η-RICCI SOLITONS ON 3-DIMENSIONAL $N(K)$-CONTACT METRIC MANIFOLDS

D. Kar, P. Majhi, U.C. De

Abstract. The object of the present paper is to study η-Ricci solitons on 3 -dimensional $N(k)$-contact metric manifolds. First we consider ϕ-concircularly semisymmetric η-Ricci soliton on 3-dimensional $N(k)$-contact metric manifolds. Beside these, we also study h-concircularly semisymmetric η-Ricci soliton on 3 -dimensional $N(k)$-contact metric manifolds. Moreover we study concircularly semisymmetric η Ricci soliton on 3 -dimensional $N(k)$-contact metric manifolds. Finally, we construct an example of a 3 -dimensional $N(k)$-contact metric manifold which admits η-Ricci solitons.

2010 Mathematics Subject Classification: 53C15, 53C25.
Keywords: keywords, phrases. Ricci soliton, η-Ricci soliton, concircularly ϕ semisymmetric, h-concircularly semisymmetric, concircularly semisymmetric.

1. Introduction

In 1982, R. S. Hamilton [17] introduced the notion of Ricci flow to find a canonical metric on a smooth manifold. The Ricci flow is an evaluation equation for matrices on a Riemannian manifold defined as follows:

$$
\begin{equation*}
\frac{\partial}{\partial_{t}} g_{i j}=-2 R_{i j} \tag{1}
\end{equation*}
$$

Ricci solitons are special solutions of the Ricci flow equation (1) of the form

$$
g_{i j}=\sigma(t) \psi_{t}^{*} g_{i j}
$$

with the initial condition $g_{i j}(0)=g_{i j}$, where ψ_{t} are deffeomorphisms of M and $\sigma(t)$ is the scaling function.
A Ricci soliton is a natural generalization of Einstein metric. We recall the notion of Ricci soliton according to [6]. On the manifold M Ricci soliton is a tuple (g, V, λ)
with g, a Riemannian metric, V a vector field, called potential vector field, λ a real scalar and S is the Ricci tensor such that

$$
\begin{equation*}
£_{V} g+2 S+2 \lambda g=0, \tag{2}
\end{equation*}
$$

where $£$ is the Lie derivative and X, Y are arbitrary vector fields on M. Metrics satisfying (2) are interesting and useful in physics and are often reffered as quasiEinstein ([8],[9]). Compact Ricci solitons are the fixed points of the Ricci flow $\frac{\partial}{\partial t} g=$ $-2 S$ projected from the space of metrics onto its quotient modulo diffeomorphisms and scalings, and often arise blow-up limits for the Ricci flow on compact manifolds. The initial contribution in the direction is due to Friedan [16] Theoretical physicists have also been looking into the equation of Ricci soliton in relation with string theory. The fact that equation (2) is a special case of Einstein field equation.
The Ricci soliton is said to be shrinking, steady and expanding according as λ is negative, zero and positive respectively. Ricci soliton have been studied by several authors such as ([11], [12], [14],[15],[17],[18]) and many others.
As a generalization of Ricci soliton, the notion of η-Ricci soliton was introduced by Cho and Kimura [10]. This notion has also been studied in [6] for Hopf hupersurfaces in complex space forms. An η-Ricci soliton is a tuple (g, V, λ, μ), where V is a vector field on M, λ, μ are real scalars and g is a Riemannian (or pseudo-Riemannian) metric satisfying the equation

$$
\begin{equation*}
£_{V} g+2 S+2 \lambda g+2 \mu \eta \otimes \eta=0, \tag{3}
\end{equation*}
$$

where S is the Ricci tensor associated to g. In this connection we mention the works of Blaga ([4],[5]) and Prakasha et. al. [23] on η-Ricci solitons. In particular, if $\mu=0$, then the notion of η-Ricci soliton (g, V, λ, μ) reduces to the notion of Ricci soliton (g, V, λ). If $\mu \neq 0$, then the η-Ricci soliton is named proper η-Ricci soliton.

A transformation of a $(2 n+1)$-dimensional Riemannian manifold M, which transforms every geodesic circle of M into a geodesic circle, is called a concircular transformation $([20],[28])$. A concircular transformation is always a conformal transformation [20]. Here, geodesic circle means a curve in M whose first curvature is constant and whose second curvature is identically zero. Thus, the geometry of concircular transformations, i.e., the concircular geometry, is a generalization of inversive geometry in the sense that the change of metric is more general than that induced by a circle preserving diffeomorphism (see also [1]). An interesting invariant of a concircular transformation is the concircular curvature tensor \bar{Z}. It is defined by ([27],[28]).

$$
\begin{equation*}
\bar{Z}(X, Y) W=R(X, Y) W-\frac{r}{2 n(2 n+1)}[g(Y, W) X-g(X, W) Y], \tag{4}
\end{equation*}
$$

D. Kar, P. Majhi, U.C. De $-\quad \eta$-Ricci solitons on 3-dimensional . .
where $X, Y, W \in T M$ and r is the scalar curvature. Riemannian manifolds with vanishing concircular curvature tensor are of constant curvature. Thus, concircular curvature tensor is a measure of the failure of a Riemannian manifold to be of constant curvature.

A Riemannian manifold is called locally symmetric [7] if $\nabla R=0$, where R is the Riemannian curvature tensor of (M, g). A Riemannian manifold $(M, g), n \geq 3$, is called semisymmetric if

$$
R . R=0
$$

holds, where R denotes the curvature tensor of the manifold. It is well known that the class of semisymmetric manifolds includes the set of locally symmetric manifolds $(\nabla R=0)$ as a proper subset. Semisymmetric Riemannian manifolds were first studied by E. Cartan, A. Lichnerowich, R. S. Couty and N. S. Sinjukov. A fundamental study on Riemannian semisymmetric manifolds was made by Z. I. Szabó [24] and O. Kowalski [19].

In a recent paper Yildiz et al. [26] studied ϕ-Weyl semisymmetric and h-Weyl semisymmetric (k, μ)-contact manifolds. A (k, μ)-contact manifold is said to be ϕ Weyl semisymmetric if $C . \phi=0$ and h-Weyl semisymmetric if $C . h=0$, where C is the Weyl conformal curvature tensor.

