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n-RICCI SOLITONS ON 3-DIMENSIONAL N(K)-CONTACT
METRIC MANIFOLDS
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ABSTRACT. The object of the present paper is to study #-Ricci solitons on
3-dimensional N(k)-contact metric manifolds. First we consider ¢-concircularly
semisymmetric 7-Ricci soliton on 3-dimensional N (k)-contact metric manifolds. Be-
side these, we also study h-concircularly semisymmetric 7-Ricci soliton on 3-dimensional
N (k)-contact metric manifolds. Moreover we study concircularly semisymmetric 7-
Ricci soliton on 3-dimensional N (k)-contact metric manifolds. Finally, we construct
an example of a 3-dimensional N (k)-contact metric manifold which admits n-Ricci
solitons.
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1. INTRODUCTION

In 1982, R. S. Hamilton [17] introduced the notion of Ricci flow to find a canonical
metric on a smooth manifold. The Ricci flow is an evaluation equation for matrices
on a Riemannian manifold defined as follows:

0

Ricci solitons are special solutions of the Ricci flow equation (1) of the form
9ij = o ()" gij

with the initial condition g;;(0) = g;;, where 1), are deffeomorphisms of M and o(t)
is the scaling function.

A Ricci soliton is a natural generalization of Einstein metric. We recall the notion
of Ricci soliton according to [6]. On the manifold M Ricci soliton is a tuple (g, V, \)
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with g, a Riemannian metric, V' a vector field, called potential vector field, A a real
scalar and S is the Ricci tensor such that

Lyg+25+2Xg =0, (2)

where £ is the Lie derivative and X,Y are arbitrary vector fields on M. Metrics
satisfying (2) are interesting and useful in physics and are often reffered as quasi-
Einstein ([8],[9]). Compact Ricci solitons are the fixed points of the Ricci flow % g=
—25 projected from the space of metrics onto its quotient modulo diffeomorphisms
and scalings, and often arise blow-up limits for the Ricci low on compact manifolds.
The initial contribution in the direction is due to Friedan [16] Theoretical physicists
have also been looking into the equation of Ricci soliton in relation with string
theory. The fact that equation (2) is a special case of Einstein field equation.

The Ricci soliton is said to be shrinking, steady and expanding according as A is
negative, zero and positive respectively. Ricci soliton have been studied by several
authors such as ([11], [12], [14],[15],[17],[18]) and many others.

As a generalization of Ricci soliton, the notion of 7-Ricci soliton was introduced by
Cho and Kimura [10]. This notion has also been studied in [6] for Hopf hupersurfaces
in complex space forms. An n-Ricci soliton is a tuple (g, V, A, u), where V' is a vector
field on M, A, u are real scalars and ¢ is a Riemannian (or pseudo-Riemannian)
metric satisfying the equation

Lvg+25+2 g+ 2un®@n =0, (3)

where S is the Ricci tensor associated to g. In this connection we mention the
works of Blaga ([4],[5]) and Prakasha et. al. [23] on n-Ricci solitons. In particular,
if 4 = 0, then the notion of n-Ricci soliton (g, V, A, 1) reduces to the notion of Ricci
soliton (g, V, A). If pu # 0, then the n-Ricci soliton is named proper n-Ricci soliton.

A transformation of a (2n + 1)-dimensional Riemannian manifold M, which
transforms every geodesic circle of M into a geodesic circle, is called a concircu-
lar transformation ([20],[28]). A concircular transformation is always a conformal
transformation [20]. Here, geodesic circle means a curve in M whose first curvature
is constant and whose second curvature is identically zero. Thus, the geometry of
concircular transformations, i.e., the concircular geometry, is a generalization of in-
versive geometry in the sense that the change of metric is more general than that
induced by a circle preserving diffeomorphism (see also [1]). An interesting invariant
of a concircular transformation is the concircular curvature tensor Z. It is defined
by ([27],[28]).

