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YONEDA LEMMA: COMPLETE ENUNCIATION AND PROOF
(INCLUDING THE OCCURRENCE OF THE EMPTY SET

SITUATION

I. Chiţescu

Abstract. A central result in Category Theory is the Yoneda Lemma. The
enunciation and proof of this lemma exhibited here are complete, including the
situation (generally not taken into account in standard literature) when some of the
occurrent sets are empty. An example illustrating the aforementioned situation is
introduced.
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1. Introduction

The present paper is dedicated to a systematic and methodical discussion pertaining
to the Yoneda Lemma (abbreviated in this Introduction YL). Namely our (limited)
goal is to exhibit a rigorous enunciation and a rigorous proof (followed by an exam-
ple) taking into account all possible situations, namely including the cases when sets
which are empty appear (these cases are generally neglected in all standard texts).

YL is a fundamental result of Category Theory. It establishes a bijection (valid
for any functor F and any object A between the set of natural transformations from
the standard functor HA (respectively hA) to F and the image F (A). YL constitutes
the basis of the representability theory of functors and allows the embedding of any
locally small category C into the category of contravariant functors from C to Ens.
YL remains valid for preadditive categories.

The Japanese mathematician Nobuo Yoneda (28 March 1930 - 22 April 1996)
stated YL in his paper [7]. Namely, the lemma is contained (and essentially proved)
in a remark in the proof of some results concerning R−modules in the aforementioned
paper (so, an explicit enunciation and an explicit proof do no appear in [7]). The
real public history of YL originated in an interview of Nobuo Yoneda by Saunders
Mac Lane (who proposed the name “Yoneda Lemma”) at the Paris Gare du Nord
in 1954 (see also [5]). It seems that YL was stated in print for the first time in [3].
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A brief survey of the content of the present paper follows. In the first part
following this Introduction, some necessary prerequisites appear (notations and basic
notions) and, afterwards, we state and prove YL in a complete manner (see the
beginning of the Introduction). The final part of the paper is dedicated to an
example where we explicitely compute the functorial morphisms appearing in YL,
putting into evidence the empty set situations. Reference texts for Category Theory
used: the famous standard monograph [6] and the remarkable text [4] (unfortunately
not translated).

2. The Yoneda Lemma (Enunciation and Proof)

As usual, in the sequel ∅ will be the empty set.
Let C be a category. The class of all objects in C is Ob(C). If A, B are in Ob(C),

the class of all morphisms f : A → B is denoted by Hom(A,B). The unit of A is
1A ∈ Hom(A,A). In case Hom(A,B) is a set for any A, B in Ob(C) we say that
the category C is locally small.

Assume that C and C′ are given categories and let F : C → C′, G : C → C′ be two
covariant (respectively contravariant) functors.

A functorial morphism (natural transformation –alternative name) f : F → G is
a family (fY )Y ∈Ob(C) of C′−morphisms having the following property: for any Y , Z
in Ob(C) and any u in Hom(Y,Z) (respectvely any u in Hom(Z, Y )), the following
diagram is commutative:

F (Y )
fY−−→ G(Y )

F (u) ↓ ↓ G(u)

F (Z)
fZ−→ G(Z)

(i.e. G(u) ◦ fY = fZ ◦ F (u)).
Recall that Ens (many authors write Set instead of Ens) is the locally small

category having all the sets as objects and all the functions as morphisms (i.e. for
any sets A, B, one has Hom(A,B) =all the functions f : A→ B)

Continuing to speak about Ens, we shall recall some technical details about
functions. In the spirit of the fundamental definitions (see e.g. [1]), we recall that,
if A, B are sets, a function f : A→ B is a set f ⊂ A×B (i.e. f is a correspondence
between A and B) such that:

a) If a ∈ A and b1 ∈ B, b2 ∈ B, one has the implication

((a, b1) ∈ f and (a, b2) ∈ f)⇒ (b1 = b2)

(i.e. the correspondence is functional).
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b) One has the equality

{a ∈ A | There exists b ∈ B such that (a, b) ∈ f} = A

(i.e. the domain of f is A).
For f : A → B, x ∈ A and y ∈ B such that (x, y) ∈ f one usually writes

y = f(x), arriving at “normal” facts.
Let f : A → B be a function. We have the equivalence (f = ∅) ⇔ (A = ∅)

and the implications (B = ∅) ⇒ (A = ∅) ⇒ (f = ∅). So, we can write ∅ : ∅ → ∅,
hence ∅ = 1∅, consequently Hom(∅, ∅) = {1∅} (and Hom(A,A) 6= ∅ for any set A).
If f : A→ B and g : B → C, one can compute g ◦ f : A→ C in Ens. We have the
implications (A = ∅) ⇒ (f = ∅) ⇒ (g ◦ f = ∅) and also (B = ∅) ⇒ (A = ∅), hence
(B = ∅) ⇒ (f = g = ∅). Finally notice that (C = ∅) ⇒ (B = ∅) a. s. o. So, if one
of the sets A, B, C is empty , one has g ◦ f = ∅.