Motivated by the above studies in the present paper we study ϕ-concircularly semisymmetric and h-concircularly semisymmetric η-Ricci solitons on 3-dimensional $N(k)$-contact metric manifolds.

The present paper is organized as follows: After preliminaries in section 3, we consider η-Ricci soliton on 3 -dimensional $N(k)$-contact metric manifolds. In the next two sections we study ϕ-concircularly semisymmetric and h-concircularly semisymmetric η-Ricci soliton on 3 -dimensional $N(k)$-contact metric manifolds. Section 6 deals with the study of concircularly semisymmetric η-Ricci soliton on 3-dimensional $N(k)$-contact metric manifolds. Finally, we construct an example of a 3-dimensional $N(k)$-contact metric manifold admitting η-Ricci soliton.

2. Preliminaries

A contact manifold is by definition an odd dimensional smooth manifold $M^{2 n+1}$ equipped with a global 1 -form satisfying $\eta \wedge(d \eta)^{n} \neq 0$ everywhere. It is well-known that there exists a unique vector field ξ, the characteristic vector field for which $\eta(\xi)=1$ and $i_{\xi} d \eta=0$. Further, one can find an associated Riemannian metric g and a vector field ϕ of type $(1,1)$ such that

$$
\begin{equation*}
\eta(X)=g(X, \xi), d \eta(X, Y)=g(X, \phi Y), \phi^{2} X=-X+\eta(X) \xi \tag{5}
\end{equation*}
$$

D. Kar, P. Majhi, U.C. De $-\quad \eta$-Ricci solitons on 3-dimensional . . .
where X and Y are vector fields on M. From (5) it follows that

$$
\begin{equation*}
\phi \xi=0, \eta \circ \phi=0, g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) . \tag{6}
\end{equation*}
$$

The manifold $M^{2 n+1}$ together with the structure tensor (η, ξ, ϕ, g) is called a contact metric manifold ([1], [2]).

Given the contact metric manifold (M, η, ξ, ϕ, g), we define a symmetric (1,1)tensor field h as $h=\frac{1}{2} L_{\xi} \phi$, where $L_{\xi} \phi$ denotes Lie differentiation in the direction of ξ. We have the following identities ([1], [2]):

$$
\begin{gather*}
h \xi=0, h \phi+\phi h=0, \tag{7}\\
\nabla_{X} \xi=-\phi X-\phi h X, \tag{8}\\
\nabla_{\xi} \phi=0, \tag{9}\\
R(\xi, X) \xi-\phi R(\xi, \phi X) \xi=2\left(h^{2}+\phi^{2}\right) X, \tag{10}\\
\left(\nabla_{\xi} h\right) X=\phi X-h^{2} \phi X+\phi R(\xi, X) \xi, \tag{11}\\
S(\xi, \xi)=2 n-t r h^{2} \tag{12}\\
R(X, Y) \xi=-\left(\nabla_{X} \phi\right) Y+\left(\nabla_{Y} \phi\right) X-\left(\nabla_{X} \phi h\right) Y+\left(\nabla_{Y} \phi h\right) X . \tag{13}
\end{gather*}
$$

Here, ∇ is the Levi-Civita connection and R the Riemannian curvature tensor defined by

$$
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z,
$$

for all vector fields X, Y, Z on M.
If the characteristic vector field ξ is a Killing vector field, the contact metric manifold (M, η, ξ, ϕ, g) is called K-contact manifold. This is the case if and only if $h=0$. Finally, if the Riemann curvature tensor satisfies

$$
R(X, Y) \xi=\eta(Y) X-\eta(X) Y
$$

or, equivalently, if

$$
\left(\nabla_{X} \phi\right) Y=g(X, Y) \xi-\eta(Y) X
$$

holds, then the manifold is Sasakian. We note that a Sasakian manifold is always K-contact, but the converse only holds in dimension three.
D. Kar, P. Majhi, U.C. De $-\quad \eta$-Ricci solitons on 3-dimensional . .

The k-nullity distribution $N(k)$ of a Riemannian manifolds is defined by [25]

$$
N(k): p \rightarrow N_{p}(k)=\left\{Z \in T_{p} M: R(X, Y) Z=k[g(Y, Z) X-g(X, Z) Y]\right\},
$$

k being a real number. If the characteristic vector field $\xi \in N(k)$, then we call a contact metric manifold as $N(k)$-contact metric manifold [25]. If $k=1$, then the manifold is Sasakian and if $k=0$, then the manifold is locally isometric to the product $E^{n+1}(0) \times S^{n}(4)$ for $n>1$ and flat for $n=1[1]$.

However, for a $N(k)$-contact metric manifold M of dimension $(2 n+1)$, we have ([1], [2])

$$
\begin{equation*}
\left(\nabla_{X} \phi\right) Y=g(X+h X, Y) \xi-\eta(Y)(X+h X) \tag{14}
\end{equation*}
$$

where $h=\frac{1}{2} £_{\xi} \phi$,

$$
\begin{align*}
& h^{2}=(k-1) \phi^{2}, \tag{15}\\
& R(X, Y) \xi=k[\eta(Y) X-\eta(X) Y], \tag{16}\\
& S(X, Y)=2(n-1) g(X, Y)+2(n-1) g(h X, Y) \\
& {[2 n k-2(n-1)] \eta(X) \eta(Y), \quad n \geq 1 \text {. }} \tag{17}\\
& S(Y, \xi)=2 n k \eta(X), \tag{18}\\
& \left(\nabla_{X} \eta\right)(Y)=g(X+h X, \phi Y), \tag{19}\\
& \left(\nabla_{X} h\right)(Y)=\{(1-k) g(X, \phi Y)+g(X, h \phi Y)\} \xi+\eta(Y)[h(\phi X+\phi h X)], \tag{20}
\end{align*}
$$

for any vector fields X, Y, Z, where R is the Riemannian curvature tensor and S is the Ricci tensor. $N(k)$-contact metric manifolds have been studied by several authors such as ([13], [21], [22]) and many others.

