z+(r—s) =0 (4.3)

This is the characteristic equation of L. Let v and v be the eigen values of equation
(4.3) and are given by

k‘(r—s);—(r—s)Q
=(r—s) [k+(;—s)]

=r(r—s)

u =
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and
Y —k(r—s)+(r—s)?
2
-
=—s(r—s)

Now the eigen vector corresponding to eigen value u is given by the following equa-
tion:

(L—uly) A
where A is the column vector of order 2 x 1. Then
+2-u k| [A

k 2 —ul| [Ag
(k* +4—u) Ay + kA
kA1 4 (2 — u) Az

=0

=0

Consider the system
(k* +4—u) Ay + kAy =0
kA1 +(2—u)A3=0 (4.4)
We assume that Ay =1 in equation (4.4), we achieve

S (w-2)1 (-1l
Al— 2 = 2 =lr

r
Thus the eigen vectors corresponding to u are of kind | For particular [ = 1, the

1

. Now

r
eigen vector assigning to u is L] . Similarly the eigen vector assigning to v is

TS 1 —s
Let P be matrix of eigen vectors, P = . and P~ = (r —s)™* )

-1 —r
we consider the diagonal matrix D, in which eigen values of L are on the main diag-
r(r—s) 0

onal, D = [ . Then by the principle of matrix diagonalization

0 —s(r—s)
[14, 15], we have

L=PDpP !
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" =pp"p~!

[pntl (=) gnt! 1 —s
= (r—s)"!
" (—1)"s" -1 r
= (r—s)" ! [t — (=1)" s g (1) s T
" - (=)™ s™ —sr™ 4+ (=1)"rs"
[pntl (1) sntl " —(=1)"s"
n—1
=(r—s
( ) i P (_1)71 " Tnfl _ (_1)n Snl]

If n is odd then by equation (3.3), we get

. Tn—l—l 4 Sn—i—l PR + "
U pu—

4 " Tn—l +Sn—1
By equating corresponding terms of the matrices, we have
Ly,=r"+5s"

This is the required Binet’s formula for k-Lucas sequence.
if n is even then again by equation (3.3), we achieve

o 8n+1 —gn
n n—1 _ Snfl (45)

Vi1 p+mk

Vk,n

2m

p+ mk

2m

where by and by are the corresponding terms of the matrix. Thus

(p + mk) by + 2mby
(p+mk) (r™ — s™) + 2m (r"~1 — s"71)
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Ll (p + mk) by + 2mby
=(r=s) p(r" — s") + mkr™ 4 2mr" ! — mks™ — 2ms"_1]
. (p +mk) by + 2mby
=(r=s) P (r" = s") + mr" 1t (kr +2) —ms" ! (ks +2)
o [ (p + mk) by + 2mbs
=(r=s) _p(r”—s”)+m(r—s)r”+m(r—s)s"]

Equating corresponding terms on both sides, we get

n STL

Vi = T (" ")

r—s
This is the Binet’s formula for Fibonacci-Like sequence.
Now we present a result which establishes a relation between Fibonacci-Like

sequence (V) and k-Lucas sequence.

Corollary 6. For n € Z*, the following result holds
2mVi pto — (p+mk) Vi n1 +2mVi, — (p + mk) Vi —1 (4.6)
= (m2k2 +4m? — p2) Ly,

Proof. If we equate corresponding terms of matrices in the equation (4.5), we get

2mVi gz — (D +mk) Vi "t — st

p2m?2 + 4m?2 — p? r—s
and
2mVin — (p+mk) Vi1 rn—l — gn—l

p2m? + 4m? — p? r—s
Therefore,

2mvk,n+2 - (p + mk) Vk’,nJrl + 2ka,n - (p + mk) Vk,nfl
2

2m2 + 4m? — p
Tl (r? 4 1) — 5" (s2 4+ 1)

T — S
" (r—s)+s"(r—2s)

r—s

Thus

2mVi nto — (0 + mk) Vi1 +2mViy, — (0 + mk) Vi1
= (m2k2 +4m? — p2) Ly,

Hence the result.
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5. CASSINI'S IDENTITY FOR (Vi )

In this section we obtain Cassinin’s identity for Fibonacci-Like sequence by using
matrix V.