Now, let us consider a locally small category C and let X in Ob(C). We shall recall
the definition of the standard covariant functor
HX : C → Ens (respectively contravariant functor hX : C → Ens).

The action of HX (respectively hX) is described in the sequel. On objects: for

any A in Ob(C), HX(A)
def
== Hom(X,A) (respectively hX(A)

def
== Hom(A,X)). On

morphisms: take A, B in Ob(C) such that Hom(A,B) 6= ∅, let u ∈ Hom(A,B) and
define

HX(u) : HX(A) = Hom(X,A)→ Hom(X,B) = HX(B)

(respectively

hX(u) : hX(B) = Hom(B,X)→ Hom(A,X) = hX(A))

as follows.
If Hom(X,A) = ∅ (respectively Hom(B,X) = ∅), define HX(u) = ∅ (re-

spectively hX(u) = ∅). If Hom(X,A) 6= ∅ and t ∈ Hom(X,A) (respectively
Hom(B,X) = ∅ and t ∈ Hom(B,X)) define HX(u)(t) = u ◦ t, according to the

schema X
t−→ A

u−→ B (respectively hX(u)(t) = t ◦ u, according to the schema

A
u−→ B

t−→ X) .
The present notations are not standard. Many authors write hX or Hom(X,−)

instead of HX (respectively hX or Hom(−, X) instead of hX).
Now, let us consider a locally small category C and a covariant (respectively

contravariant) functor F : C → Ens. We shall consider the class Hom(HX , F )
(respectively Hom(hX , F ) of all functorial morphism f : HX → F (respectively
f : hX → F ). Such f has the form f = (fA)A∈Ob(C), where, for any A in Ob(C),
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fA : HX(A)→ F (A) (respectively fA : hX(A)→ F (A) and the diagram

Hom(X,A)
fA−→ F (A)

HX(u) ↓ ↓ F (u)

Hom(X,B)
fB−−→ F (B)

(1)

(respectively

Hom(A,X)
fA−→ F (A)

hX(u) ↓ ↓ F (u)

Hom(B,X)
fB−−→ F (B)

(1′))

is commutative, for any A, B in Ob(C) such that Hom(A,B) 6= ∅ (respectively
Hom(B,A) 6= ∅) and any u ∈ Hom(A,B) (respectively u ∈ Hom(B,A)).

The commutativity of the diagram (1) (respectively (1′)) is guaranteed in case
one of the sets Hom(X,A), Hom(X,B), F (A), F (B) (respectively Hom(A,X),
Hom(B,X), F (A), F (B)) is empty, according to the preceding facts. In case
Hom(X,A) 6= ∅ (respectively Hom(A,X) 6= ∅), the commutativity of the schema
(1) (respectively (1′) means that, for any X

x−→ A
u−→ B (respectively B

u−→ A
x−→ X

in C one has

F (u) (fA(x)) = fB(u ◦ x) (respectively F (u) (fA(x)) = fB(x ◦ u)). (2)

Lemma 1 (Yoneda Lemma). Let C be a locally small category and assume that
F : C → Ens is a covariant (respectively contravariant) functor. Then, for any X in
Ob(C), either the sets F (X) and Hom (HX , F ) (respectively F (X) and Hom (hX , F ))
are simultaneously empty, or the sets F (X) and Hom (HX , F ) (respectively F (X)
and Hom (hX , F )) are simultaneously not empty.

In the last case, there exists a bijection aX : Hom (HX , F )→ F (X) (respectively
aX : Hom (hX , F ) → F (X)) which acts as follows: for any f = (fA)A∈Ob(C) in
Hom (HX , F ) (respectively Hom (hX , F )), one has

aX(f) = fX (1X) .