The curvature tensor of a 3-dimensional Riemannian manifold is given by

$$
\begin{align*}
R(X, Y) Z= & {[S(Y, Z) X-S(X, Z) Y+g(Y, Z) Q X-g(X, Z) Q Y] } \\
& -\frac{r}{2}[g(Y, Z) X-g(X, Z) Y] \tag{21}
\end{align*}
$$

D. Kar, P. Majhi, U.C. De $-\quad \eta$-Ricci solitons on 3-dimensional . .
where S and r are the Ricci tensor and scalar curvature respectively and Q is the Ricci operator defined by $g(Q X, Y)=S(X, Y)$.

In [3] Blair et al. proved that in a three dimensional contact metric manifold with ξ belonging to the k-nullity distribution, the following conditions hold:

$$
\begin{gather*}
Q X=\left(\frac{r}{2}-k\right) X+\left(3 k-\frac{r}{2}\right) \eta(X) \xi \tag{22}\\
S(X, Y)=\left(\frac{r}{2}-k\right) g(X, Y)+\left(3 k-\frac{r}{2}\right) \eta(X) \eta(Y) \tag{23}\\
\nabla_{X} \xi=-(1+\alpha) \phi X \tag{24}
\end{gather*}
$$

where $\alpha= \pm \sqrt{1-k}$.
Lemma 1. [3] Let M^{3} be a contact metric manifold with contact metric structure (ϕ, ξ, η, g). Then the following conditions are equivalent:
i) M^{3} is η-Einstein
ii) $Q \phi=\phi Q$
iii) ξ belongs to the k-nullity distribution.

Lemma 2. [3] Let M^{3} be a contact metric manifold on which $Q \phi=\phi Q$. Then M^{3} is either Sasakian, flat or of constant ξ-sectional curvature $k<1$ and constant ϕ-sectional curvature $-k$.

3. η-Ricci solitons on 3 -Dimensional $N(k)$ contact metric manifolds

In this section we consider η-Ricci soliton on 3 -dimensional $N(k)$-contact metric manifolds. Then

$$
\begin{align*}
\left(£_{\xi} g\right)(X, Y)= & £_{\xi} g(X, Y)-g\left(£_{\xi} X, Y\right)-g\left(X, £_{\xi} Y\right) \\
= & \xi g(X, Y)-g([\xi, X], Y)-g(X,[\xi, Y])-g(X,[\xi, Y]) \\
= & \nabla_{\xi} g(X, Y)-g\left(\nabla_{\xi} X, Y\right)+g\left(\nabla_{X} \xi, Y\right)-g\left(X, \nabla_{\xi} Y\right) \\
& +g\left(X, \nabla_{Y}, \xi\right) \\
= & \left(\nabla_{\xi} g\right)(X, Y)+g\left(\nabla_{X} \xi, Y\right)+g\left(X, \nabla_{Y} \xi\right) \\
= & g\left(\nabla_{X} \xi, Y\right)+g\left(X, \nabla_{Y} \xi\right) \\
= & g(-\phi X-\phi h X, Y)+g(X,-\phi Y-\phi h Y) \\
= & -g(\phi X, Y)-g(\phi h X, Y)-g(X, \phi Y)-g(X, \phi h Y) . \tag{25}
\end{align*}
$$

D. Kar, P. Majhi, U.C. De $-\quad \eta$-Ricci solitons on 3-dimensional ...

Then for η-Ricci soliton,

$$
\begin{equation*}
£_{\xi} g+2 S+2 \lambda g+2 \mu \eta \otimes \eta=0, \tag{26}
\end{equation*}
$$

from which we get

$$
\begin{align*}
2 S(X, Y)= & -\left(£_{\xi} g\right)(X, Y)-2 \lambda g(X, Y)-2 \mu \eta(X) \eta(Y) \\
= & g(\phi X, Y)+g(\phi h X, Y)+g(X, \phi Y)+g(X, \phi h Y) \\
& -2 \lambda g(X, Y)-2 \mu \eta(X) \eta(Y) \\
= & 2 g(\phi h X, Y)-2 \lambda g(X, Y)-2 \mu \eta(X) \eta(Y), \tag{27}
\end{align*}
$$

from which it follows that

$$
\begin{align*}
S(X, Y) & =g(\phi h X, Y)-\lambda g(X, Y)-\mu \eta(X) \eta(Y) \\
& =-g(h X, \phi Y)-\lambda g(X, Y)-\mu \eta(X) \eta(Y) \tag{28}
\end{align*}
$$

Again from (28), we have

$$
\begin{equation*}
Q X=\phi h X-\lambda X-\mu \eta(X) \xi . \tag{29}
\end{equation*}
$$

In view of (28) we can state the following:
Theorem 3. The Ricci tensor in 3-dimensional $N(k)$-contact metric manifolds admitting η-Ricci soliton is given by (28).

4. ϕ-CONCIRCULARLY SEmisymmetric η-Ricci soliton on 3 -dimensional $N(k)$-CONTACT METRIC MANIFOLDS

Let us suppose that the manifold be ϕ-concircularly semisymmetric. Then we have

$$
\begin{equation*}
\bar{Z} \cdot \phi=0, \tag{30}
\end{equation*}
$$

where \bar{Z} is the concircular curvature tensor given by

$$
\begin{equation*}
\bar{Z}(U, V) W=R(U, V) W-\frac{r}{6}[g(V, W) U-g(U, W) V] . \tag{31}
\end{equation*}
$$

From (30), it follows that

$$
\begin{equation*}
\bar{Z}(U, V) \phi W-\phi(\bar{Z}(U, V) W)=0 \tag{32}
\end{equation*}
$$

D. Kar, P. Majhi, U.C. De - $\quad \eta$-Ricci solitons on 3-dimensional ...

Using (31) in (32) we get

$$
\begin{align*}
& R(U, V) \phi W-\phi(R(U, V) W)-\frac{r}{6}[g(V, \phi W) U-g(U, \phi W) V] \\
& +\frac{r}{6}[g(V, W) \phi U-g(U, W) \phi V]=0 . \tag{33}
\end{align*}
$$