- r

Z(X YW = ROCYIW = 5o b s [o(Y, W)X — g(X, W)Y, @)
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where X, Y, W € TM and r is the scalar curvature. Riemannian manifolds with
vanishing concircular curvature tensor are of constant curvature. Thus, concircular
curvature tensor is a measure of the failure of a Riemannian manifold to be of
constant curvature.

A Riemannian manifold is called locally symmetric [7] if VR = 0, where R is
the Riemannian curvature tensor of (M, g). A Riemannian manifold (M, g),n > 3,
is called semisymmetric if

RR=0

holds, where R denotes the curvature tensor of the manifold. It is well known
that the class of semisymmetric manifolds includes the set of locally symmetric
manifolds (VR = 0) as a proper subset. Semisymmetric Riemannian manifolds
were first studied by E. Cartan, A. Lichnerowich, R. S. Couty and N. S. Sinjukov.
A fundamental study on Riemannian semisymmetric manifolds was made by Z. 1.
Szabé [24] and O. Kowalski [19].

In a recent paper Yildiz et al. [26] studied ¢-Weyl semisymmetric and h-Weyl
semisymmetric (k, u)-contact manifolds. A (k, u)-contact manifold is said to be ¢-
Weyl semisymmetric if C.¢p = 0 and h-Weyl semisymmetric if C.h = 0, where C' is
the Weyl conformal curvature tensor.

Motivated by the above studies in the present paper we study ¢-concircularly
semisymmetric and h-concircularly semisymmetric n-Ricci solitons on 3-dimensional
N (k)-contact metric manifolds.

The present paper is organized as follows: After preliminaries in section 3, we
consider n-Ricci soliton on 3-dimensional N (k)-contact metric manifolds. In the next
two sections we study ¢-concircularly semisymmetric and h-concircularly semisym-
metric n-Ricci soliton on 3-dimensional N (k)-contact metric manifolds. Section 6
deals with the study of concircularly semisymmetric n-Ricci soliton on 3-dimensional
N (k)-contact metric manifolds. Finally, we construct an example of a 3-dimensional
N (k)-contact metric manifold admitting n-Ricci soliton.

2. PRELIMINARIES

A contact manifold is by definition an odd dimensional smooth manifold M?"+!
equipped with a global 1-form satisfying n A (dn)™ # 0 everywhere. It is well-known
that there exists a unique vector field &, the characteristic vector field for which
n(§) = 1 and igdn = 0. Further, one can find an associated Riemannian metric g
and a vector field ¢ of type (1,1) such that

N(X) = g(X,€),dn(X,Y) = g(X,9Y), 6" X = —X +n(X)¢ ()
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where X and Y are vector fields on M. From (5) it follows that

¢§ =0,m0¢=0,9(¢X,0Y) = g(X,Y) — n(X)n(Y). (6)

The manifold M?"*! together with the structure tensor (1, £, ¢, g) is called a contact
metric manifold ([1], [2]).

Given the contact metric manifold (M, n,&, ¢, g), we define a symmetric (1,1)-
tensor field h as h = %Lg(b, where L¢¢ denotes Lie differentiation in the direction of
&. We have the following identities ([1], [2]):

hé = 0,h¢ + ¢h = 0, (7)

Vx{=—¢X — ¢hX, (8)

Vep =0, (9)

R(§, X)¢ — ¢R(E,0X)E = 2(h* + ¢*) X, (10)

(Veh) X = ¢X — h*¢X + ¢R(¢, X )&, (11)

S(€,€) =2n — trh?, (12)

R(X,Y)§ = —(Vx®)Y + (Vy$)X — (Vxoh)Y + (Vyoh)X. (13)

Here, V is the Levi-Civita connection and R the Riemannian curvature tensor de-
fined by
R(X,Y)Z =VxVyZ - VyVxZ —Vxy|Z,

for all vector fields X,Y, Z on M.

