FEKETE-SZEGÖ INEQUALITIES FOR Q - STARLIKE AND $Q-$ CONVEX FUNCTIONS

A. Çetinkaya, Y. Kahramaner, Y. Polatog̃lu

Abstract. Let $\mathcal{S}_{q}^{*}(\phi)$ and $\mathcal{C}_{q}(\phi)$ denote the classes of normalized functions $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$, which are defined in the open unit disk \mathbb{D} and satisfying $z D_{q} f(z) / f(z) \prec \phi(z)$ and $D_{q}\left(z D_{q} f(z)\right) / D_{q} f(z) \prec \phi(z)$, where ϕ is the function with real part, respectively. In this paper, we investigate new results of FeketeSzegö inequalities for the classes $\mathcal{S}_{q}^{*}(\phi)$ and $\mathcal{C}_{q}(\phi)$.

2010 Mathematics Subject Classification: 30C45.
Keywords: $q-$ starlike function, $q-$ convex function, Fekete-Szegö inequality.

1. Introduction

Let \mathcal{A} be the class of functions f, defined by $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$, that are analytic in the open unit disc $\mathbb{D}=\{z:|z|<1\}$ and Ω be the family of functions w, which are analytic in \mathbb{D} and satisfying the conditions $w(0)=0,|w(z)|<1$ for all $z \in \mathbb{D}$. If f_{1} and f_{2} are analytic functions in \mathbb{D}, then we say that f_{1} is subordinate to f_{2}, written as $f_{1} \prec f_{2}$ if there exists a Schwarz function $w \in \Omega$ such that $f_{1}(z)=f_{2}(w(z)), z \in \mathbb{D}$. We also note that if f_{2} univalent in \mathbb{D}, then $f_{1} \prec f_{2}$ if and only if $f_{1}(0)=f_{2}(0), f_{1}(\mathbb{D}) \subset f_{2}(\mathbb{D})$ implies $f_{1}\left(\mathbb{D}_{r}\right) \subset f_{2}\left(\mathbb{D}_{r}\right)$, where $\mathbb{D}_{r}=\{z:|z|<r, 0<r<1\}$ (see [8]).

Denote by \mathcal{P} the family of functions p of the form $p(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\cdots$, analytic in \mathbb{D} such that p is in \mathcal{P} if and only if

$$
\begin{equation*}
p(z) \prec \frac{1+z}{1-z} \Leftrightarrow p(z)=\frac{1+w(z)}{1-w(z)} \tag{1}
\end{equation*}
$$

for some function $w \in \Omega$ and for all $z \in \mathbb{D}$. It is well known that a function f in \mathcal{A} is called starlike $\left(f \in \mathcal{S}^{*}\right)$ and convex $(f \in \mathcal{C})$ if there exists a function p in \mathcal{P} such that p may be expressed, respectively, by the following relations:

$$
p(z)=z \frac{f^{\prime}(z)}{f(z)} \quad \text { and } \quad p(z)=1+z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}
$$

A. Çetinkaya, Y. Kahramaner, Y. Polatog̃lu - Fekete-Szegö inequalities ...
for all $z \in \mathbb{D}$. For definitions and properties of these classes, one may refer to [1] and [8].

Ma and Minda [15] unified various subclasses of starlike and convex functions for which either one of the quantities $z f^{\prime}(z) / f(z)$ or $1+z f^{\prime \prime}(z) / f^{\prime}(z)$ is subordinate to a more general superordinate function. The classes $\mathcal{S}^{*}(\phi)$ and $\mathcal{C}(\phi)$ of Ma-Minda starlike and Ma-Minda convex functions, are respectively characterized by $z f^{\prime}(z) / f(z) \prec \phi(z)$ and $1+z f^{\prime \prime}(z) / f^{\prime}(z) \prec \phi(z)$, where function ϕ with positive real part in $\mathbb{D}, \phi(0)=1, \phi^{\prime}(0)>0$. The coefficient $\left|a_{3}-a_{2}^{2}\right|$ on the normalized analytic functions f in \mathbb{D} plays an important role in functions theory. The problem of maximizing the absolute value of this coefficient is called Fekete-Szegö [4] problem. Many authors have considered the Fekete-Szegö problem for various subclasses of \mathcal{A}, the upper bound for $\left|a_{3}-a_{2}^{2}\right|$ was investigated by many different authors (see $[6,14])$.

