No. 54/2018 pp. 125-138

doi: 10.17114/j.aua.2018.54.09

MINIMIZING POLYNOMIALS ON NONCOMPACT SETS

P.V. Tri, T.V.Q. Sy

ABSTRACT. In this paper, the problem of minimizing a polymonial $g_* = \inf_{x \in S(F)} g(x)$ in the noncompact case is investigated. It is known that such problem is severely ill-posed. This paper studies the representation of a non-negative polynomial g on a noncompact semi-algebraic set S modulo its KKT (Karush-Kuhn-Tucker) ideal. We use results of Demmel, Nie, Powers ([1]) and Nie, Demmel, Sturmfels ([6]) to solve it. A numerical example is given to illustrate the efficiency of the proposed method works.

2010 Mathematics Subject Classification: 30C45.

Keywords: Global optimization, polynomials, sum of squares, semidefinite programming.

1. Introduction

Given a polynomial function $g \in \mathbb{R}[x] = \mathbb{R}[x_1, x_2, \dots, x_n]$ the polynomial ring. Fix a finite subset $F = \{f_1, f_2, \dots, f_m\} \subset \mathbb{R}[x]$. Denote

$$S(F) := \{x \in \mathbb{R}^n | f_i(x) \ge 0, i = 1, \dots, m\}$$

is the basic closed semialgebraic set generated by F. We consider the problem of minimizing a polymonial g on S(F): $g_* = \inf_{x \in S(F)} g(x)$. (*)

Finding the optimal solution of the problem (*) is NP-hard problem (see [3], [5]). Based on the results of performing non-negative polynomials on the semi algebraic sets, some authors (eg, [2], [4], [8], ...) have developed a series of positive semidefinited programming ((SDP for short) (see [3], [5]) which their optimal values converge monotonically increasing to the optimum value of the problem (*). The idea traces back to work of Shor 1987 ([13]) and is further developed by Parrilo 2000 ([7]), by Lasserre 2001 ([2]) and by Parrilo and Sturmfels 2003 ([8]).

We consider the general case: $S(F) = \mathbb{R}^n$.

The purpose of this paper is to introdue the problem of minimizing a polymonial $g_* = \inf_{x \in S(F)} g(x)$ in the noncompact case. Uses results of positive performed theorems of Nie, Demmel, Sturmfels and Powers, we will build a series of positive semidefinited programming which their optimal values converge monotonically increasing to the optimum value g_* .

2. Preliminaries

Given the polynomial ring $\mathbb{R}[x] = \mathbb{R}[x_1, x_2, \dots, x_n]$.

Definition 1. $M \subset \mathbb{R}[x]$ is called the quadratic module if

$$M+M\subset M, \ a^2M\subset M, \forall a\in\mathbb{R}[x] \ and \ 1\in M.$$

Definition 2. $P \subset \mathbb{R}[x]$ is called the preordering if

$$P + P \subset P$$
, $P \cdot P \subset P$ and $a^2 \in P$, $\forall a \in \mathbb{R}[x]$.

Given a finite subset $F = \{f_1, f_2, \dots, f_m\} \subset \mathbb{R}[x]$. Denote

$$S(F) := \{x \in \mathbb{R}^n | f_i(x) > 0, i = 1, \dots, m\}$$

is the basic closed semialgebraic set generated by F;

$$M(F) := \left\{ \sigma_0 + \sigma_1 f_1 + \dots + \sigma_m f_m \, | \, \sigma_i \in \sum \mathbb{R}[x]^2 \right\}$$

is the quadratic module in $\mathbb{R}[x]$;

$$P(F) := \left\{ \sum_{e \in \{0,1\}^m} \sigma_e f^e \, | \, \sigma_e \in \sum \mathbb{R}[x]^2, \forall e \in \{0,1\}^m \right\}$$

is the preordering generated by F.

Definition 3. M(F) is archimedean if $\exists k \geq 1 \mid k - \sum_{i=1}^{n} x_i^2 \in M(F)$.