The inverse of aX is the bijection bX : F (X) → Hom (HX , F ), (respectively
bX : F (X) → Hom (hX , F )) and will be described in the sequel. Take an arbi-
trary t ∈ F (X). Then bX(t) = (fA)A∈Ob(C) where, for any A in Ob(C), one has fA :
Hom(X,A)→ F (A) (respectively fA : Hom(A,X)→ F (A)). In case Hom(X,A) =
∅ (respectively Hom(A,X) = ∅), one has fA = ∅. In case Hom(X,A) 6= ∅
(respectively Hom(A,X) 6= ∅), fA acts upon x ∈ Hom(X,A) (respectively x ∈
Hom(A,X)), via

fA(x) = F (x)(t).
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Proof. Take an arbitrary X in Ob(C).
1. Assume first that F (X) is empty. Then Hom(HX , F ) (respectively Hom(hX , F ))

must be empty. Indeed, in the contrary case, take f = (fA)A∈Ob(C) in Hom (HX , F )
(respectively in Hom (hX , F )). Then fX : Hom (X,X) → f(X) and fX (1X) ∈
F (X), contradiction. We proved the implication

(F (X)=∅)⇒(Hom (HX , F )=∅ (respectively Hom (hX ,F )=∅)) . (3)

2. Now, assume that F (X) is not empty. For any t ∈ F (X), let us perform
the construction of bX(t) indicated in the enunciation. We must show that bX(t) =
(fA)A∈Ob(C) is in Hom (HX , F ) (respectively in Hom (hX , F )). To this end, we take
A, B in Ob(C) such that Hom(A,B) 6= ∅ (respectively Hom(B,A) 6= ∅).

In case F is covariant, we must show (see (2)) that for any u : A→ B in C and any
x : X → A in C (hence we work for Hom(X,A) 6= ∅) one has F (u) (fA(x)) = fB(u ◦
x), which means F (u)(F (x)(t)) = F (u ◦ x)(t), i. e. (F (u) ◦ F (x))(t) = F (u ◦ x)(t),
obvious.

In case F is contravariant, we must show (see (2)) that for any
u : B → A in C and any x : A → X in C (hence we work for Hom(A,X) = ∅), one
has F (u) (fA(x)) = fB(x ◦ u), which means F (u)(F (x)(t)) = F (x ◦ u)(t), i.e.(F (u) ◦
F (x))(t) = f(x ◦ u)(t),
obvious.

We succeeded in defining the function bX : F (X)→ Hom (HX , F ) (respectively
bX : F (X)→ Hom (hX , F )) in case F is covariant (respectively contravariant) acting
via t 7→ bX(t). This shows that
Hom (HX , F ) (respectively Hom (hX , F )) is not empty, in case F (X) is not empty.
Consequently, we also proved the implication

(Hom (HX , F ) = ∅ (respectively Hom (hX , F ) = ∅))⇒ (F (X) = ∅). (4)

The equivalence given by (3) and (4) shows that the sets F (X) and Hom (HX , F )
(respectively F (X) and Hom (hX , F )) are either simultaneously empty, or simulta-
neously not empty.

3. Assume that F is covariant and Hom (HX , F ) is not empty (respectively
F is contravariant and Hom (hX , F ) is not empty), hence F (X) is not empty.
We can construct the function aX : Hom (HX , F ) → F (X) (respectively aX :
Hom (hX , F )→ F (X)) via

aX(f) = fX (1X)

where f = (fA)A∈Ob(C) is arbitrarily taken in Hom (HX , F ) (respectively Hom (hX , F )).

4. The final step of our proof will consist in showing that the functions aX and
bX are mutually inverse. Hence, we must show that:
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a) For any t ∈ F (X) one has aX (bX(t)) = t.
b) One has bX (aX(f)) = f , for any f ∈ Hom (HX , F ) in case F is covariant

(respectively, for any f ∈ Hom (hX , F ), in case F is contravariant).
Proof of a)
Take t ∈ F (X) and construct bX(t) = f = (fA)A∈Ob(C) as in the enunciation.
In case F is covariant and Hom (X,A) 6= ∅, which is the case of Hom (X,X)

(respectively in case F is contravariant and Hom (A,X) 6= ∅, which is the case of
Hom (X,X)), we have fA : Hom (X,A) → F (A) (respectively fA : Hom (A,X) →
F (A)), acting via fA(x) = F (x)(t), for any x ∈ Hom (X,A) (respectively x ∈
Hom (A,X)). Hence aX (bX(t)) = aX(f) = fX(1X) = F (1X)(t) = 1F (X)(t) = t.

Proof of b)
In case F is covariant (respectively contravariant) we take arbitrarily f = (fA)A∈Ob(C)

in Hom (HX , F ) (respectively Hom (hX , F )), then construct t = aX(f) = fX(1X)
and finally we construct bX (aX(f)) = bX(t) = g = (gA)A∈Ob(C). We must prove
that g = f , i.e. fA = gA for any A ∈ Ob(C). Notice that fA = gA = ∅ in case
Hom (X,A) = ∅ (respectively in case Hom (A,X) = ∅).