We denote by \mathcal{P} a class of analytic function in \mathbb{D} with $p(0)=1$ and $\operatorname{Rep}(z)>0$. Here we assume that $\phi \in \mathcal{P}$ satisfying $\phi(0)=1, \phi^{\prime}(0)>0$ and $\phi(\mathbb{D})$ is symmetric with respect to the real axis. Also, ϕ has a series expansion of the form

$$
\begin{equation*}
\phi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\ldots,\left(B_{1}>0\right) . \tag{2}
\end{equation*}
$$

In 1909 and 1910 Jackson [10, 11, 12] initiated a study of q - difference operator D_{q} defined by

$$
\begin{equation*}
D_{q} f(z)=\frac{f(z)-f(q z)}{(1-q) z} \quad \text { for } \quad B \backslash\{0\}, \tag{3}
\end{equation*}
$$

where B is a subset of complex plane \mathbb{C}, called $q-$ geometric set if $q z \in B$, whenever $z \in B$. Note that if a subset B of \mathbb{C} is q - geometric, then it contains all geometric sequences $\left\{z q^{n}\right\}_{0}^{\infty}$, $z q \in B$. Obviously, $D_{q} f(z) \rightarrow f^{\prime}(z)$ as $q \rightarrow 1^{-}$. The $q-$ difference operator (3) is also called Jackson q - difference operator. Note that such an operator plays an important role in the theory of hypergeometric series and quantum physics (see for instance $[3,5,7,13]$).

Also, note that $D_{q} f(0) \rightarrow f^{\prime}(0)$ as $q \rightarrow 1^{-}$and $D_{q}^{2} f(z)=D_{q}\left(D_{q} f(z)\right)$. In fact, $q-$ calculus is ordinary classical calculus without the notion of limits. Recent interest in q - calculus is because of its applications in various branches of mathematics and physics. For definitions and properties of q - difference operator or $q-$ calculus, one may refer to $[3,5,7,13]$. In particular, we recall the following properties:

Since

$$
D_{q} z^{n}=\frac{1-q^{n}}{1-q} z^{n-1}=[n]_{q} z^{n-1}
$$

therefore we have

$$
\begin{equation*}
D_{q} f(z)=1+\sum_{n=2}^{\infty} \frac{1-q^{n}}{1-q} a_{n} z^{n-1} \tag{4}
\end{equation*}
$$

A. Çetinkaya, Y. Kahramaner, Y. Polatog̃lu - Fekete-Szegö inequalities ...
where $[n]_{q}=\frac{1-q^{n}}{1-q}$. Clearly, as $q \rightarrow 1^{-},[n]_{q} \rightarrow n$.
The class of $q-$ starlike functions was first introduced by Ismail et. al. [9] in 1990 as below:

Definition 1. A function $f \in \mathcal{A}$ is said to be in the \mathcal{S}_{q}^{*} such that

$$
\mathcal{S}_{q}^{*}=\left\{f \in \mathcal{A}: \operatorname{Re}\left(\frac{z D_{q} f(z)}{f(z)}\right)>0, q \in(0,1), z \in \mathbb{D}\right\} .
$$

When $q \rightarrow 1^{-}$in the limiting sense, then the class \mathcal{S}_{q}^{*} reduces to the traditional class \mathcal{S}^{*}.

Also, the class of q - convex functions was introduced by Ahuja et. al. [2] as follows:

Definition 2. A function $f \in \mathcal{A}$ is said to be in the \mathcal{C}_{q} such that

$$
\mathcal{C}_{q}=\left\{f \in \mathcal{A}: \operatorname{Re}\left(\frac{D_{q}\left(z D_{q} f(z)\right.}{D_{q} f(z)}\right)>0, q \in(0,1), z \in \mathbb{D}\right\} .
$$

When $q \rightarrow 1^{-}$in the limiting sense, then the class \mathcal{C}_{q} reduces to the traditional class \mathcal{C}.

Using above definitions and principle of subordination, we now introduce the following classes:

$$
\begin{gather*}
\mathcal{S}_{q}^{*}(\phi)=\left\{f \in \mathcal{A}: z \frac{D_{q} f(z)}{f(z)} \prec \phi(z), \phi \in \mathcal{P}\right\}, \tag{5}\\
\mathcal{C}_{q}(\phi)=\left\{f \in \mathcal{A}: \frac{D_{q}\left(z D_{q} f(z)\right)}{D_{q} f(z)} \prec \phi(z), \phi \in \mathcal{P}\right\} . \tag{6}
\end{gather*}
$$

The aim of this paper is to give Fekete-Szegö inequalities for the classes $\mathcal{S}_{q}^{*}(\phi)$ and $\mathcal{C}_{q}(\phi)$.