Example 1. Take $n = 1, F = \{-x^2\} \subset \mathbb{R}[x]$. We have

$$M(F) = \{ \sigma_0 - \sigma_1 x^2 \mid \sigma_i \in \sum \mathbb{R}[x]^2 \}.$$

Take k=1. Then $k-x^2=1-x^2\in M(F)$. Thus M(F) is archimedean.

Example 2. Take $n = 2, F = \{x - \frac{1}{2}, y - \frac{1}{2}, 1 - xy\} \subset \mathbb{R}[x, y]$. Then

$$M(F) = \left\{ \sigma_0 + \sigma_1(x - \frac{1}{2}) + \sigma_2(y - \frac{1}{2}) + \sigma_3(1 - xy) \, | \, \sigma_i \in \sum \mathbb{R}[x, y]^2 \right\}.$$

We be alble to build quadratic module $Q \subset \mathbb{R}[x,y]$ ([5, Example 7.3.1]) which satisfies

$$\begin{cases} Q \cup -Q = \mathbb{R}[x,y], Q \cap -Q = \{0\}, \\ x - \frac{1}{2}, y - \frac{1}{2}, 1 - xy \in Q, (\text{ to } M(G) \subset Q), \\ k - (x^2 + y^2) \not\in Q, \forall k \in \mathbb{Z}, k \ge 1. \end{cases}$$

Then $M(F) \subset Q$, $k - (x^2 + y^2) \notin Q$, $\forall k \in \mathbb{Z}$, $k \ge 1$, and

$$k - (x^2 + y^2) \notin M(F), \forall k \in \mathbb{Z}, k \ge 1.$$

Thus M(F) is not archimedean.

Theorem 1. ([10]) Suppose S(F) is compact and $g \in \mathbb{R}[x]$. If g > 0 on S(F), then $g \in P(F)$.

Theorem 2. ([9]) Suppose M(F) is archimedean and $g \in \mathbb{R}[x]$. If g > 0 on S(F), then $g \in M(F)$.

Remark 1. If M(F) is archimedean, then S(F) is compact.

The opposite of Remark 1 is not true. For example, we consider Example 2, we have

$$S(F) = \{(x, y) \in \mathbb{R}^2 \mid x - \frac{1}{2} \ge 0, y - \frac{1}{2} \ge 0, 1 - xy \ge 0\}$$

is compact, and

$$M(F) = \{ \sigma_0 + \sigma_1(x - \frac{1}{2}) + \sigma_2(y - \frac{1}{2}) + \sigma_3(1 - xy) \mid \sigma_i \in \sum \mathbb{R}[x, y]^2 \}$$

is not archimedean.

3. Semidefinited programming (SDP)

The problem SDP:

$$\begin{cases} \inf \sum_{i=1}^{n} c_i x_i, \\ G(x) := G_0 + x_1 G_1 + \dots + x_n G_n \succeq 0, \end{cases}$$
 (1)

where $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, $c = (c_1, \ldots, c_n) \in \mathbb{R}^n$ and $G_i \in Sym(\mathbb{R}^{d \times d})$ is the symmetric matrix $(i = 0, \ldots, n)$.

Remark 2. Problem (1) can not achieve min. This can be seen in the following example.

Example 3. Consider the problem SDP

$$\begin{cases} p_* := \inf x_1, \\ \begin{pmatrix} x_1 & 1 \\ 1 & x_2 \end{pmatrix} \succeq 0. \end{cases}$$

We have $n = d = 2, c^T x = \begin{pmatrix} 1 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ and

$$F(x) = \begin{pmatrix} x_1 & 1 \\ 1 & x_2 \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}}_{F_0} + x_1 \underbrace{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}}_{F_1} + x_2 \underbrace{\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}}_{F_2}.$$