Now, from (21) we obtain

$$
\begin{align*}
R(U, V) \phi W= & g(h V, W) U-g(h U, W) V-\left[\phi h U-\left(2 \lambda+\frac{r}{2}\right) U\right. \\
& -\mu \eta(U) \xi] g(V, \phi W)+\left[-\phi h V+\left(2 \lambda+\frac{r}{2}\right) V\right. \\
& +\mu \eta(V) \xi] g(U, \phi W) . \tag{34}
\end{align*}
$$

and

$$
\begin{align*}
\phi(R(U, V) W)= & -g(h V, \phi W) \phi U+g(h U, \phi W) \phi V+[-h U \\
& \left.-\left(2 \lambda+\frac{r}{2}\right) \phi U\right] g(V, W)-\left[h V+\left(2 \lambda+\frac{r}{2}\right) \phi V\right] g(U, W) \\
& -\mu \eta(V) \eta(W) \phi U+\mu \eta(U) \eta(W) \phi V . \tag{35}
\end{align*}
$$

Using (34) and (35) in (33) yields

$$
\begin{align*}
& g(h V, W) U-g(h U, W) V-\left[\phi h U-\left(2 \lambda+\frac{r}{2}\right) U-\mu \eta(U) \xi\right] g(V, \phi W) \\
& +\left[-\phi h V+\left(2 \lambda+\frac{r}{2}\right) V+\mu \eta(V) \xi\right] g(U, \phi W)+g(h V, \phi W) \phi U-g(h U, \phi W) \phi V \\
& -\left[-h U-\left(2 \lambda+\frac{r}{2}\right) \phi U\right] g(V, W)+\left[h V+\left(2 \lambda+\frac{r}{2}\right) \phi V\right] g(U, W) \\
& +\mu \eta(V) \eta(W) \phi U-\mu \eta(U) \eta(W) \phi V-\frac{r}{6}[g(V, \phi W) U-g(U, \phi W) V] \\
& +\frac{r}{6}[g(V, W) \phi U-g(U, W) \phi V]=0 . \tag{36}
\end{align*}
$$

Taking inner product of (36) we obtain

$$
\begin{align*}
& g(h V, W) g(U, X)-g(h U, W) g(V, X)-\left[g(\phi h U, X)-\left(2 \lambda+\frac{r}{2}\right) g(U, X)\right. \\
& -\mu \eta(U) \eta(X)] g(V, \phi W)+\left[-g(\phi h V, X)+\left(2 \lambda+\frac{r}{2}\right) g(V, X)\right. \\
& +\mu \eta(V) \eta(X)] g(U, \phi W)+g(h V, \phi W) g(\phi U, X)-g(h U, \phi W) g(\phi V, X) \\
& -\left[-g(h U, X)-\left(2 \lambda+\frac{r}{2}\right)(\phi U, X)\right] g(V, W)+[g(h V, X) \\
& \left.+\left(2 \lambda+\frac{r}{2}\right)(\phi V, X)\right] g(U, W)+\mu \eta(V) \eta(W) g(\phi U, X) \\
& -\mu \eta(U) \eta(W) g(\phi V, X)-\frac{r}{6}[g(V, \phi W) g(U, X)-g(U, \phi W) g(V, X)] \\
& +\frac{r}{6}[g(V, W)(\phi U, X)-g(U, W)(\phi V, X)]=0 . \tag{37}
\end{align*}
$$

D. Kar, P. Majhi, U.C. De - $\quad \eta$-Ricci solitons on 3-dimensional ...

Contracting over V, W in (37) we get

$$
\begin{align*}
& g(U, X) \operatorname{trh}-\mathrm{g}(\mathrm{hU}, \mathrm{X})-\left[\mathrm{g}(\phi \mathrm{~h} \mathrm{U}, \mathrm{X})-\left(2 \lambda+\frac{\mathrm{r}}{2}\right) \mathrm{g}(\mathrm{U}, \mathrm{X})-\mu \eta(\mathrm{U}) \eta(\mathrm{X})\right] \operatorname{tr} \phi \\
& -g(h \phi X, \phi U)-\left(2 \lambda+\frac{r}{2}\right) g(\phi U, X)+g\left(h e_{i}, \phi e_{i}\right) g(\phi U, X) \\
& -g(\phi h U, \phi X)-3\left[-g(h U, X)-\left(2 \lambda+\frac{r}{2}\right) g(\phi U, X)\right]+g(h X, U) \\
& -\left(2 \lambda+\frac{r}{2}\right) g(\phi X, U)-\frac{r}{6}[\operatorname{tr} \phi \mathrm{~g}(\mathrm{U}, \mathrm{X})+\mathrm{g}(\phi \mathrm{U}, \mathrm{X})] \\
& +\frac{r}{6}[3 g(\phi U, X)+g(\phi X, U)]+\mu g(\phi U, X)+\mu \eta(U) g(\phi X, \xi)=0 \tag{38}
\end{align*}
$$

from which it follows that

$$
\begin{equation*}
3 g(h U, X)+\left(6 \lambda+\frac{5 r}{3}+\mu\right) g(\phi U, X)=0 \tag{39}
\end{equation*}
$$

Substituting $U=\phi U$ in (39) yields

$$
\begin{equation*}
-3 S(U, X)-\left(9 \lambda+\frac{5 r}{3}+\mu\right) g(U, X)+\left(6 \lambda+\frac{5 r}{3}-2 \mu\right) \eta(U) \eta(X)=0 . \tag{40}
\end{equation*}
$$

In view of (40) we obtain

$$
\begin{equation*}
S(X, U)=a g(X, U)+b \eta(X) \eta(U), \tag{41}
\end{equation*}
$$

where

$$
\begin{equation*}
a=-\frac{1}{3}\left(9 \lambda+\frac{5 r}{3}+\mu\right), \quad b=\frac{1}{3}\left(6 \lambda+\frac{5 r}{3}-2 \mu\right) . \tag{42}
\end{equation*}
$$

Hence we conclude the following:
Theorem 4. A ϕ-concircularly semisymmetric η-Ricci soliton on a 3-dimensional $N(k)$-contact metric manifold is η-Einstein.