2. Main Results

We first investigate Fekete-Szegö inequalities for the class $\mathcal{S}_{q}^{*}(\phi)$. For our main theorems, we need the following result:
Lemma 1. [16] Let $p \in \mathcal{P}$ with $p(z)=1+c_{1} z+c_{2} z^{2}+\ldots$, then $\left|c_{n}\right| \leq 2$ for $n \geq 1$. If $\left|c_{1}\right|=2$, then $p(z) \equiv p_{1}(z)=\frac{1+\gamma_{1} z}{1-\gamma_{2} z}$ with $\gamma_{1}=\frac{c_{1}}{2}$. Conversely, if $p(z) \equiv p_{1}(z)$ for some $\left|\gamma_{1}\right|=1$, then $c_{1}=2 \gamma_{1}$ and $\left|c_{1}\right|=2$. Furthermore, we have

$$
\left|c_{2}-\frac{c_{1}^{2}}{2}\right| \leq 2-\frac{\left|c_{1}\right|^{2}}{2} .
$$

A. Çetinkaya, Y. Kahramaner, Y. Polatog̃lu - Fekete-Szegö inequalities ...

If $\left|c_{1}\right|<2$ and $\left|c_{2}-\frac{c_{1}^{2}}{2}\right| \leq 2-\frac{\left|c_{1}\right|^{2}}{2}$, then $p(z) \equiv p_{2}(z)$ where

$$
p_{2}(z)=\frac{1+z \frac{\gamma_{2} z+\gamma_{1}}{1+\gamma_{1} \gamma_{2} z}}{1-z \frac{\gamma_{2}+\gamma_{1}}{1+\gamma_{1} \gamma_{2} z}}
$$

and $\gamma_{1}=\frac{c_{1}}{2}, \gamma_{2}=\frac{2 c_{2}-c_{1}^{2}}{4-\left|c_{1}\right|^{2}}$. Conversely, if $p(z) \equiv p_{2}(z)$ for some $\left|\gamma_{1}\right|=1$ and $\left|\gamma_{2}\right|=1$, then $\gamma_{1}=\frac{c_{1}}{2}, \gamma_{2}=\frac{2 c_{2}-c_{1}^{2}}{4-\left|c_{1}\right|^{2}}$ and $\left|c_{2}-\frac{c_{1}^{2}}{2}\right| \leq 2-\frac{\left|c_{1}\right|^{2}}{2}$.

Theorem 2. Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+\ldots$, where the coefficients B_{n} are real with $B_{1} \neq 0$. If f belongs to the class $\mathcal{S}_{q}^{*}(\phi)$, then

$$
\begin{gather*}
\left|a_{2}\right| \leq \frac{\left|B_{1}\right|}{[2]_{q}-1}, \tag{7}\\
\left|a_{3}\right| \leq \frac{\left|B_{1}\right|}{[3]_{q}-1} \max \left\{1,\left|\frac{B_{1}}{[2]_{q}-1}+\frac{B_{2}}{B_{1}}\right|\right\}, \tag{8}\\
\left|a_{3}-\frac{\left([2]_{q}-1\right)^{2}\left(\frac{B_{1}}{[2]_{q}-1}+\frac{B_{2}}{B_{1}}-1\right)}{B_{1}\left([3]_{q}-1\right)} a_{2}^{2}\right| \leq \frac{\left|B_{1}\right|}{[3]_{q}-1} . \tag{9}
\end{gather*}
$$

These results are sharp.
Proof. If $f \in \mathcal{S}_{q}^{*}(\phi)$, then there is Schwarz function w, analytic in \mathbb{D} with $w(0)=0$ and $|w(z)|<1$ such that

$$
\begin{equation*}
\frac{z D_{q} f(z)}{f(z)}=\phi(w(z)) \tag{10}
\end{equation*}
$$

Define the function p by

$$
\begin{equation*}
p(z)=\frac{1+w(z)}{1-w(z)}=1+c_{1} z+c_{2} z^{2}+\ldots \tag{11}
\end{equation*}
$$