Theorem 7. Forn > 1, we have

Vi = Vims1Vino1 = (=1)" (m*k* 4 4m® — p®) (5.1)
Proof.
2ka,n+2 - (p + mk) Vk,n+1 2mvk,n+1 - (p + mk) Vk,n
2k2 4+ 4m?2 — p? 252 1+ 4m2 — p2
det (V") = MERT A AmT P mEkS o+ dm® — p
vakz,n-f—l - (P + mk) Vk,n 2ka,n - (p + mk) Vk,n—l
m2k? + 4m?2 — p? m2k? + 4m?2 — p2?

det (V") — (m2k2 + 4m2 — p2)_2 {vak’n+2 [vakm - (p + 'mk) Vk,nfl]
— (p+ mk) Vigni1 [2mVi — (p + mk) V1] — [2mVinsa
- (p + mk) Vk,n] 2}

. . 2
By using expansion of Vj, 42 and Viint1 we have

det (V™) = (m2k® + 4m? — p?) > [4m®kVi i1 Vien — 2mk (p -+ mk) Vi
Vin—1 + 4m2Vk%n —2m(p+mk) Vi Vin—1+ (p+ mk:)2 Vi1
Vien—1 = 2m (p + mk) Ve n1 Vien — 4m>k*Vi3,, — 4m*Vi2,
— 8m°kVi Vi1 — (p+mk)* V2, + 4m (p + mk) Vi i1 Vi)
det (V™) = (m2k:2 +4m? — p2)72 [4m2ka,n+1Vk,n —2m (p+ mk) Vi n Vi n—1
+2m (p + mk) Vi1 Vien — 4m>ViZ, 1 — 8m°kVi o Vi1
— 2mk (p + mk) Vigns1 Vo1 + 4m* V2, + (0 + mk)* Vi1 Vien—1
—4m®Vi, — (p+mk)* V2, ]
= (m2/<:2 +4m? — p2) -2 [(6m2k + 2mp) Vi1 Vien — (2mp + 2m2k)
Vi Vi1 — 4m*Vid, 1 = 8m*kVin Vien—1 — 2mk (p + mk)
Vint1Vin—1 +4m* V2, + (p+ mk)* Vi1 Vign—1 — 4m>Vi2,,
— (p+mk)* V2, ]
= (m2k2 +4m? — p2) -2 (GmZVk%n + 2mkak%n — dm*k Vi1 Vi1
— Mk Vg1 Vien—1 + 4m° Vi, + 0 Viena1 Vien—1 — 4m°k°V,
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- p2Vk2’n — mszVlzn — 2mkak27n)
= (m?K? 4+ 4m® — p?) 72 (mPVi2, + 4m>V 2k, n — p? V2, — m?k?
Vient1Vien—1 — 4m* Vi ni1 Vin—1 + 0* Vi1 Vien—1)
= (m2/’<:2 +4m? — pQ)_Q (m2k2 +4m? — p2) (V,fn — Vi1 Vin-1)
= (m?k* 4+ 4m* — p2)_1 (Vidn = Vins1Vin—1)
Since det (V™) = (—1)", we have
Vk2,n — Vient1Vin—1 = (=1)" (m*k* + 4m? — p?)

Hence the result.
From the proof of this theorem, we conclude that

[2mvl~c,n+2 - (p + mk) Vk,n+1] [2mvk’,n - (p + mk) Vk’,n—l] (52)
— [2ka7n+1 — (p+ mk) Vk7n]2 = (—1)2 (m2k2 +4m? — p2)

6. CHARACTERISTIC EQUATION OF V"™

In theorem (5) we easily saw the characteristic equation of V. But in this section
we obtain the characteristic equation for V™.

Theorem 8. For n € Zy, the characteristic equation of V™ is given by
22— Lynpz+ (=1)" =0 (6.1)
Proof. Since V™ is a square matrix then by Cayley Hamilton theorem, we have
det (V" —xly) =0
Here

det (V" — xly)
2mvk,n+2 - (p + mk) Vk,n—i—l . Qkaz,n—i-l - (P + mk) Vk:,n

_ m2k2 + 4m?2 — p? m2k2 + 4m?2 — p?
2ka,n+l - (P + mk) Vk,n Qka,n - (p + mk) Vk,n—l .
m2k? + 4m?2 — p? m2k? + 4m?2 — p?

= (m2k2 +4m? — p2)72 {[Qka’nJrg — (p+ mk) Vkﬂﬂ_l] [QmV;m — (p+ mk)
Vk,n_l] —x (m2k:2 +4m? — p2) [2ka,n+2 — (p+ mk) Vk,n_i_l] -
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(m2k2 + 4m? _pz) [2mVip — (p + mk) V] + 22 (m2k2 Lam? p2)2
—-Pﬂﬂ@m+1—(P4—WMﬂV%nf}
_ (m2k2 + 4m?2 _p2)—2 {a:2 (m2k2 + 4m?2 —p2)2 o (m2k2 + 4m?2 _pz)
[2mVimgz — (1+ mk) Vit + 2mVin — (p + mk) Vin—1]
+ [2mVi gz — (p+ mk) Vi ] [2mVisn — (p + mk) Vi i |
—-Pﬂﬂ%m+1—(p4—WMﬁVAJ2}

If we consider corollary (6) and equation (5.2), we get

det (V" — zlp) = (m*k?* + 4m? —pg)_2 [z (m?k* + 4m® —p2)2
— Lgpz (m2k:2 + 4m? —p2)2 +(=1)" (m2k2 + 4m? —p2)2]
=2 — L2+ (—1)"

Hence the characteristic equation of V' is
2% — Ly pr+ (—=1)" =0

Hence the result.
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