So, in case F is covariant respectively contravariant), to prove that f = g
means to prove that, for any A in Ob(C) such that Hom (X,A) 6= ∅ (respectively
Hom (A,X) 6= ∅)and for any x ∈ Hom (X,A) (respectively x ∈ Hom (A,X)), one
has gA(x) = fA(x). For such x one has x : X → A (respectively x ∈ A → X) in C
and one can consider the commutative diagram

Hom(X,X)
fX−−→ F (X)

HX(x) ↓ ↓ F (x)

Hom(X,A)
fA−→ F (A)

(5)

(respectively

Hom(X,X)
fX−−→ F (X)

hX(x) ↓ ↓ F (x)

Hom(A,X)
fA−→ F (A)

(5′))

Using (5) (respectively (5′) for 1X ∈ Hom (X,X), we obtain

F (x) (fX (1X)) = fA (HX(x) (1X)) . i.e. F (x)(t) = fA (x ◦ 1X) = fA(x)

(respectively

F (x) (fX (1X)) = fA (hX(x) (1X)) . i.e. F (x)(t) = fA (1X ◦ x) = fA(x)).

But, according to the construction of g = bX(t), one has for x ∈ Hom (X,A)
(respectively Hom(A,X)) the equality gA(x) = F (x)(t). This shows that gA(x) =
fA(x).
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The proof is complete. �
Remark. Applying the Yoneda Lemma for the functor F = HY (respectively

F = hY ) one obtains, for any two objects X, Y in Ob(C), a canonical bijection
between the sets Hom (HX , HY ) and Hom (Y,X) (respectively Hom (hX , hY ) and
Hom (X,Y )). This procedure was used in [2] in order to obtain, e. g., an abstract
representation of the dual X ′ of a topological vector space X.

3. Example (Yoneda Lemma in Action)

We exhibit an application of the Yoneda Lemma to an example where all kind of
sets which are empty appear.

First we introduce the category C with Ob(C) = {0, 1, 2} and such that Hom(0, 1) =
{u}, Hom(1, 2) = {v}, Hom(0, 2) = {w},
Hom(i, j) = ∅, whenever i > j and Hom(i, i) = {1i}, i = 0, 1, 2.

The basic composition rule is w = v ◦ u.
See the following commutative diagram which illustrates C

0 −−u−→ 1
↘ w ↓ v

2

(we also have, of course the compulsory rules u = u ◦ 10 = 11 ◦u, v = v ◦ 11 = 12 ◦ v,
w = w ◦ 10 = 12 ◦ w). The reader can see that C is the category generated by the
totally ordered set {0, 1, 2}.

Next, we construct a covariant functor F : C → Ens. To this end, consider
two non empty sets A, B and an arbitrary function ϕ : A → B. The functor

F : C → Ens acts as follows. First, on objects: F (0)
def
= ∅, F (1)

def
= A, F (2)

def
= B.

Next, on morphisms: F (u) = ∅, F (v) = ϕ, F (w) = ∅, F (10) = ∅, F (11) = 1A,
F (12) = 1B.

Explanations (F is correctly defined as a covariant functor):
u : 0→ 1⇒ F (u) : F (0) = ∅ → F (1) = A, hence F (u) = ∅,
v : 1→ 2⇒ F (v) : F (1) = A→ B = F (2) and we can take F (v) = ϕ : A→ B.
w : 0→ 2⇒ F (w) : F (0) = ∅ → F (2) = B, hence F (w) = ∅.
F (10) = 1F (0) = 1∅ = ∅; F (11) = 1F (1) = 1A; F (12) = 1F (2) = 1B.
Notice that the relation F (v ◦ u) = F (v) ◦ F (u) is true because

F (v ◦ u) = F (w) = ∅ and F (v) ◦ F (u) = ϕ ◦ ∅ = ∅.
The assertion in the Yoneda Lemma will be checked via inspection, computing

all Hom (HX , F ), X ∈ Ob(C).
For X = 0, we have F (0) = ∅ and we have seen that Hom (H0, F ) = F (0) = ∅.
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Next, we shall obtain the bijections between A = F (1) and
Hom (H1, F ) (respectively, between B = F (2) and Hom (H2, F )), stipulated in
the Yoneda Lemma, computing Hom (H1, F ) and Hom (H2, F ).