Consider the equation $\det \begin{pmatrix} x_1 - \lambda & 1 \\ 1 & x_2 - \lambda \end{pmatrix} = 0, \lambda \in \mathbb{R}$. Reduced, we obtain

$$\lambda^2 - (x_1 + x_2)\lambda + x_1 x_2 - 1 = 0. (2)$$

The condition $G(x) \succeq 0$ is equivalent to eigenvalues of matric G(x) is non negative. This is equivalent to Equation (2) has two non negative solutions, that is $S = \frac{-b}{a} = x_1 + x_2 \ge 0$ and $P = \frac{c}{a} = x_1x_2 - 1 \ge 0$. Then $x_1 > 0, x_2 > 0$ and the objective function $c^T x = x_1$ can not achieve min on $\{x = (x_1, x_2) \in \mathbb{R}^2 \mid x_1 + x_2 \ge 0, x_1x_2 - 1 \ge 0\}$, and $p_* = 0$.

The dual problem (DP for short) of (1) is

$$\begin{cases}
\sup -\langle G_0, Z \rangle, \\
\langle G_i, Z \rangle = c_i, i = 1, \dots, n, \\
Z \succeq 0.
\end{cases}$$
(3)

Remark 3.

- SDP and DP are convex optimization problems. Using the polynomial algorithm to solve them.
- Opt value $(SDP) \ge Opt$ value (DP).

4. The case M(F) is archimedean

For $g \in \mathbb{R}[x]$ and S(F) is the basic closed semialgebraic set generated by F, we consider the problem

$$g_* := \inf \{ g(x) \mid x \in S(F) \}$$
.

Remark 4. This is NP-hard problem. There is no efficient algorithm to solve it, unless the case g is linear, S(F) is convex polyhedron, then using the simplex algorithm to solve it.

Remark 5. For $\gamma \in \mathbb{R}$, test $g - \gamma \ge 0$ on S(F) is generally difficult. However, test $g - \gamma \in M(F)$ can do (using SDP).

Corollary 3.
$$\sup_{g-\gamma \in M(F)} \gamma \leq g_*$$
.

Fix a positive integer $N \ge \deg g$. Denote

$$M_N(F) := \left\{ \sum_{i=0}^m \sigma_i g_i \mid \sigma_i \in \sum \mathbb{R}[x]^2, \deg(\sigma_i g_i) \le N, i = 0, \dots, m \right\},$$

 $\chi_N := \{L: \mathbb{R}[x]_N \to \mathbb{R} \, \text{linear} \, | \, L(1) = 1, \text{ and } L \geq 0 \text{ on } M_N(F)\},$

$$g_{+,N} := \inf\{L(g) \mid L \in \chi_N\},$$
 (4)

$$g_N^* := \sup\{\gamma \in \mathbb{R} \mid g - \gamma \in M_N(F)\}. \tag{5}$$

Proposition 1. (/4/)

(a)
$$g_N^* \leq g_{+,N} \leq g_*$$

(b)
$$g_{+,N} \leq g_{+,N+1}; g_N^* \leq g_{N+1}^*$$

(c) If
$$M(F)$$
 is archimedean, then $\lim_{N\to\infty} g_N^* = g_*$. Hence $\lim_{N\to\infty} g_{+,N} = g_*$.

Proposition 2. Problem (4) is SDP.

Proof. Without loss generality, we assume $f_i \not\equiv 0$ and $\deg f_i \leq N, i = 1, ..., m$. Because if $\deg(\sigma_i f_i) \leq N$ and $\deg f_i > N$, then $\sigma_i = 0$, so $\sigma_i f_i = 0$: not have any contribution to $M_N(F)$. We see $\mathbb{R}[x]_N$ generated by the basic set $\{x^{\alpha} \mid |\alpha| \leq N\}$, number of elements of that basic is C_{n+N}^N . We consider linear mapping

$$L: \mathbb{R}[x]_N \longrightarrow \mathbb{R}, L(p) = L\left(\sum_{|\alpha| \le N} p_{\alpha} x^{\alpha}\right) = \sum_{|\alpha| \le N} p_{\alpha} L(x^{\alpha}).$$