If the characteristic vector field £ is a Killing vector field, the contact metric
manifold (M,n,§, ¢, g) is called K-contact manifold. This is the case if and only if
h = 0. Finally, if the Riemann curvature tensor satisfies

R(X,Y)¢ =n(Y)X —n(X)Y,

or, equivalently, if
(Vx9)Y =g(X,Y)§ —n(Y)X

holds, then the manifold is Sasakian. We note that a Sasakian manifold is always
K-contact, but the converse only holds in dimension three.
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The k-nullity distribution N (k) of a Riemannian manifolds is defined by [25]
Nk p = Ny(k) = {Z € TyM : R(X,Y)Z = klg(Y, )X — g(X, )]},

k being a real number. If the characteristic vector field £ € N(k), then we call a
contact metric manifold as N (k)-contact metric manifold [25]. If & = 1, then the
manifold is Sasakian and if £ = 0, then the manifold is locally isometric to the
product E"*1(0) x S™(4) for n > 1 and flat for n =1 [1].

However, for a N (k)-contact metric manifold M of dimension (2n + 1), we have

([, [21)

(Vx¢)Y = g(X +hX,Y)§ —n(Y)(X + hX), (14)

where h = %.,Eggb,
P = (k— 1)¢?, (15)
R(X,Y)¢ = k[n(Y)X —n(X)Y], (16)

S(X,)Y) = 2(n—1)g(X,Y)+2(n—1)g(hX,Y)

2nk —2(n — 1)n(X)n(Y), n>1. (17)

S(Y,€&) = 2nkn(X), (18)

(Vxn)(Y) = g(X + hX, ¢Y), (19)

(Vxh)(Y) ={(1 - k)g(X,9Y) + g(X, h¢Y )} +n(Y)[h(¢pX + #hX)],  (20)

for any vector fields X,Y,Z, where R is the Riemannian curvature tensor and S
is the Ricci tensor. N (k)-contact metric manifolds have been studied by several
authors such as ([13], [21], [22]) and many others.
The curvature tensor of a 3-dimensional Riemannian manifold is given by
RIX.Y)Z = [S(Y,2)X = S(X, 2)Y + g(Y, 2)QX — g(X, Z)QY]
r
—35lo(¥, 2)X — g(X, 2)Y], (21)
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where S and r are the Ricci tensor and scalar curvature respectively and @ is the
Ricci operator defined by g(QX,Y) = S(X,Y).

In [3] Blair et al. proved that in a three dimensional contact metric manifold
with £ belonging to the k-nullity distribution, the following conditions hold:

QX = (5 — WX + (3k — Hn(X)E, (22)
S(XY) = (5 = K)g(X,Y) + (3k = S)n(X)n(Y), (23)
Vxé=—-(1+a)pX, (24)

where o« = +£v/1 — k.

Lemma 1. [3] Let M? be a contact metric manifold with contact metric structure
(¢,€,1m,9). Then the following conditions are equivalent:

i) M? is n-Einstein

ii) Q¢ = 6Q

ii1) £ belongs to the k-nullity distribution.

Lemma 2. [3] Let M3 be a contact metric manifold on which Q¢ = ¢Q. Then
M3 is either Sasakian, flat or of constant &-sectional curvature k < 1 and constant
¢-sectional curvature —k.

3. m-RIccCI SOLITONS ON 3-DIMENSIONAL N (k) CONTACT METRIC MANIFOLDS

In this section we consider n-Ricci soliton on 3-dimensional N (k)-contact metric
manifolds. Then

(Leg)(X,Y) = Leg(X,Y) = g(£eX,Y) — g(X, £¢Y)
£9(X,Y) —g([§, X],Y) — (X, [§,Y]) — 9(X, [§,Y])
= Veg(X)Y) = g(VeX,Y) + 9(VxE,Y) — g(X, VeY)
+9(X, Vy,§)
= (Veg)(X,Y) +9(VxEY) + 9(X, Vy€)
9(Vx&Y) + g(X, Vy€)
g(—dX — phX.Y) + g(X, —¢Y — ¢hY)
= —g9(¢X,Y) = g(ohX,Y) — g(X,9Y) — g(X,phY).  (25)
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Then for n-Ricci soliton,
Leg +254+2Mg+2um@n =0, (26)

from which we get

28(X,Y) = —(£eg)(X,Y) = 20g(X,Y) = 2un(X)n(Y)
= g(¢X,Y) +g(ohX,Y) + g(X,9Y) + g(X, 9hY)
—2X9(X,Y) = 2un(X)n(Y)
= 29(¢hX,Y) —2Ag(X,Y) — 2un(X)n(Y), (27)

from which it follows that

S(X)Y) = g(ohX)Y) = Ag(X,Y) — un(X)n(Y)
—g(hX,0Y) = Ag(X,Y) — un(X)n(Y). (28)