We can note that $p(0)=1$ and p is a function with positive real part. Therefore

$$
\begin{align*}
\phi(w(z)) & =\phi\left(\frac{p(z)-1}{p(z)+1}\right) \\
& =\phi\left(\frac{1}{2}\left[c_{1} z+\left(c_{2}-\frac{c_{1}^{2}}{2}\right) z^{2}+\left(c_{3}-c_{1} c_{2}+\frac{c_{1}^{3}}{4}\right) z^{3}+\ldots\right]\right) \\
& =1+\frac{B_{1} c_{1}}{2} z+\left[\frac{B_{1}}{2}\left(c_{2}-\frac{c_{1}^{2}}{2}\right)+\frac{B_{2} c_{1}^{2}}{4}\right] z^{2}+\ldots \tag{12}
\end{align*}
$$

A. Çetinkaya, Y. Kahramaner, Y. Polatog̃lu - Fekete-Szegö inequalities ...

Also, computations shows that

$$
\begin{equation*}
\frac{z D_{q} f(z)}{f(z)}=1+\left([2]_{q}-1\right) a_{2} z+\left(\left([3]_{q}-1\right) a_{3}-\left([2]_{q}-1\right) a_{2}^{2}\right) z^{2}+\ldots . \tag{13}
\end{equation*}
$$

From equations in (12) and (13), we obtain

$$
\begin{equation*}
\left([2]_{q}-1\right) a_{2}=\frac{B_{1} c_{1}}{2} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left([3]_{q}-1\right) a_{3}-\left([2]_{q}-1\right) a_{2}^{2}=\frac{B_{1} c_{2}}{2}-\frac{B_{1} c_{1}^{2}}{4}+\frac{B_{2} c_{1}^{2}}{4} . \tag{15}
\end{equation*}
$$

Taking into account Lemma 1, we obtain

$$
\left|a_{2}\right|=\left|\frac{B_{1} c_{1}}{2\left([2]_{q}-1\right)}\right| \leq \frac{\left|B_{1}\right|}{[2]_{q}-1}
$$

and

$$
\begin{aligned}
\left|a_{3}\right| & =\left|\frac{B_{1}}{2\left([3]_{q}-1\right)}\left[c_{2}-\frac{c_{1}^{2}}{2}+\frac{c_{1}^{2}}{2}\left(\frac{B_{1}}{[2]_{q}-1}+\frac{B_{2}}{B_{1}}\right)\right]\right| \\
& \left.\leq \frac{\left|B_{1}\right|}{2\left([3]_{q}-1\right)}\left[2-\frac{\left|c_{1}\right|^{2}}{2}+\frac{\left|c_{1}\right|^{2}}{2}\left|\frac{B_{1}}{[2]_{q}-1}+\frac{B_{2}}{B_{1}}\right|\right]\right] \\
& \leq \frac{\left|B_{1}\right|}{2\left([3]_{q}-1\right)}\left[2+\frac{\left|c_{1}\right|^{2}}{2}\left(\left|\frac{B_{1}}{[2]_{q}-1}+\frac{B_{2}}{B_{1}}\right|-1\right)\right] \\
& \leq \frac{\left|B_{1}\right|}{[3]_{q}-1} \max \left\{1,\left|\frac{B_{1}}{[2]_{q}-1}+\frac{B_{2}}{B_{1}}\right|\right\} .
\end{aligned}
$$

Furthermore, using (14) and (15) we get

$$
\left|a_{3}-\frac{\left([2]_{q}-1\right)^{2}\left(\frac{B_{1}}{[2]_{q}-1}+\frac{B_{2}}{B_{1}}-1\right)}{B_{1}\left([3]_{q}-1\right)} a_{2}^{2}\right|=\frac{\left|B_{1} c_{2}\right|}{2\left([3]_{q}-1\right)} \leq \frac{\left|B_{1}\right|}{[3]_{q}-1} .
$$

An examination of the proof shows that equality in (7) is attained, when $c_{1}=2$. Equivalently, we have $p(z)=p_{1}(z)=(1+z) /(1-z)$. Therefore, the extremal function in $\mathcal{S}_{q}^{*}(\phi)$ is given by

$$
\begin{equation*}
z \frac{D_{q} f(z)}{f(z)}=\phi\left(\frac{p_{1}(z)-1}{p_{1}(z)+1}\right) . \tag{16}
\end{equation*}
$$

In equality (8), for the first case, equality holds if $c_{1}=0, c_{2}=2$. Equivalently, we have $p(z)=p_{2}(z)=\left(1+z^{2}\right) /\left(1-z^{2}\right)$. Therefore, the extremal function in $\mathcal{S}_{q}^{*}(\phi)$ is given by

$$
\begin{equation*}
z \frac{D_{q} f(z)}{f(z)}=\phi\left(\frac{p_{2}(z)-1}{p_{2}(z)+1}\right) . \tag{17}
\end{equation*}
$$

A. Çetinkaya, Y. Kahramaner, Y. Polatog̃lu - Fekete-Szegö inequalities ...

In (8), for the second case, the equality holds if $c_{1}=2, c_{2}=2$. Therefore, the extremal function in $\mathcal{S}_{q}^{*}(\phi)$ is given by (16). Obtained extremal function for (7) is also valid for (9).