Comparing (23) with (41), we get

$$
\begin{equation*}
a g(X, Y)+b \eta(X) \eta(Y)=\left(\frac{r}{2}-k\right) g(X, Y)+\left(3 k-\frac{r}{2}\right) \eta(X) \eta(Y) . \tag{43}
\end{equation*}
$$

Contracting over X, Y in the above equation we have

$$
\begin{equation*}
3 a+b=r . \tag{44}
\end{equation*}
$$

Putting $X=Y=\xi$ in (43) we get

$$
\begin{equation*}
a+b=2 k . \tag{45}
\end{equation*}
$$

D. Kar, P. Majhi, U.C. De $-\quad \eta$-Ricci solitons on 3-dimensional . . .

Using (42) in (44), (45) respectively we obtain

$$
\begin{equation*}
21 \lambda-5 \mu=-13 r \tag{46}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda+\mu=-2 k \tag{47}
\end{equation*}
$$

Solving the equations (46) and (47) we infer

$$
\begin{equation*}
\lambda=-\frac{13 r+10 k}{26}, \quad \mu=\frac{13 r-42 k}{26} \tag{48}
\end{equation*}
$$

Thus we can state the following:

Theorem 5. A ϕ-concircularly semisymmetric η-Ricci soliton on a 3-dimensional $N(k)$-contact metric manifold is of the type $\left(g, \xi,-\frac{13 r+10 k}{26}, \frac{13 r-42 k}{26}\right)$.

5. h-CONCIRCULARLY SEMISYMMETRIC η-RICCI SOLITON ON 3-DIMENSIONAL $N(k)$-CONTACT METRIC MANIFOLDS

This section deals with h-concircularly semisymmetric η-Ricci soliton on 3-dimensional $N(k)$-contact metric manifold. Then we have

$$
\begin{equation*}
\bar{Z} . h=0, \tag{49}
\end{equation*}
$$

From (49), it follows that

$$
\begin{equation*}
\bar{Z}(U, V) h W-h(\bar{Z}(U, V) W)=0 \tag{50}
\end{equation*}
$$

Making use of (31) in (50) we have

$$
\begin{align*}
& R(U, V) h W-h(R(U, V) W)-\frac{r}{6}[g(V, h W) U-g(U, h W) V] \\
& +\frac{r}{6}[g(V, W) h U-g(U, W) h V]=0 \tag{51}
\end{align*}
$$

From (29) we have

$$
\begin{equation*}
Q U=-h \phi U-\lambda U-\mu \eta(U) \xi \tag{52}
\end{equation*}
$$

Then from (52) it follows that

$$
\begin{equation*}
h(Q U)=(k-1) \phi U-\lambda h U \tag{53}
\end{equation*}
$$

D. Kar, P. Majhi, U.C. De $-\quad \eta$-Ricci solitons on 3-dimensional ...

Now, from (21) we obtain

$$
\begin{align*}
h(R(U, V) W)= & -g(h V, \phi W) h U+g(h U, \phi W) h V+[(k-1) \phi U \\
& \left.-\left(2 \lambda+\frac{r}{2}\right) h U\right] g(V, W)-\left[(k-1) \phi V-\left(2 \lambda+\frac{r}{2}\right) h V\right] g(U, W) \\
& -\mu \eta(V) \eta(W) h U+\mu \eta(U) \eta(W) h V \tag{54}
\end{align*}
$$

and

$$
\begin{align*}
R(U, V) h W= & (1-k) g(V, \phi W) U+(k-1) g(U, \phi W) V+\left[\phi h U-\left(2 \lambda+\frac{r}{2}\right) U\right. \\
& -\mu \eta(U) \xi] g(V, h W)-\left[\phi h U-\left(2 \lambda+\frac{r}{2}\right) U-\mu \eta(U) \xi\right] g(V, h W) \tag{55}
\end{align*}
$$

Using (54) and (55) in (51) we get

$$
\begin{align*}
& (1-k) g(V, \phi W) U+(k-1) g(U, \phi W) V+\left[\phi h U-\left(2 \lambda+\frac{r}{2}\right) U\right. \\
& -\mu \eta(U) \xi] g(V, h W)-\left[\phi h V-\left(2 \lambda+\frac{r}{2}\right) V-\mu \eta(V) \xi\right] g(U, h W) \\
& +g(h V, \phi W) h U-g(h U, \phi W) h V-\left[(k-1) \phi U-\left(2 \lambda+\frac{r}{2}\right) h U\right] g(V, W) \\
& +\left[(k-1) \phi V-\left(2 \lambda+\frac{r}{2}\right) h V\right] g(U, W)+\mu \eta(V) \eta(W) h U-\mu \eta(U) \eta(W) h V \\
& -\frac{r}{6}[g(V, h W) U-g(U, h W) V]+\frac{r}{6}[g(V, W) h U-g(U, W) h V]=0 \tag{56}
\end{align*}
$$

Taking inner product of (56) we infer

$$
\begin{align*}
& (k-1) g(\phi V, W) g(U, X)-(k-1) g(\phi U, W) g(V, X)+[g(\phi h U, X) \\
& \left.-\left(2 \lambda+\frac{r}{2}\right) g(U, X)-\mu \eta(U) \eta(X)\right] g(V, h W)-[g(\phi h V, X) \\
& \left.-\left(2 \lambda+\frac{r}{2}\right) g(V, X)-\mu \eta(V) \eta(X)\right] g(h U, W)+g(h V, \phi W) g(h U, X) \\
& +g(\phi h U, W) g(h V, X)-\left[(k-1) g(\phi U, X)-\left(2 \lambda+\frac{r}{2}\right) h(h U, X)\right] g(V, W) \\
& +\left[(k-1) g(\phi V, X)-\left(2 \lambda+\frac{r}{2}\right) h(h V, X)\right] g(U, W)+\mu \eta(V) \eta(W g(h U, X) \\
& -\mu \eta(U) \eta(W) g(V, h X)-\frac{r}{6}[g(V, h W) g(U, X)-g(U, h W) g(V, X)] \\
& +\frac{r}{6}[g(V, W) g(h U, X)-g(U, W) g(h V, X])=0 \tag{57}
\end{align*}
$$

Contracting over V, W in (57) yields

$$
\begin{equation*}
2(k-1) g(\phi X, U)+(6 \lambda+2 r+\mu) g(h U, X)=0 \tag{58}
\end{equation*}
$$

D. Kar, P. Majhi, U.C. De - $\quad \eta$-Ricci solitons on 3-dimensional ...

Substituting $X=\phi X$ in (58) we obtain

$$
\begin{align*}
(6 \lambda+2 r+\mu) S(U, X)= & -[2(k-1)+\lambda(6 \lambda+2 r+\mu)] g(U, X)+[2(k-1) \\
& -\mu(6 \lambda+2 r+\mu)] \eta(U) \eta(X) \tag{59}
\end{align*}
$$

From (59) it follows that

$$
\begin{equation*}
S(U, X)=a g(U, X)+b \eta(U) \eta(X), \tag{60}
\end{equation*}
$$

where

$$
\begin{equation*}
a=\lambda-\frac{2(k-1)}{6 \lambda+2 r+\mu}, \quad b=\frac{2(k-1)}{6 \lambda+2 r+\mu}-\mu . \tag{61}
\end{equation*}
$$

Thus we can state the following:
Theorem 6. A h-concircularly semisymmetric η-Ricci soliton on a 3-dimensional $N(k)$-contact metric manifold is η-Einstein.