Again from (28), we have
QX = 6hX — AX — un(X)¢. (29)
In view of (28) we can state the following:

Theorem 3. The Ricci tensor in 3-dimensional N (k)-contact metric manifolds ad-
mitting n-Ricci soliton is given by (28).

4. ¢-CONCIRCULARLY SEMISYMMETRIC 7)-RICCI SOLITON ON 3-DIMENSIONAL
N (k)-CONTACT METRIC MANIFOLDS

Let us suppose that the manifold be ¢-concircularly semisymmetric. Then we have
Z.¢ =0, (30)
where Z is the concircular curvature tensor given by
Z(U, V)W = R(U, V)W — %[g(V, WHU — (U, W)V]. (31)
From (30), it follows that

Z(U V)W — ¢(Z(U, V)W) = 0. (32)
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Using (31) in (32) we get
R(U,V)$W — 6(R(U,VIW) = Zlg(V. W)U — g(U, 6W)V]
+5lg(V,W)oU — g(UW)V] = 0. (33)
Now, from (21) we obtain
RWU V)W = g(hV,W)U — g(hU, W)V — [¢hU — (2A + g)U

—n(U)Elg(V.oW) + [~9hV + 2\ + S)V

+un(V)§Elg(U, oW). (34)
and
H(RUVIW) = —g(hV, oW )oU + g(hU, pW)pV + [—hU
—(2A+ 5)OUlg(V.W) = [hV + (2A+ 5)oV]g(U. W)
—n(V)n(W)oU + pn(U)n(W)oV. (35)

Using (34) and (35) in (33) yields
g(RV. W)U = g(hU, W)V = [hU — (2X + 5)U = pm(U)Elg(V, 6W)
=GRV + (20 + )V 4+ (V)E|g(U, 6W) + g(hV, sW)6U — g(hU, oW )gV
—[=hU — (2X+ 5)6Ulg(V, W) + [bV + 2\ + 5)6V]g(U, W)
+un(V)n(W)eU — un(U)n(W)eV = Zlg(V.oW)U = g(U, gW)V]
+2lg(V.W)6U — g(U, W)6V] = 0. (36)
Taking inner product of (36) we obtain
g(hV. W)g(U, X) = g(hU, W)g(V. X) — [g(#hU. X) = (2A+ 5)9(U. X)

—m(U)n(X)]g(V.oW) + [~g(¢hV. X) + (2A+ 5)g(V, X)
+un(V)n(X)]g(U, W) + g(hV, oW)g(oU, X) — g(hU, oW )g(oV, X)
~[=g(hU. X) = (2A+ )(@U. X)lg(V. W) + [g(hV. X)

A+ DOV, X)lg(U, W) + an(V)n(W)g(6U, X)
(U n(W)g(@V, X) = £[g(V,6W)g(U, X) — g(U, oW )g(V, X)]
+5lo(V.W)(6U, X) = g(U, W) (V. X)] = 0. (37)
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Contracting over V, W in (37) we get
9(U. X)trh — g(bU, X) ~ [g(6hU, X) — (22 + 3)g(U, X) = un(U)n(X)}tre
—~g(héX,6U) — (2X + 5)g(8U. X) + g(he;, er)g(6U, X)
~9(9hU, 6X) = 3[=g(hU. X) — (22 + 2)g(6U, X)] + g(hX.U)

~(2A+ )g(0X. V) ~ £ltrdg(U.X) +g(6U, X))
+[39(8U, X) + 96X, U)] + pg(oU, X) + pm(U)g(#X. €) = 0, (38)
from which it follows that
3g(hU, X) + (6) + %T + 1)g(6U, X) = 0. (39)
Substituting U = ¢U in (39) yields
_3S(U. X) — (9A+ % + Wg(U, X) + (61 + 53l Con(Un(X) =0.  (40)
In view of (40) we obtain
S(X,U) = ag(X,U) + bn(X)n(U), (41)
where
a:—%(g)\+%+,u), b:%(eﬁ%’”—zm. (42)

Hence we conclude the following:

Theorem 4. A ¢-concircularly semisymmetric n-Ricci soliton on a 3-dimensional
N(k)-contact metric manifold is n-FEinstein.