In fact, Theorem 2 gives a special case of Fekete-Szegö problem for real

$$
\mu=\frac{\left([2]_{q}-1\right)^{2}\left(\frac{B_{1}}{[2]_{q}-1}+\frac{B_{2}}{B_{1}}-1\right)}{B_{1}\left([3]_{q}-1\right)},
$$

which obtain the naturally and simple estimate. Thus the proof is completed.
We now consider $\left|a_{3}-\mu a_{2}^{2}\right|$ for complex μ.
Theorem 3. Let μ be a nonzero complex number and let $f \in \mathcal{S}_{q}^{*}(\phi)$, then

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{\left|B_{1}\right|}{[3]_{q}-1} \max \left\{1,\left|\frac{B_{2}}{B_{1}}+\frac{B_{1}}{[2]_{q}-1}\left(1-\frac{\left([3]_{q}-1\right)}{\left([2]_{q}-1\right)} \mu\right)\right|\right\} . \tag{18}
\end{equation*}
$$

This result is sharp.
Proof. Applying (14) and (15), we have

$$
\begin{aligned}
a_{3}-\mu a_{2}^{2} & =\frac{B_{1}}{2\left([3]_{q}-1\right)}\left[c_{2}-\frac{c_{1}^{2}}{2}+\frac{c_{1}^{2}}{2}\left(\frac{B_{2}}{B_{1}}+\frac{B_{1}}{[2]_{q}-1}\right)\right]-\mu \frac{B_{1}^{2} c_{1}^{2}}{4\left([2]_{q}-1\right)^{2}} \\
& =\frac{B_{1}}{2\left([3]_{q}-1\right)}\left[c_{2}-\frac{c_{1}^{2}}{2}+\frac{c_{1}^{2}}{2}\left(\frac{B_{2}}{B_{1}}+\frac{B_{1}}{[2]_{q}-1}\left(1-\frac{\left([3]_{q}-1\right)}{\left([2]_{q}-1\right)} \mu\right)\right)\right] .
\end{aligned}
$$

In view of Lemma 1 ,

$$
\begin{aligned}
\left|a_{3}-\mu a_{2}^{2}\right| & \leq \frac{\left|B_{1}\right|}{2\left([3]_{q}-1\right)}\left[2-\frac{\left|c_{1}\right|^{2}}{2}+\frac{\left|c_{1}\right|^{2}}{2}\left(\left|\frac{B_{2}}{B_{1}}+\frac{B_{1}}{[2]_{q}-1}\left(1-\frac{[3]_{q}-1}{[2]_{q}-1} \mu\right)\right|\right)\right] \\
& =\frac{\left|B_{1}\right|}{2\left([3]_{q}-1\right)}\left[2+\frac{\left|c_{1}\right|^{2}}{2}\left(\left|\frac{B_{2}}{B_{1}}+\frac{B_{1}}{[2]_{q}-1}\left(1-\frac{[3]_{q}-1}{\left.[2]_{q}-\right)} \mu\right)\right|-1\right)\right] \\
& \leq \frac{\left|B_{1}\right|}{[3]_{q}-1} \max \left\{1,\left|\frac{B_{2}}{B_{1}}+\frac{B_{1}}{[2]_{q}-1}\left(1-\frac{[3]_{q}-1}{[2]_{q}-1} \mu\right)\right|\right\} .
\end{aligned}
$$

Equality is attained for the first case on choosing $c_{1}=0, c_{2}=2$ in (17) and for the second case on choosing $c_{1}=2, c_{2}=2$ in (16). Thus the proof is completed.

Corollary 4. Taking $q \rightarrow 1^{-}$in Theorem 3, we obtain

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{\left|B_{1}\right|}{2} \max \left\{1,\left|\frac{B_{2}}{B_{1}}+B_{1}(1-2 \mu)\right|\right\} .
$$

This result is sharp.
A. Çetinkaya, Y. Kahramaner, Y. Polatog̃lu - Fekete-Szegö inequalities ...