Putting $y_{\alpha} = L(x^{\alpha})$, $|\alpha| \leq N$ then L corresponds to a vector (y_{α}) , $|\alpha| \leq N$, $y_{\alpha} \in \mathbb{R}$. We have $y_0 = 1$. $L \geq 0$ on $M_N(F)$ is equivalent to

$$L\left(\sum_{i=0}^{m} \sigma_i f_i\right) \ge 0, \sigma_i \in \sum \mathbb{R}[x]^2, \deg(\sigma_i f_i) \le N,$$

or

$$\sum_{i=0}^{m} L(\sigma_i f_i) \ge 0, \sigma_i \in \sum_{i=0}^{m} \mathbb{R}[x]^2, \deg(\sigma_i f_i) \le N,$$

or

$$L(\sigma_i f_i) \ge 0, \forall i, \sigma_i \in \sum \mathbb{R}[x]^2, \deg(\sigma_i f_i) \le N,$$

or

$$L(p^2 f_i) \ge 0, p \in \mathbb{R}[x], \deg p \le \frac{N - \deg(f_i)}{2}.$$

Test

$$\deg p \le \frac{N - \deg f_i}{2}.$$

Indeed, since $p^2 f_i \in M_N(F)$ we have

$$\deg(p^2 f_i) \le N,$$

or

$$\deg p^2 + \deg f_i \le N,$$

or

$$2\deg p + \deg f_i \le N,$$

or

$$\deg p \le \frac{N - \deg f_i}{2}.$$

We write $g = \sum_{|\alpha| \leq N} g_{\alpha} x^{\alpha}$, thus

$$L(g) = \sum_{|\alpha| \le N} g_{\alpha} L(x^{\alpha}) = \sum_{|\alpha| \le N} g_{\alpha} y_{\alpha} = g_0 + \sum_{|\alpha| \le N, \alpha \ne 0} g_{\alpha} y_{\alpha}.$$

If $p = \sum_{\alpha} p_{\alpha} x^{\alpha}$, then $p^2 = \sum_{\alpha,\beta} p_{\alpha} p_{\beta} x^{\alpha+\beta}$, therefore

$$L(p^2) = \sum_{\alpha,\beta} p_{\alpha} p_{\beta} L(x^{\alpha+\beta}) = \sum_{\alpha,\beta} p_{\alpha} p_{\beta} y_{\alpha+\beta}.$$

We write $f_i = \sum_{\gamma} f_{i\gamma} x^{\gamma}$. Similar to the above, we have

$$p^{2}f_{i} = \sum_{\alpha,\beta} p_{\alpha}p_{\beta}x^{\alpha+\beta}f_{i} = \sum_{\alpha,\beta,\gamma} p_{\alpha}p_{\beta}f_{i\gamma}x^{\alpha+\beta+\gamma}$$

$$vL(p^2f_i) = \sum_{\alpha,\beta,\gamma} p_{\alpha}p_{\beta}f_{i\gamma}y_{\alpha+\beta+\gamma} = \sum_{\alpha,\beta} \left(\sum_{\gamma} f_{i\gamma}y_{\alpha+\beta+\gamma}\right)p_{\alpha}p_{\beta}.$$
 Putting

$$M(f_i * y) = \left(\sum_{\gamma} f_{i\gamma} y_{\alpha+\beta+\gamma}\right)_{\alpha,\beta}.$$

Then, $M(f_i * y)$ is the matrix which size is $D_i \times D_i$, where

$$D_i = \#\{\alpha \mid |\alpha| \le \frac{N - \deg f_i}{2}\}.$$

Note that M(1 * y) = M(y). Then

$$L(p^{2}f_{i}) = \sum_{\alpha,\beta} \left(\sum_{\gamma} f_{i\gamma} y_{\alpha+\beta+\gamma} \right) p_{\alpha} p_{\beta} = p^{T} M(f_{i} * y) p.$$

Therefore, condition $L(p^2f_i) \ge 0$ is equivalent to $p^TM(f_i*y)p \ge 0$. This is equivalent to $M(f_i*y) \succeq 0$. Thus

$$L \in \chi_N \Leftrightarrow \begin{cases} L(1) = 1, \\ L \geq 0 \text{ on } M_N(G) \end{cases} \Leftrightarrow \begin{cases} y_0 = 1, \\ M(f_i * y) \succeq 0, i = 0, \dots, m. \end{cases}$$