Comparing (23) with (41), we get
ag(X,¥) +bn(X)n(Y) = (5 = K)g(X.Y) + (3k = Dn(X)m(Y). (43)
Contracting over X, Y in the above equation we have
3a+b=r. (44)
Putting X =Y = ¢ in (43) we get

a+b=2k. (45)
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Using (42) in (44), (45) respectively we obtain
21\ — By = —13r. (46)
and
A+ = —2k. (47)

Solving the equations (46) and (47) we infer

13r + 10k 137 — 42k

A=
2 H 2

Thus we can state the following:

Theorem 5. A ¢-concircularly semisymmetric n-Ricci soliton on a 3-dimensional
N (k)-contact metric manifold is of the type (g,&, —13T;610k, 137’2_642’“).

5. h-CONCIRCULARLY SEMISYMMETRIC 7)-RICCI SOLITON ON 3-DIMENSIONAL
N (k)-CONTACT METRIC MANIFOLDS

This section deals with h-concircularly semisymmetric n-Ricci soliton on 3-dimensional
N (k)-contact metric manifold. Then we have

Z.h=0, (49)
From (49), it follows that
Z(U, VAW — h(Z(U, V)W) = 0. (50)
Making use of (31) in (50) we have
R(U, VAW — h(R(U, V)W) — g[g(V, WU — (U, hW)V]
+%[g(V, W)U — g(U, W)hV] = 0. (51)
From (29) we have
QU = —hgU — \U — u(U)e. (52)
Then from (52) it follows that

hQU) = (k — 1)¢U — AhU. (53)
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Now, from (21) we obtain

hR(U, VW) = —g(hV, ¢W)hU + g(hU, ¢W)RV + [(k — 1)¢U
—(2\ + )hU] (V,W) = [(k—1)pV — (2A + )hV] (U,W)
—pun(V)n (W)hU + pn(U)n(W)hV. (54)
and

RU V)W = (1—k)g(V,oW)U + (k= 1)g(U, pW)V + [phU — (2 + %)U

—pn(U)Elg(V; hW) — [phU — (21 + )U pn(U)Elg(V, AW).
(55)
Using (54) and (55) in (51) we get

(1= R)g(V.oW)U + (k = Dg(U, oWV + [hU — 2\ + 5)U

—pn(U)Elg(V, W) — [phV — (2A + )V pn(V)Elg(U, hV)

+g(hV, sW)RU — g(hU, 6W)RV — [(k — 1)¢U — (2 + )hU] (V, W)

+[(k = 1)V — (21 + )hV] (U W) + un(V)n(W)hU — pm(U)n(W)rV
f%[g(V, hW)U — g(U, kW) V] + %[Q(V, W)U — g(U,W)RV] =0.  (56)

Taking inner product of (56) we infer

(k= 1)g(eV,W)g(U, X) — (k — 1)g(oU, W)g(V, X) + [g(¢hU, X)
—(2\ + 5)g(U, X) = um(U)n(X)]g(V. kW) = [g(6hV. X)
)

)
—(2A+ D)g(V. X) = un(V)n(Olg(hU, W) + g(hV. oW )g (hU, X)
+9(hU, W)g(hV, X) = [(k = 1)g(6U, X) = (2A + 2)h(hU, X)]g(V, W)
(k= D)g(oV. X) = A+ SRV, X)g(U, W) + n(V )n(Wg(hU, X)
= (U)n(W)g(V, hX) = £lg(V.hW)g(U, X) = g(U. AW )g(V, X)]
+Elo(V.W)g(hU, X) — (U W)g(hV. X)) = 0. (57)
Contracting over V, W in (57) yields
2(k — 1)g(¢X,U) + (61 + 2r + p)g(hU, X) = 0. (58)
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Substituting X = ¢X in (58) we obtain