We now investigate Fekete-Szegö inequalities for the class $\mathcal{C}_{q}(\phi)$:
Theorem 5. Let $\phi(z)=1+B_{1} z+B_{2} z^{2}+\ldots$, where the coefficients B_{n} are real with $B_{1} \neq 0$. If f belongs to the class $\mathcal{C}_{q}(\phi)$, then

$$
\begin{gather*}
\left|a_{2}\right| \leq \frac{\left|B_{1}\right|}{[2]_{q}\left([2]_{q}-1\right)}, \tag{19}\\
\left|a_{3}\right| \leq \frac{\left|B_{1}\right|}{[3]_{q}\left([3]_{q}-1\right)} \max \left\{1,\left|\frac{B_{1}}{[2]_{q}-1}+\frac{B_{2}}{B_{1}}\right|\right\}, \tag{20}\\
\left|a_{3}-\frac{[2]_{q}^{2}\left([2]_{q}-1\right)^{2}\left(\frac{B_{1}}{[2]_{q}-1}+\frac{B_{2}}{B_{1}}-1\right)}{B_{1}[3]_{q}\left([3]_{q}-1\right)} a_{2}^{2}\right| \leq \frac{\left|B_{1}\right|}{[3]_{q}\left([3]_{q}-1\right)} . \tag{21}
\end{gather*}
$$

These results are sharp.
Proof. If $f \in \mathcal{C}_{q}(\phi)$, then there is Schwarz function w, analytic in \mathbb{D} with $w(0)=0$ and $|w(z)|<1$ such that

$$
\begin{equation*}
\frac{D_{q}\left(z D_{q} f(z)\right)}{D_{q} f(z)}=\phi(w(z)) . \tag{22}
\end{equation*}
$$

Computations shows that

$$
\begin{equation*}
\frac{D_{q}\left(z D_{q} f(z)\right)}{D_{q} f(z)}=1+[2]_{q}\left([2]_{q}-1\right) a_{2} z+\left([3]_{q}\left([3]_{q}-1\right) a_{3}-[2]_{q}^{2}\left([2]_{q}-1\right) a_{2}^{2}\right) z^{2}+\ldots \tag{23}
\end{equation*}
$$

From equations in (12) and (23), we obtain

$$
\begin{equation*}
[2]_{q}\left([2]_{q}-1\right) a_{2}=\frac{B_{1} c_{1}}{2} \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
[3]_{q}\left([3]_{q}-1\right) a_{3}-[2]_{q}^{2}\left([2]_{q}-1\right) a_{2}^{2}=\frac{B_{1} c_{2}}{2}-\frac{B_{1} c_{1}^{2}}{4}+\frac{B_{2} c_{1}^{2}}{4} \tag{25}
\end{equation*}
$$

Taking into account Lemma 1, we obtain

$$
\left|a_{2}\right|=\left|\frac{B_{1} c_{1}}{2[2]_{q}\left([2]_{q}-1\right)}\right| \leq \frac{\left|B_{1}\right|}{[2]_{q}\left([2]_{q}-1\right)}
$$

and

$$
\begin{aligned}
\left|a_{3}\right| & =\left|\frac{B_{1}}{2[3]_{q}\left([3]_{q}-1\right)}\left[c_{2}-\frac{c_{1}^{2}}{2}+\frac{c_{1}^{2}}{2}\left(\frac{B_{1}}{[2]_{q}-1}+\frac{B_{2}}{B_{1}}\right)\right]\right| \\
& \leq \frac{\left|B_{1}\right|}{2[3]_{q}\left([3]_{q}-1\right)}\left[\left|c_{2}-\frac{c_{1}^{2}}{2}\right|+\frac{\left|c_{1}\right|^{2}}{2}\left|\frac{B_{1}}{[2]_{q}-1}+\frac{B_{2}}{B_{1}}\right|\right] \\
& \leq \frac{\left|B_{1}\right|}{2[3]_{q}\left([3]_{q}-1\right)}\left[2-\frac{\left|c_{1}\right|^{2}}{2}+\frac{\left|c_{1}\right|^{2}}{2}\left|\frac{B_{1}}{[2]_{q}-1}+\frac{B_{2}}{B_{1}}\right|\right] \\
& =\frac{\left|B_{1}\right|}{2[3]_{q}\left([3]_{q}-1\right)}\left[2+\frac{\left|c_{1}\right|^{2}}{2}\left(\left|\frac{B_{1}}{[2]_{q}-1}+\frac{B_{2}}{B_{1}}\right|-1\right)\right] \\
& \leq \frac{\left|B_{1}\right|}{[3]_{q}\left([3]_{q}-1\right)} \max \left\{1,\left|\frac{B_{1}}{[2]_{q}-1}+\frac{B_{2}}{B_{1}}\right|\right\} .
\end{aligned}
$$