Putting $G(y) := diag(M(f_i * y), \dots, M(f_i * y))$. The size of the matrix G(y) is $\sum_{i=0}^{m} D_i \times \sum_{i=0}^{m} D_i$. Then,

$$\begin{cases} y_0 = 1, \\ M(f_i * y) \succeq 0, i = 0, \dots, m \end{cases} \Leftrightarrow \begin{cases} y_0 = 1, \\ G(y) \succeq 0. \end{cases}$$

For $|\alpha| \leq N$, we define $e^{(\alpha)} := (e_{\beta}^{(\alpha)})$, where

$$e_{\beta}^{(\alpha)} := \begin{cases} 0, & \text{if } \beta \neq \alpha \\ 1, & \text{if } \beta = \alpha. \end{cases}$$

So $\{e^{(\alpha)}, \alpha \neq 0\}$ is basic vector of freedom variables space $y = (y_{\alpha}), |\alpha| \leq N, \alpha \neq 0$, that is $y = \sum y_{\alpha}e^{(\alpha)}, \forall y = (y_{\alpha}), |\alpha| \leq N, \alpha \neq 0$. Then $G(y) = G_0 + \sum_{|\alpha| \leq N, \alpha \neq 0} y_{\alpha}G^{\alpha}$, $G_{\alpha} := G(e^{(\alpha)})$, and

$$\begin{cases} y_0 = 1, \\ G(y) \succeq 0 \end{cases} \Leftrightarrow \begin{cases} y_0 = 1, \\ G_0 + \sum_{|\alpha| \le N, \alpha \ne 0} y_\alpha G^\alpha \succeq 0. \end{cases}$$

So $g_{+,N}:=\inf\{L(g)|L\in\chi_N\}=\inf\{g_0+\sum_{\alpha\neq 0}g_\alpha y_\alpha\}=g_0+\inf\sum_{\alpha\neq 0}g_\alpha y_\alpha.$ We see that problem calculate $g_{+,N}$ with constrain $L\in\chi_N$ same as problem calculate $g_0+\inf\sum_{\alpha\neq 0}g_\alpha y_\alpha$ with constrain

$$\begin{cases} y_0 = 1, \\ G_0 + \sum_{|\alpha| \le N, \alpha \ne 0} y_{\alpha} G^{\alpha} \succeq 0, \end{cases}$$

or with constrain $G(y) \succeq 0$. Therefore Problem (4) is SDP.

Proposition 3. Problem (5) is duality of Problem (4).

Proof. Take $\gamma \in \mathbb{R}$ so that $g - \gamma = \sigma_0 + \sigma_1 f_1 + \cdots + \sigma_m f_m$, where

$$\sigma_i \in \sum \mathbb{R}[x]^2, \deg \sigma_i \le \frac{N - \deg f_i}{2}, i = 0, \dots, m.$$

For $\sigma_i \in \sum \mathbb{R}[x]^2$, there exists a positive semidefinite (PSD for short) matrix which size is $D_i \times D_i : A^{(i)} = (A_{\delta\beta}^{(i)})_{\delta,\beta}$ so that $\sigma_i = \sum_{\delta,\beta} A_{\delta\beta}^{(i)} x^{\delta+\beta}$. Then

$$g - \gamma = \sum_{i=0}^{m} \sigma_i f_i = \sum_{i=0}^{m} \sum_{\delta, \beta} A_{\delta\beta}^{(i)} x^{\delta+\beta} f_i.$$

We write $f_i = \sum_{\gamma} f_{i\gamma} x^{\gamma}$. Then

$$g - \gamma = \sum_{i=0}^{m} \sum_{\delta,\beta} \sum_{\gamma} A_{\delta\beta}^{(i)} f_{i\gamma} x^{\delta+\beta+\gamma}.$$