(6A+2r +0)S(U, X) = —[2(k—1)+ A6X+2r + p)]g(U, X) + [2(k — 1)
—p(6A + 27 + ) |n(U)n(X). (59)

From (59) it follows that

where
2(k—1) 2(k —1)
=\ — b= ——~2 1
6X+2r +p’ 6N+ 2r + p (61)

Thus we can state the following:

Theorem 6. A h-concircularly semisymmetric n-Ricci soliton on a 3-dimensional
N (k)-contact metric manifold is n-FEinstein.

6. CONCIRCULARLLY SEMISYMMETRIC 7)-RICCI SOLITON ON 3-DIMENSIONAL
N (k)-CONTACT METRIC MANIFOLDS

This section is devoted to study of conformally semisymmetric n-Ricci soliton on
3-dimensional N (k)-contact metric manifolds. Then

R.Z =0. (62)
This implies

R(X,V)Z(U V)W — Z(R(X,Y)U,V)W — Z(U, R(X,Y)V)W
~Z(U,V)R(X, Y)W = 0. (63)

From the equation (63) we get
R(X,Y)R(U,V)W — f[g(v W)R(X,Y)U — g(U,W)R(X,Y)V]
~R(R(X,Y)U, V)W + — [g( W)R(X,Y)U — g(R(X,Y)U,W)V]
~R(U, R(X,Y)V)W + 6[g(R(X, V)V, W)U — g(U,W)R(X,Y)V]

—R(U,V)R(X, Y)W + 6[ g(V, R(X,Y)W)U — g(U, R(X,Y)W)V] =0.  (64)
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Putting X = U = £ in (64) we obtain
~REVIREYIW + ¢ [g(REYIV,W)E + g(R(E YW, V)E
—9(R(&,Y)E W)V —n(R(§, Y)W)V] = 0. (65)
Putting X = ¢ in (21) yields

R(EVIW = S(V,W)E+ (A + m)n(W)V = (A + p)g(V,W)E —n(W)QV
—Slo(V.W)E = n(W)V]. (6)

Now

R(&Y)RE, V)W = 5( )R(f Y)§+ A+ p)n(W)R(E,Y)V

’I"

14 (V ) (&, Y)E = n(W)R(E,Y)V]. (67)

Using (6.6) in (6.4) we have
A+ p)Y —n(W)R(E,Y)QV + S(R(,Y)E, W)V + kg(V,W)QY
—S((R(&,Y)V,W)E +77( ) (R(&Y)V) = S(R(& Y)W, V)¢
A+ un(RE Y)WV + 5 ==k (Y)n(W)V
+kg(Y, W)V —n(R(E,Y)W)V] = 0. (68)
Now
S(REY)EW)V = kn(Y)SW,§)V — ES(X, W)V
= —kA+p)n(W)n(Y)V — kS(X, W)V. (69)
Using (69) in (68) yields

k(A + p)g(V.W)Y = q(W)R(E,Y)QV = KA+ = SIn(¥ n(W)V
Thg(V.W)QY + n(W)Q(R(EYIV) = (A + 5 n(R(EY )W)V
+%9(Y, WV — kS(Y,W)V — S(R(£,Y)V, W)¢E

—S(R(&, Y)W, V) =0. (70)
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Substituting V' = £ in (70) we obtain
2k(A+ (W)Y — [(k+ 1) (A + 1) — (Y )n(W)E

2
T U(REYIW)E+ T gy, W)E = 0. ()
Now,
N(REYIW) = S, W)+ 20+ (¥ (W) = A+ p)g(Y. W)
—Slg (Y. W) = (Y )n(W)). (72)

With the help of (72), from (71) we get

r 7"2
2k(A+ w)nW)Y = [(A+p)(r+k+1) = 5+ —[n(Y)n(W)§

2 4
roor2 kr r
Ho L+ Mg we - Lsrwe = o (73)
Contracting W in (73) we have
4k(k —1)

= —° 74
kE+1 (74)

Taking inner product of (73) with respect to & and then using (74) yields
S(Y,W) = ag(Y, W) + bn(Y)n(W), (75)

where
2
- k42

o — m’ b— w (76)

E+1
Thus we can state the following:

k—1

Theorem 7. A concircularly semisymmetric n-Ricci soliton on a 3-dimensional
N (k)-contact metric manifold is n-FEinstein.