Also, in view of (24) and (25), we obtain

$$
\left|a_{3}-\frac{[2]_{q}^{2}\left([2]_{q}-1\right)^{2}\left(\frac{B_{1}}{(2]_{q}-1}+\frac{B_{2}}{B_{1}}-1\right)}{B_{1}[3]_{q}\left([3]_{q}-1\right)} a_{2}^{2}\right|=\frac{\left|B_{1} c_{2}\right|}{2[3]_{q}\left([3]_{q}-1\right)} \leq \frac{\left|B_{1}\right|}{[3]_{q}\left([3]_{q}-1\right)} .
$$

Equality in (19) holds if

$$
\begin{equation*}
\frac{D_{q}\left(z D_{q} f(z)\right)}{D_{q} f(z)}=\phi\left(\frac{p_{1}(z)-1}{p_{1}(z)+1}\right) \tag{26}
\end{equation*}
$$

and in (20) holds if

$$
\begin{equation*}
\frac{D_{q}\left(z D_{q} f(z)\right)}{D_{q} f(z)}=\phi\left(\frac{p_{2}(z)-1}{p_{2}(z)+1}\right) \tag{27}
\end{equation*}
$$

where p_{1}, p_{2} are given in Lemma 1 .
In Theorem 5, a special case of Fekete-Szegö problem for real

$$
\mu=\frac{[2]_{q}^{2}\left([2]_{q}-1\right)^{2}\left(\frac{B_{1}}{[2]_{q}-1}+\frac{B_{2}}{B_{1}}-1\right)}{B_{1}[3]_{q}\left([3]_{q}-1\right)}
$$

occurred very naturally and simple estimate was obtained. Thus the proof is completed.

Now, we consider $\left|a_{3}-\mu a_{2}^{2}\right|$ for complex μ.
Theorem 6. Let μ be a nonzero complex number and let $f \in \mathcal{C}_{q}(\phi)$, then

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{\left|B_{1}\right|}{[3]_{q}\left([3]_{q}-1\right)} \max \left\{1,\left|\frac{B_{2}}{B_{1}}+\frac{B_{1}}{[2]_{q}-1}\left(1-\frac{[3]_{q}\left([3]_{q}-1\right)}{[2]_{q}^{2}\left([2]_{q}-1\right)} \mu\right)\right|\right\} . \tag{28}
\end{equation*}
$$

This result is sharp.
A. Çetinkaya, Y. Kahramaner, Y. Polatog̃lu - Fekete-Szegö inequalities ...

Proof. Applying (24) and (25), we have

$$
\begin{aligned}
a_{3}-\mu a_{2}^{2} & =\frac{B_{1}}{2[3]_{q}\left([3]_{q}-1\right)}\left[c_{2}-\frac{c_{1}^{2}}{2}+\frac{c_{1}^{2}}{2}\left(\frac{B_{2}}{B_{1}}+\frac{B_{1}}{[2]_{q}-1}\right)\right]-\mu \frac{B_{1}^{2} c_{1}^{2}}{4[2]_{q}^{2}\left([2]_{q}-1\right)^{2}} \\
& =\frac{B_{1}}{2[3]_{q}\left([3]_{q}-1\right)}\left[c_{2}-\frac{c_{1}^{2}}{2}+\frac{c_{1}^{2}}{2}\left(\frac{B_{2}}{B_{1}}+\frac{B_{1}}{[2]_{q}-1}\left(1-\frac{[3]_{q}\left([3]_{q}-1\right)}{[2]_{q}^{2}\left([2]_{q}-1\right)} \mu\right)\right)\right] .
\end{aligned}
$$