For

$$g = \sum_{\alpha} g_{\alpha} x^{\alpha} = g_0 + \sum_{\alpha \neq 0} g_{\alpha} x^{\alpha},$$

we have

$$g_0 + \sum_{\alpha \neq 0} g_{\alpha} x^{\alpha} - \gamma = \sum_{i=0}^m \sum_{\delta, \beta} \sum_{\gamma} A_{\delta\beta}^{(i)} f_{i\gamma} x^{\delta+\beta+\gamma},$$

or

$$g_0 - \gamma + \sum_{\alpha \neq 0} f_{\alpha} x^{\alpha} = \sum_{i=0}^{m} \sum_{\delta, \beta} \sum_{\gamma} A_{\delta\beta}^{(i)} f_{i\gamma} x^{\delta+\beta+\gamma}.$$

Identify coefficients two sides the above equation, we get

$$\begin{cases} g_0 - \gamma = \sum\limits_{i=0}^m A_{00}^{(i)} f_{i0} = \langle G_0, A \rangle, \\ g_\alpha = \sum\limits_{i=0}^m \sum\limits_{\delta + \beta + \gamma = \alpha} A_{\delta\beta}^{(i)} f_{i\gamma} = \langle G_\alpha, A \rangle, \text{for } \alpha \neq 0, \end{cases}$$

where $A := diag(A^{(0)}, \dots, A^{(m)}), G_{\alpha} := G(e^{(\alpha)})$. We have A is PSD and

$$g_N^* = \sup\{\gamma \mid g - \gamma \in M_N(F)\}\$$

$$= \sup\{g_0 - \langle G_0, A \rangle \mid A \succeq 0, g_\alpha = \langle G_\alpha, A \rangle, \alpha \neq 0\}\$$

$$= g_0 + \sup\{-\langle G_0, A \rangle \mid A \succeq 0, g_\alpha = \langle G_\alpha, A \rangle, \alpha \neq 0\}.$$

Thus, Problem (5) is duality of Problem (4).

Remark 6. Can happen case $g_N^* \neq g_{+,N}$. However, if $M(F) \cap -M(F) = \{0\}$, then $g_N^* = g_{+,N}$. (See [5, Proporition 10.5.1]).

Example 4. [3, Problem 4.6, 4.7] We consider the optimization problem

$$\begin{cases} \inf_{x} g(x) := -x_1 - x_2, \\ x_2 \le 2x_1^4 - 8x_1^3 + 8x_1^2 + 2, \\ x_2 \le 4x_1^4 - 32x_1^3 + 88x_1^2 - 96x_1 + 36, \\ 0 < x_1 < 3, 0 < x_2 < 4. \end{cases}$$

Then $g_4^* = g_* = -5.5079$.

Example 5. [3, Problem 4.6, 4.7] We consider the optimization problem

$$\begin{cases} \inf_{x} g(x) := -12x_1 - 7x_2 + x_2^2, \\ -2x_1^4 + 2 - x_2 = 0, \\ 0 \le x_1 \le 2, 0 \le x_2 \le 3. \end{cases}$$

Then $g_5^* = g_* = -16.73889$.

5. The case M(F) is not archimedean

We have the same results as above if we replace the quadratic module $M_N(F)$ by the preordering

$$P_N(F) := \left\{ \sum_{e \in \{0,1\}^m} \sigma_e f^e | \sigma_e \in \sum \mathbb{R}[x]^2, \deg \sigma_e f^e \le N, e \in \{0,1\}^m \right\}.$$

We denote

$$\chi_N := \{L : \mathbb{R}[x]_N \to \mathbb{R} \text{ linear } | L(1) = 1 \text{ and } L \ge 0 \text{ on } P_N(F) \},$$

$$g_{+,N} := \inf\{L(g) \mid L \in \chi_N\},$$
 (6)

$$g_N^* := \sup\{\gamma \in \mathbb{R} \mid g - \gamma \in P_N(F)\}. \tag{7}$$

Proposition 4.