Hence from Lemma 2 and Theorems 4, 6, 7 we have the following;:

Proposition 1. A ¢-concircularlly semisymmetric, h-concircularlly semisymmet-
ric and concircularlly semisymmetric n-Ricci soliton on 3-dimensional N(k)-contact

metric manifold satisfies Q¢ = ¢Q.

Moreover from Lemma 2 and Theorems 4, 6, 7 we are in a position to state the
following:

Theorem 8. A ¢-concircularlly semisymmetric, h-concircularlly semisymmetric
and concircularlly semisymmetric n-Ricci soliton on 3-dimensional N(k)-contact
metric manifold is either Sasakian, flat or of &-sectional curvature k < —1 and
constant ¢-sectional curvature —k.
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7. EXAMPLE

We consider the 3-dimensional manifold M = {(z,y,z) € R3, (x,y,2) # (0,0,0)},
where (z,y, z) are the standard coordinate in R3. Then ey, ey, e3 are three linearly
independent vector fields in R? and

le1,ea] = (1 + a)es, [e2,e3] =2e; and [e3,e1] = (1 — a)es,

where o # £1 is a real number.
Let g be the Riemannian metric defined by

gler,e3) = g(ez,e3) = gler,e2) =0, gler,er) = g(ea,e2) = g(es, e3) = 1.
Let n be the 1-form defined by
n(U) = g(U,e1)

for any U € x(M). Let ¢ be the (1,1)-tensor field defined by

pe1 =0, ges =e3, des3 = —e.

Using the linearity of ¢ and g we have
77(61) =1,

¢*(U) = ~U +n(U)ex
and
9(eU, oW) = g(U, W) —n(U)n(W)
for any U, W € x(M). Moreover

he; =0, hes = aes and heg = —aes.

The Riemannian connection V of the metric tensor g is given by Koszul’s formula
which is given by,

29(VxY,2) = Xg(Y,2)+Yg(Z,X) - Zg(X,Y)
_g(Xv [Yv Z]) - g(Yv [X7 Z]) +g(Z7 [X7 Y])

Using Koszul’s formula we get the following:

Ve e1 =0, Ve €2 =0, Ve e3 =0,
Ve,e1 = —(1+a)es, Ve,ea=0, Veez3=(1+a)e,
Vese1 = (1 —a)ea, Veea=—(1—a)er, Vees3=0.
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In view of the above relations we have
Vxé=—0X —¢phX, for e =¢

Therefore the manifold is a contact metric manifold with the contact structure

(,&,m,9).

Now, we find the curvature tensors as follows:

R(ey,e2)es = (1 — a2)€1, R(es,e2)ea = —(1 — a2)63,
R(ey,e3)es = (1 — 042)61, R(ea,e3)es = —(1 — a2)eg,
R(ea,e3)e1 =0, Rlep,ez)er = —(1— a2)62, R(es,e1)er = (1 — a2)e3.

In view of the expressions of the curvature tensors we conclude that the manifold
is a N(1 — a?)-contact metric manifold.

Using the expressions of the curvature tensor we find the values of the Ricci
tensors as follows:

S(e1,e1) :2(17a2), S(eg,e2) =0, S(es,e3) =0.

From (28) we obtain S(ej,e;) = —(A + p) and S(eg,e2) = S(es,e3) = —A.
Therefore A = 0 and p = 2(a? — 1). The data (g, &, A\, 1) defines an 7-Ricci soliton
on 3-dimensional N (k)-contact metric manifold.
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