Specifically, for i = 1 or i = 2, an element f ∈ Hom (Hi, F ) will be a family
f =

(
f i
t

)
i∈I , where I = {0, 1, 2} and f i

t : Hom (i, t) → F (t), t = 0, 1, 2 are function
such that the following diagram is commutative

Hom(i, s)
f i
s−→ F (s)

Hi(x) ↓ ↓ F (x)

Hom(i, t)
f i
t−→ F (t)

(6)

whenever x ∈ Hom(s, t), s, t being in {0, 1, 2}. So, the situations when s > t (i.e.:
s = 1, t = 0; s = 2, t = 0; s = 2, t = 1), implying Hom(s, t) = ∅, will not be taken
into accont.

Case i = 1 (f ∈ Hom(H1, F ) has the form f =
(
f1
0 , f

1
1 , f

1
2

)
).

Using diagram (6) for i = 1, one sees that, if s = 0, one has Hom(1, 0) = ∅,
hence f1

0 = ∅ and (6) is commutative for any f1
t , t = 0, 1, 2.

Taking s = 1, we have either t = 1 or t = 2. If s = t = 1, one has in
(6) x : 1→ 1, hence x = 11. Because Hom(1, 1) = {11} one must have(

F (11) ◦ f1
1

)
(11) =

(
f1
1 ◦H1 (11)

)
(11), i.e.

1A
(
f1
1 (11)

)
= f1

1 (H1 (11) (11)) = f1
1 (11). This is true for any value f1

1 (11) =
a ∈ A.

If s = 1, t = 2 one has in (6) x : 1 → 2, hence x = v. Again Hom(1, 1) = {11}
and, because F (v) = ϕ, one must have(

ϕ ◦ f1
1

)
(11) =

(
f1
2 ◦H1(v)

)
(11), i.e.

ϕ
(
f1
1 (11)

)
= f1

2 (H1(v) (11)) = f1
2 (v ◦ 11) = f1

2 (v).

The remaining case is s = 2, t = 2, hence in (6) x : 2 → 2, i.e. x = 12.
Because Hom(1, 2) = {v}, one must have

(
F (12) ◦ f1

2

)
(v) =

(
f1
2 ◦H1 (12)

)
(v), i.e.

1B
(
f1
2 (v)

)
= f1

2 (12 ◦ v) which is true for any value f1
2 (v) ∈ B.

The conclusion for i = 1:

Hom (H1, F ) =
{(
∅, f1

1 , f
1
2

)}
where f1

1 : {11} → A and f1
2 : {v} → B are (of course) constant functions, connected

via the relation f1
2 (v) = ϕ

(
f1
1 (11)

)
. Writing f1

1 (11) = a ∈ A, we have f1
2 (v) = ϕ(a)

and Hom (H1, F ) is cardinally equivalent to the set {(∅, a, ϕ(a)) | a ∈ A}.
Here, for X = 1, the Yoneda bijection aX : Hom (HX , F ) → F (X), acting via

aX(f) = fX (1X) is (taking into account that fX = f1
1 ):

a1 : Hom (H1, F )→ F (1) = A, a1(f) = f1
1 (11) .
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Case i = 2 (f ∈ Hom(H2, F ) has the form f =
(
f2
0 , f

2
1 , f

2
2

)
).

Studying the diagram (6), we see that Hom(2, s) = ∅ for s = 0 or s = 1, hence
one must have f2

0 = f2
1 = ∅ and the diagram is automatically commutative for any

f2
t , t = 0, 1, 2.

It remains to study the case s = t = 2, Hence, in (6) one has x : 2 → 2 conse-
quently x = 12. Because Hom(2, 2) = {12}, one most have

(
F (12) ◦ f2

2

)
(12) =(

f2
2 ◦H2 (12)

)
(12), i.e. 1B

(
f2
2 (12)

)
= f2

2 (H2 (12) (12)), which means f2 (12) =
f2
2 (12). This is true for any value f2

2 (12) = b ∈ B.
The conclusion for i = 2:

Hom (H2, F ) =
{(
∅, ∅, f2

2

)}
where f2

2 : {12} → B is (of course) a constant function. Writing f2
2 (12) = b ∈ B, it

follows that Hom (H2, F ) is cardinally equivalent to the set {(∅, ∅, b)) | b ∈ B}.
Here, for X = 2, the Yoneda bijection aX : Hom (HX , F ) → F (X), acting via

aX(f) = fX (1X) is (taking into account that fX = f2
2 ):

a2 : Hom (H2, F )→ F (2) = B, a2f) = f2
2 (12) .
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