In view of Lemma 1,

$$
\begin{aligned}
\left|a_{3}-\mu a_{2}^{2}\right| & \leq \frac{\left|B_{1}\right|}{2[3]_{q}\left([3]_{q}-1\right)}\left[2-\frac{\left|c_{1}\right|^{2}}{2}+\frac{\left|c_{1}\right|^{2}}{2}\left(\left|\frac{B_{2}}{B_{1}}+\frac{B_{1}}{[2]_{q}-1}\left(1-\frac{[3]_{q}\left([3]_{q}-1\right)}{[2]_{q}^{2}\left([2]_{q}-1\right)} \mu\right)\right|\right)\right] \\
& =\frac{\left|B_{1}\right|}{2[3]_{q}\left([3]_{q}-1\right)}\left[2+\frac{\left|c_{1}\right|^{2}}{2}\left(\left|\frac{B_{2}}{B_{1}}+\frac{B_{1}}{[2]_{q}-1}\left(1-\frac{[3]_{q}\left([3]_{q}-1\right)}{[2]_{q}^{2}\left([2]_{q}-1\right)} \mu\right)\right|-1\right)\right] \\
& \leq \frac{\left|B_{1}\right|}{[3]_{q}\left([3]_{q}-1\right)} \max \left\{1,\left|\frac{B_{2}}{B_{1}}+\frac{B_{1}}{[2]_{q}-1}\left(1-\frac{[3]_{q}\left([3]_{q}-1\right)}{[2]_{q}^{2}\left([2]_{q}-1\right)} \mu\right)\right|\right\} .
\end{aligned}
$$

This result is sharp for the functions given in (26) and (27). This completes the proof.

Corollary 7. Taking $q \rightarrow 1^{-}$in Theorem 6, we obtain

$$
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{\left|B_{1}\right|}{6} \max \left\{1,\left|\frac{B_{2}}{B_{1}}+B_{1}\left(1-\frac{3}{2} \mu\right)\right|\right\} .
$$

This result is sharp.

References

[1] O. P. Ahuja, The Bieberbach conjecture and its impact on the developments in geometric function theory, Math. Chronicle, 15 (1986), 1-28.
[2] O. P. Ahuja, A. Çetinkaya, Y. Polatog̃lu, Bieberbach-de Branges and FeketeSzegö inequalities for certain families of $q-$ convex and $q-$ close-to-convex functions, J. Comput. Anal. Appl. (Accepted, 2017).
[3] G. E. Andrews, Applications of basic hypergeometric functions, SIAM Rev. 16 (1974), 441-484.
[4] M. Fekete, G. Szegö, Eine bemerkung über ungerade Schlichte Funktionen, J. Lond. Math. Soc. 8 (1933), 85-89.
[5] N. J. Fine, Basic hypergeometric series and applications, Math. Surveys Monogr. 1988.
A. Çetinkaya, Y. Kahramaner, Y. Polatoğlu - Fekete-Szegö inequalities ...
[6] B. A Frasin, M. Darus, On the Fekete-Szegö problem, Int. J. Math. Math. Sci. 24 (2000), 577-581.
[7] G. Gasper, M. Rahman, Basic hypergeometric series, Cambridge University Press, 2004.
[8] A. W. Goodman, Univalent functions, Volume I and II, Polygonal Pub. House, 1983.
[9] M. E. H. Ismail, E. Merkes, D. Steyr, A generalization of starlike functions, Complex Variables Theory Appl. 14 (1990), 77-84.
[10] F. H. Jackson, On $q-$ functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46 (1909), 253-281.
[11] F. H. Jackson, On $q-$ difference integrals, Quart. J. Pure Appl. Math. 41 (1910), 193-203.
[12] F. H. Jackson, $q-$ difference equations, Amer. J. Math. 32 (1910), 305-314.
[13] V. Kac, P. Cheung, Quantum calculus, Springer, 2001.
[14] S. Kanas, H. E. Darwish, Fekete-Szegö problem for starlike and convex functions of complex order, Appl. Math. Lett. 23 (2010), 777-782.
[15] W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis, Tianjin, 1992, pp. 157-169, Conf. Proc. Lecture Notes Anal. 1. Int. Press, Cambridge, MA, 1994.
[16] C. Pommerenke, Univalent Functions, Studia Mathematica Mathematische Lehrbucher, Vandenhoeck and Ruprecht, 1975.

Asena Çetinkaya
Department of Mathematics and Computer Sciences, Istanbul Kültür University Istanbul, Turkey email: asnfigen@hotmail.com

Yasemin Kahramaner
Department of Mathematics, Istanbul Ticaret University
Istanbul, Turkey
email: ykahra@gmail.com
Yaşar Polatoğlu
Department of Mathematics and Computer Sciences, Istanbul Kültür University Istanbul, Turkey
email: y.polatoglu@iku.edu.tr