6. Concircularlly semisymmetric η-Ricci soliton on 3 -dimensional $N(k)$-CONTACT METRIC MANIFOLDS

This section is devoted to study of conformally semisymmetric η-Ricci soliton on 3 -dimensional $N(k)$-contact metric manifolds. Then

$$
\begin{equation*}
R \cdot \bar{Z}=0 . \tag{62}
\end{equation*}
$$

This implies

$$
\begin{align*}
& R(X, Y) \bar{Z}(U, V) W-\bar{Z}(R(X, Y) U, V) W-\bar{Z}(U, R(X, Y) V) W \\
& -\bar{Z}(U, V) R(X, Y) W=0 . \tag{63}
\end{align*}
$$

From the equation (63) we get

$$
\begin{array}{r}
R(X, Y) R(U, V) W-\frac{r}{6}[g(V, W) R(X, Y) U-g(U, W) R(X, Y) V] \\
-R(R(X, Y) U, V) W+\frac{r}{6}[g(V, W) R(X, Y) U-g(R(X, Y) U, W) V] \\
-R(U, R(X, Y) V) W+\frac{r}{6}[g(R(X, Y) V, W) U-g(U, W) R(X, Y) V] \\
-R(U, V) R(X, Y) W+\frac{r}{6}[g(V, R(X, Y) W) U-g(U, R(X, Y) W) V]=0 . \tag{64}
\end{array}
$$

Putting $X=U=\xi$ in (64) we obtain

$$
\begin{array}{r}
R(\xi, Y) R(\xi, V) W-R(R(\xi, Y) \xi, V) W-R(\xi, R(\xi, Y) V) W \\
-R(\xi, V) R(\xi, Y) W+\frac{r}{6}[g(R(\xi, Y) V, W) \xi+g(R(\xi, Y) W, V) \xi \\
-g(R(\xi, Y) \xi, W) V-\eta(R(\xi, Y) W) V]=0 . \tag{65}
\end{array}
$$

Putting $X=\xi$ in (21) yields

$$
\begin{align*}
& R(\xi, V) W=S(V, W) \xi+(\lambda+\mu) \eta(W) V-(\lambda+\mu) g(V, W) \xi-\eta(W) Q V \\
& -\frac{r}{2}[g(V, W) \xi-\eta(W) V] \tag{66}
\end{align*}
$$

Now

$$
\begin{array}{r}
R(\xi, Y) R(\xi, V) W=S(V, W) R(\xi, Y) \xi+(\lambda+\mu) \eta(W) R(\xi, Y) V \\
-(\lambda+\mu) g(V, W) R(\xi, Y) \xi-\eta(W) R(\xi, Y) Q V \\
-\frac{r}{2}[g(V, W) R(\xi, Y) \xi-\eta(W) R(\xi, Y) V] \tag{67}
\end{array}
$$

Using (6.6) in (6.4) we have

$$
\begin{align*}
& k(\lambda+\mu) Y-\eta(W) R(\xi, Y) Q V+S(R(\xi, Y) \xi, W) V+k g(V, W) Q Y \\
& -S((R(\xi, Y) V, W) \xi+\eta(W) Q(R(\xi, Y) V)-S(R(\xi, Y) W, V) \xi \\
& -(\lambda+\mu) \eta(R(\xi, Y) W) V+\frac{r}{2}[-k \eta(Y) \eta(W) V \\
& +k g(Y, W) V-\eta(R(\xi, Y) W) V]=0 \tag{68}
\end{align*}
$$

Now

$$
\begin{align*}
S(R(\xi, Y) \xi, W) V= & k \eta(Y) S(W, \xi) V-k S(X, W) V \\
& =-k(\lambda+\mu) \eta(W) \eta(Y) V-k S(X, W) V . \tag{69}
\end{align*}
$$

Using (69) in (68) yields

$$
\begin{align*}
& k(\lambda+\mu) g(V, W) Y-\eta(W) R(\xi, Y) Q V-k\left[\lambda+\mu-\frac{r}{2}\right] \eta(Y) \eta(W) V \\
& +k g(V, W) Q Y+\eta(W) Q(R(\xi, Y) V)-\left(\lambda+\mu+\frac{r}{2}\right) \eta(R(\xi, Y) W) V \\
& +\frac{k r}{2} g(Y, W) V-k S(Y, W) V-S(R(\xi, Y) V, W) \xi \\
& -S(R(\xi, Y) W, V)=0 . \tag{70}
\end{align*}
$$

D. Kar, P. Majhi, U.C. De $-\quad \eta$-Ricci solitons on 3-dimensional . .

Substituting $V=\xi$ in (70) we obtain

$$
\begin{align*}
& 2 k(\lambda+\mu) \eta(W) Y-\left[(k+1)(\lambda+\mu)-\frac{r}{2}\right] \eta(Y) \eta(W) \xi \\
& -\frac{r}{2} \eta(R(\xi, Y) W) \xi+\frac{k r}{2} g(Y, W) \xi=0 \tag{71}
\end{align*}
$$

Now,

$$
\begin{align*}
\eta(R(\xi, Y) W)= & S(Y, W)+2(\lambda+\mu) \eta(Y) \eta(W)-(\lambda+\mu) g(Y, W) \\
& -\frac{r}{2}[g(Y, W)-\eta(Y) \eta(W)] \tag{72}
\end{align*}
$$