- (a) $g_N^* \le g_{+,N} \le g_*$.
- (b) $g_{+,N} \le g_{+,N+1}; g_N^* \le g_{N+1}^*$.
- (c) If S(F) is compact, then $\lim_{N\to\infty} g_N^* = g_*$. Hence $\lim_{N\to\infty} g_{+,N} = g_*$.

Proof. (a) We prove $g_{+,N} \leq g_*$. Taking arbitrary $a \in S(F)$, define

$$L_a \colon \mathbb{R}[x]_N \to \mathbb{R}, L_a(q) = q(a).$$

We have $L_a(1) = 1$, $L_a\left(\sum_{e \in \{0,1\}^m} \sigma_e f^e\right) = \sum_{e \in \{0,1\}^m} L_a(\sigma_e f^e) = \sum_{e \in \{0,1\}^m} \sigma_e f_e(a) \ge 0$.

$$q_{+,N} := \inf\{L(q) | L \in \chi_N\},\$$

we get

$$g_{+,N} \leq L_a(g) = g(a).$$

By $a \in S(F)$ is arbitrary, we have

$$g_{+,N} \le \inf_{a \in S(F)} g(a) = g_*.$$

Next, we prove $g_N^* \leq g_{+,N}$. Take $\gamma \in \mathbb{R}$ such that $g - \gamma \in P_N(F)$ and $L \in \chi_N$ is arbitrary. We have

$$0 \le L(g - \gamma) = L(g) - L(\gamma) = L(g) - \gamma.$$

Then $L(g \geq \gamma)$. Therefore

$$\inf\{L(g) \mid L \in \chi_N\} \ge \sup\{\gamma \in \mathbb{R} \mid g - \gamma \in P_N(F)\},\$$

that is $g_{+,N} \geq g_N^*$.

(b) We have $P_N(F) \subseteq P_{N+1}(F)$ and $\chi_{N+1} \subseteq \chi_N$. Take $\gamma \in \mathbb{R}$ such that

$$g - \gamma \in P_N(F)$$
,

we get $g - \gamma \in P_{N+1}(F)$. Thus $g_N^* \leq g_{N+1}^*$.

Next, we prove $g_{+,N} \leq g_{+,N+1}$. Take $L \in \chi_{N+1}$ is abitrary. Put

$$L' := L_{|\mathbb{R}[x]_N},$$

then $L' \in \chi_N$ and L'(g) = L(g). Therefore

$$\inf\{L(g) | L \in \chi_N\} \le \inf\{L(g) | L \in \chi_{N+1}\},\$$

that is $g_{+,N} \leq g_{+,N+1}$.

(c) Take $\gamma \in \mathbb{R}, \gamma < g_*$. We have $g - \gamma > 0$ on S(G). From Theorem 1, we get

$$g-\gamma \in P(F), \text{ that is } g-\gamma = \sum_{e \in \{0,1\}^m} \sigma_e f^e,$$

where $\sigma_e \in \sum \mathbb{R}[x]^2$. Choose $N = \max \deg(\sigma_e f^e)$, then $g - \gamma \in P_N(F)$, so $\gamma \leq g_N^*$. Thus

$$\gamma \leq g_N^* \leq g_*.$$

For $\gamma \uparrow g_*$, then $g_N^* \uparrow g_*$. From $g_N^* \xrightarrow{N \to \infty} g_*$ and $g_N^* \leq g_{+,N} \leq g_*$, we obtain $g_{+,N} \xrightarrow{N \to \infty} g_*$.

Proposition 5. Problem (6) is SDP.

Proof. Similar to the proof of Proposition 2.

Proposition 6. Problem (7) is duality of Problem (6).

Proof. Similar to the proof of Proposition 3.