With the help of (72), from (71) we get

$$
\begin{align*}
& 2 k(\lambda+\mu) \eta(W) Y-\left[(\lambda+\mu)(r+k+1)-\frac{r}{2}+\frac{r^{2}}{4}\right] \eta(Y) \eta(W) \xi \\
& +\left[(\lambda+\mu) \frac{r}{2}+\frac{r^{2}}{4}+\frac{k r}{2}\right] g(Y, W) \xi-\frac{r}{2} S(Y, W) \xi=0 \tag{73}
\end{align*}
$$

Contracting W in (73) we have

$$
\begin{equation*}
r=\frac{4 k(k-1)}{k+1} \tag{74}
\end{equation*}
$$

Taking inner product of (73) with respect to ξ and then using (74) yields

$$
\begin{equation*}
S(Y, W)=a g(Y, W)+b \eta(Y) \eta(W) \tag{75}
\end{equation*}
$$

where

$$
\begin{equation*}
a=\frac{k(k-3)}{k+1}, \quad b=\frac{k^{2}-k+2}{k-1} \tag{76}
\end{equation*}
$$

Thus we can state the following:
Theorem 7. A concircularly semisymmetric η-Ricci soliton on a 3-dimensional $N(k)$-contact metric manifold is η-Einstein.

Hence from Lemma 2 and Theorems 4, 6, 7 we have the following:
Proposition 1. A ϕ-concircularlly semisymmetric, h-concircularlly semisymmetric and concircularlly semisymmetric η-Ricci soliton on 3-dimensional $N(k)$-contact metric manifold satisfies $Q \phi=\phi Q$.

Moreover from Lemma 2 and Theorems 4, 6, 7 we are in a position to state the following:
Theorem 8. A ϕ-concircularlly semisymmetric, h-concircularlly semisymmetric and concircularlly semisymmetric η-Ricci soliton on 3-dimensional $N(k)$-contact metric manifold is either Sasakian, flat or of ξ-sectional curvature $k<-1$ and constant ϕ-sectional curvature $-k$.
D. Kar, P. Majhi, U.C. De - $\quad \eta$-Ricci solitons on 3-dimensional ...

7. Example

We consider the 3 -dimensional manifold $M=\left\{(x, y, z) \in \mathbb{R}^{3},(x, y, z) \neq(0,0,0)\right\}$, where (x, y, z) are the standard coordinate in \mathbb{R}^{3}. Then e_{1}, e_{2}, e_{3} are three linearly independent vector fields in \mathbb{R}^{3} and

$$
\left[e_{1}, e_{2}\right]=(1+\alpha) e_{3}, \quad\left[e_{2}, e_{3}\right]=2 e_{1} \quad \text { and } \quad\left[e_{3}, e_{1}\right]=(1-\alpha) e_{2},
$$

where $\alpha \neq \pm 1$ is a real number.
Let g be the Riemannian metric defined by

$$
g\left(e_{1}, e_{3}\right)=g\left(e_{2}, e_{3}\right)=g\left(e_{1}, e_{2}\right)=0, \quad g\left(e_{1}, e_{1}\right)=g\left(e_{2}, e_{2}\right)=g\left(e_{3}, e_{3}\right)=1
$$

Let η be the 1 -form defined by

$$
\eta(U)=g\left(U, e_{1}\right)
$$

for any $U \in \chi(M)$. Let ϕ be the (1,1)-tensor field defined by

$$
\phi e_{1}=0, \quad \phi e_{2}=e_{3}, \quad \phi e_{3}=-e_{2}
$$

Using the linearity of ϕ and g we have

$$
\begin{gathered}
\eta\left(e_{1}\right)=1, \\
\phi^{2}(U)=-U+\eta(U) e_{1}
\end{gathered}
$$

and

$$
g(\phi U, \phi W)=g(U, W)-\eta(U) \eta(W)
$$

for any $U, W \in \chi(M)$. Moreover

$$
h e_{1}=0, \quad h e_{2}=\alpha e_{2} \quad \text { and } h e_{3}=-\alpha e_{3} .
$$

The Riemannian connection ∇ of the metric tensor g is given by Koszul's formula which is given by,

$$
\begin{aligned}
2 g\left(\nabla_{X} Y, Z\right)= & X g(Y, Z)+Y g(Z, X)-Z g(X, Y) \\
& -g(X,[Y, Z])-g(Y,[X, Z])+g(Z,[X, Y]) .
\end{aligned}
$$

Using Koszul's formula we get the following:

$$
\begin{aligned}
& \nabla_{e_{1}} e_{1}=0, \quad \nabla_{e_{1}} e_{2}=0, \quad \nabla_{e_{1}} e_{3}=0, \\
& \nabla_{e_{2}} e_{1}=-(1+\alpha) e_{3}, \quad \nabla_{e_{2}} e_{2}=0, \quad \nabla_{e_{2}} e_{3}=(1+\alpha) e_{1}, \\
& \nabla_{e_{3}} e_{1}=(1-\alpha) e_{2}, \quad \nabla_{e_{3}} e_{2}=-(1-\alpha) e_{1}, \quad \nabla_{e_{3}} e_{3}=0 .
\end{aligned}
$$

D. Kar, P. Majhi, U.C. De $-\quad \eta$-Ricci solitons on 3-dimensional ...

In view of the above relations we have

$$
\nabla_{X} \xi=-\phi X-\phi h X, \quad \text { for } \quad e_{1}=\xi
$$

Therefore the manifold is a contact metric manifold with the contact structure (ϕ, ξ, η, g).

Now, we find the curvature tensors as follows:

$$
\begin{aligned}
& R\left(e_{1}, e_{2}\right) e_{2}=\left(1-\alpha^{2}\right) e_{1}, \quad R\left(e_{3}, e_{2}\right) e_{2}=-\left(1-\alpha^{2}\right) e_{3} \\
& \quad R\left(e_{1}, e_{3}\right) e_{3}=\left(1-\alpha^{2}\right) e_{1}, \quad R\left(e_{2}, e_{3}\right) e_{3}=-\left(1-\alpha^{2}\right) e_{2}, \\
& R\left(e_{2}, e_{3}\right) e_{1}=0, \quad R\left(e_{1}, e_{2}\right) e_{1}=-\left(1-\alpha^{2}\right) e_{2}, \quad R\left(e_{3}, e_{1}\right) e_{1}=\left(1-\alpha^{2}\right) e_{3} .
\end{aligned}
$$

In view of the expressions of the curvature tensors we conclude that the manifold is a $N\left(1-\alpha^{2}\right)$-contact metric manifold.

Using the expressions of the curvature tensor we find the values of the Ricci tensors as follows:

$$
S\left(e_{1}, e_{1}\right)=2\left(1-\alpha^{2}\right), \quad S\left(e_{2}, e_{2}\right)=0, \quad S\left(e_{3}, e_{3}\right)=0
$$

From (28) we obtain $S\left(e_{1}, e_{1}\right)=-(\lambda+\mu)$ and $S\left(e_{2}, e_{2}\right)=S\left(e_{3}, e_{3}\right)=-\lambda$. Therefore $\lambda=0$ and $\mu=2\left(\alpha^{2}-1\right)$. The data (g, ξ, λ, μ) defines an η-Ricci soliton on 3-dimensional $N(k)$-contact metric manifold.

References

[1] Blair, D. E., Contact manifolds in Riemannian geometry, Lecture note in Math., 509, Springer-Verlag, Berlin-New York, 1976.
[2] Blair, D. E., Riemannian Geometry of contact and symplectic manifolds, Birkhäuser, Boston, 2002.
[3] Blair, D. E., Koufogiorgos, T. and Sharma, R., A classification of 3-dimensional contact metric manifolds with $Q \phi=\phi Q$, Kodai Math. J., 13(1990), 391-401.
[4] Blaga, A. M., η-Ricci solitons on Lorentzian para-Sasakian manifolds, Filomat 30 (2016), no. 2, 489-496.
[5] Blaga, A. M., η-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl. 20 (2015), 1-13.
[6] Calin, C. and Crasmareanu, M., From the Eisenhart problem to Ricci solitons in f-Kenmotsu manifolds, Bull. Malays. Math. Soc. 33(3)(2010), 361-368.
D. Kar, P. Majhi, U.C. De $-\quad \eta$-Ricci solitons on 3-dimensional . .
[7] Cartan, E., Sur une classe remarqable d' espaces de Riemannian, Bull. Soc. Math. France., 54(1962), 214-264.
[8] Chave, T. and Valent, G., Quasi-Einstein metrics and their renoirmalizability properties, Helv. Phys. Acta. 69(1996) 344-347.
[9] Chave, T. and Valent, G., On a class of compact and non-compact quasiEinstein metrics and their renoirmalizability properties, Nuclear Phys. B. 478(1996), 758-778.
[10] Cho, J. T. and Kimura, M., Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J. 61, no. 2 (2009), 205-212.
[11] De, U. C., and Majhi, P., On a type of contact metric manifolds, Lobacheviskii Journal of Mathematics, 34(2013), 89-98.
[12] De, U. C., Murathan, C. and Arsalan, K., On the Weyl projective curvature tensor of an $N(k)$-contact metric manifold, Mathematica Panonoica, 21, 1 (2010), 129-142.
[13] De, Avik and Jun, J. B., On N(k)-contact metric manifolds satisfying certain curvature conditions, Kyungpook Math. J. 51, 4 (2011), 457-468.
[14] Deshmukh, S., Jacobi-type vector fields on Ricci solitons, Bull. Math. Soc. Sci. Math. Roumanie 55(103), 1 (2012), 41-50.
[15] Deshmukh, S., Alodan, H. and Al-Sodais, H., A Note on Ricci Soliton, Balkan J. Geom. Appl. 16, 1 (2011), 48-55.
[16] Friedan, D., Non linera models in $2+\epsilon$ dimensions, Ann. Phys. 163(1985), 318-419.
[17] Hamilton, R.S., The Ricci flow on surfaces, Mathematics and general relativity (Santa Cruz, CA, 1986), 237-262.Contemp. Math.71, American Math. Soc., 1988.
[18] Ivey, T., Ricci solitons on compact 3-manifolds, Diff. Geom. Appl. 3(1993),301307.
[19] Kowalski, O., An explicit classification of 3- dimensional Riemannian spaces satisfying $R(X, Y) . R=0$, Czechoslovak Math. J. 46(121)(1996), $427-474$.
[20] Kuhnel, W., Conformal transformations between Einstein spaces, Conform. Geometry. Aspects Math., 12(1988), Vieweg, Braunschweig, 105-146.
[21] Özgür, C., Contact metric manifolds with cyclic-parallel Ricci tensor, Diff. Geom. Dynamical systems, 4 (2002), 21-25.
[22] Özgür, C. and Sular, S., On $N(k)$-contact metric manifolds satisfying certain conditions, SUT J. Math. 44, 1 (2008), 89-99.
[23] Prakasha, D. G. and Hadimani, B. S., η-Ricci solitons on para-Sasakian manifolds, J. Geometry 108(2017), 383-392.
D. Kar, P. Majhi, U.C. De $-\quad \eta$-Ricci solitons on 3-dimensional . . .
[24] Szabó, Z. I., Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R=$ 0, the local version, J. Diff. Geom., 17(1982), 531-582.
[25] Tanno, S., Ricci curvature of contact Riemannian manifolds, Tohoku Math. J., 40(1988), 441-448.
[26] Yildiz, A. and De, U. C., A classification of (k, μ)-contact metric manifolds, Commun. Korean Math. Soc. 27(2012)(2), 327-339.
[27] Yano, K. and Bochner, S., Curvature and Betti numbers, Annals of mathematics studies, 32, Princeton university press, 1953.
[28] Yano, K., Concircular geometry I. concircular transformations, Proc. Imp. Acad. Tokyo 16 (1940), 195-200.

Debabrata Kar,
Department of Pure Mathematics, University of Calcutta, 35, Ballygaunge Circular Road, Kolkata 700019, West Bengal, India email: debabratakar6@gmail.com

Pradip Majhi
Department of Pure Mathematics, University of Calcutta, 35, Ballygaunge Circular Road, Kolkata 700019, West Bengal, India email: mpradipmajhi@gmail.com

Uday Chand De
Department of Pure Mathematics, University of Calcutta, 35, Ballygaunge Circular Road, Kolkata 700019,
West Bengal, India
email:uc_de@yahoo.com