Example 6. We consider problem

$$\begin{cases} \inf_{(x,y)\in S} (x,y) = x + y, \\ S = \{(x,y) \in \mathbb{R}^2 \mid x \ge \frac{1}{2}, y \ge \frac{1}{2}, xy \le 1\}. \end{cases}$$

Then

$$g_2^* = g_* = 1.$$

Example 7. Problem

$$\begin{cases} \inf_{(x,y) \in S} g(x,y) = -x - y, \\ S = \{(x,y) \in \mathbb{R}^2 \mid x \ge \frac{1}{2}, y \ge \frac{1}{2}, xy \le 1 \} \end{cases}$$

has

$$g_2^* = g_* = -2, 5.$$

6. Conclusion

The paper found out the problem of minimizing a polymonial $g_* = \inf_{x \in S(F)} g(x)$ in case S(F) is compact, where $g \in \mathbb{R}[x]$ and S(F) is the basic closed semialgebraic set generated by F.

The paper presented positive performed theorems:

- Putinar,
- Schmüdgen.

Using results of positive performed theorems of Putinar ([9]) and Schmüdgen ([10]), we can build a series of positive semidefinited programming which their optimal values converge monotonically increasing to the optimum value g_* . Finally, the numerical results show that the proposed method works effectively.

References

- [1] J. Demmel, J. Nie, V. Powers, Representations of positive polynomials on non-compact simialgebraic sets via KKT ideals, Journal of Pure and Applied algebra, 207 (2007), 189-200.
- [2] J. B. Lassere, Global optimization with polynomials and the problem of moments, SIAM J. Optim., 11, No. 3 (2001), 796-817. MR1814045. Zbl 1010.90061.

- [3] M. Laurent, Sums of square, moment matrices and optimization over polynomials, Emerging applications of algebraic geometry, 157-270, IMA vol. Math.Appl, 149, Springer, Newyork, 2009. MR2500468.
- [4] M. Marshall, Optimization of polynomial functions, Canadian Math. Bull., 46 (2003), 575-587. MR2011395. Zbl 1063.14071.
- [5] M. Marshall, *Positive polynomials and sums of squares*, Mathematical Surveys and Monographs, AMS, 146, 2008. MR2383959.
- [6] J. Nie, J. Demmel, and B. Sturmfels, *Minimizing polynomials via sums of squares over the gradient ideal*, Mathematical Programming Series A, 106, (2006), 587-606. MR2216797.
- [7] P.A. Parrilo, Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization, Ph.D. thesis, California Institute of Technology, May 2000.
- [8] P.A. Parrilo, and B. Sturmfels, *Minimizing polynomial functions*, DIMACS Series in Discrete Mathematices and Theoretical Computer Science, AMS, 60 (2003), 83-99. Zbl 1099.13516.
- [9] M. Putinar, Positive polynomials on compact semialgebraic sets, Ind. Univ. Math. J. 43, No 3 (1993), 969-984.
- [10] K. Schmüdgen, The K-moment problem for compact semialgebraic sets, Math. Ann. 289, No. 2 (1991), 203-206.
- [11] M. Schweighofer, Optimization of polynomials on compact semialgebraic sets, SIAM J. Optim., 15 (3) (2005), 805-825. MR2142861. Zbl 1114.90098
- [12] M. Schweighofer, Global optimization of polynomials using gradient tentacles and sums of squares, SIAM J. Optim., 17 (3) (2006), 920-942. Zbl 1118.13026.
- [13] N.Z. Shor, An approach to obtaining global extremums in polynomial mathematical programming problems, Kibernetika, 5 (1987), 102-116.
- [14] H.H. Vui, P.T. Son, Global optimization of polynomials using the truncated tangency variety and sums of squares, SIAM J. Optim, 19 (2) (2008), 941-951. Zbl 1163.13020.
- [15] H.H. Vui, P.T. Son, Representations of positive polynomials and optimization on noncompact semialgebraic sets, SIAM J. Optim, 20 (6) (2010), 3082-3130. Zbl 1279.14071.

P. V. Tri

Faculty of Foundation Sciences, Telecommunications University, Khanh Hoa province, Viet Nam email: phanvantri82@gmail.com

T. V. Q. Sy Military Information Technology Institute, Academy of Military Science and Technology, Ho Chi Minh City, Viet Nam email: sytvq@yahoo.com