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ORDER ODES
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Abstract. New optimal, explicit, s-stage Runge–Kutta–Nystrom methods of
order p = 3 to 6, denoted by CPRKN(s, p), p = 3, 4, . . . , 6, that have contractivity-
preserving (CP) properties and nonnegative coefficients are constructed for solv-
ing the special second-order system of non-stiff ordinary differential equations y′′ =
f(t, y), y(t0) = y0, y′(t0) = y′0, where y ∈ RN . Selected CPRKN(4, 4) and CPRKN(6, 6)
compare well with Dormand–El-Mikkawy–Prince DEP(4,3)4FM and DEP(6,4)6FM,
respectively, in solving standard N-body problems over an interval of 1000 periods on
the basis of the relative error of energy (EE) as a function of the number of function
evaluations (NFE). The existence of these CPRKN(s, p) would suggest that they
can be combined with Taylor series or CP Hermite–Obrechkoff series methods de-
veloped earlier to form new higher order, more efficient methods with contractivity-
preserving (CP) properties. The coefficients of CPRKN(s, p), p = 3, 4, . . . , 6 are
listed in the appendix.
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1. Introduction

New optimal, explicit, s-stage Runge–Kutta–Nystrom methods of order p = 3 to
6, denoted by CPRKN(s, p), p = 3, 4, . . . , 6, that has contractivity-preserving (CP)
properties and nonnegative coefficients are constructed for solving the special second-
order system of non-stiff ordinary differential equations (ODEs),

y′′ = f(t, y), y(t0) = y0, y′(t0) = y′0, where ′ =
d

dt
and y ∈ RN . (1)
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We consider now the following form of the solution y to problem (1):

y(t+ ∆t) = y(t) + ∆t ysub(t+ ∆t,∆t) (2)

where the subformula ysub(t+ ∆t,∆t) (which is the slope [y(t + ∆t)− y(t)]/∆t) is
the series

ysub(t+ ∆t,∆t) = y′(t) +
∞∑
m=2

(∆t)m−1

m!
y(m)(t).

In our construction of formulae for ysub defined in (2) and y′ of CPRKN(s, p),
p = 3, 4, . . . , 6, we rewrite formulae for ysub and y′ as a convex combination of
forward Euler (FE) method (approximating y′(t+ ∆t)),

y′n+1 = y′n + ∆t y′′n. (3)

If FE is contractive in a given norm, then formulae for ysub and y′ of CPRKN(s, p)
will be contractive as a convex combination of FE with modified step sizes.

The regions of absolute stability of CPRKN(s, p), p = 3, 4, . . . , 6, are derived
under the assumption that two solution derivatives, y′ and ỹ′, to problem (1) are
contractive:

‖y′(t+ ∆t)− ỹ′(t+ ∆t)‖ ≤ ‖y′(t)− ỹ′(t)‖, ∀∆t ≥ 0, (4)

and the two subformulae ysub(t,∆t) and ỹsub(t,∆t) defined in (2) are contractive:

‖ysub(t+ ∆t,∆t)− ỹsub(t+ ∆t,∆t)‖ ≤ ‖ysub(t,∆t)− ỹsub(t,∆t)‖, ∀∆t ≥ 0, (5)

and

‖y′(t+ ∆t)− ỹ′(t+ ∆t)‖ ≤ ‖ysub(t+ ∆t,∆t)− ỹsub(t+ ∆t,∆t)‖
≤ ‖y′(t)− ỹ′(t)‖ ∀∆t ≥ 0. (6)

We assume that there exists a maximum stepsize ∆tFE such that, when FE is
employed with ∆t ≤ ∆tFE, f satisfies a discrete analog of (4):

‖y′n+1 − ỹ′n+1‖ ≡
∥∥∥∥y′n + ∆tf(tn, yn)−

(
ỹ′n + ∆tf(tn, ỹn)

)∥∥∥∥ ≤ ‖y′n − ỹ′n‖, (7)

with ∥∥∥∥ysub
n + ∆tf(tn, yn)−

(
ỹsub
n + ∆tf(tn, ỹn)

)∥∥∥∥ ≤ ‖y′n − ỹ′n‖, (8)

when y′n and ỹ′n are replaced by ysub
n and ỹsub

n , respectively, in the two FE formulae
in (7), and, when FE is employed with ∆t ≤ ∆tFE, f satisfies a discrete analog of
(6) :

‖y′n+1 − ỹ′n+1‖ ≤ ‖ysub
n+1 − ỹsub

n+1‖ ≤ ‖y′n − ỹ′n‖. (9)
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Here y′n and ỹ′n are two derivatives of the numerical solutions generated by FE with
different neighbouring starting (or previous) values y′0 = y′(t0) and ỹ′0 = ỹ′(t0).

By interpreting ỹ′0 as a perturbation of y′0 due to numerical error, we see that
contractivity implies that these errors do not grow as they are propagated.

We are interested in a higher-order formula for ysub of CPRKN(s, p), p = 3, 4, . . . , 6,
that maintains the contractivity-preserving property

‖ysub
n+1 − ỹsub

n+1‖(≤ ‖y′n − ỹ′n‖) ≤ ‖ysub
n − ỹsub

n ‖, (10)

together with a higher-order formula for y′ that maintains the contractivity-preserving
property,

‖y′n+1 − ỹ′n+1‖ ≤ ‖y′n − ỹ′n‖, (11)

for 0 ≤ ∆t ≤ ∆tmax = c∆tFE whenever inequality (7) holds. Here c, called the
contractivity-preserving coefficient (CP coefficient), depends only on the numer-
ical integration method but not on f . This definition of the CP coefficient of
CPRKN(s, p), p = 3, 4, . . . , 6, follows closely the definition of the strong stability
preserving (SSP) coefficient of RK (see [3]).

In [8], similar CP RK methods have been constructed and tested on DETEST
problems [7].

The aim of CPRKN(s, p), p = 3, 4, . . . , 6, is to maintain simultaneously the CP
properties (10) and (11) while achieving higher-order accuracy, perhaps with a mod-
ified time-step restriction, measured here with the CP coefficient c(CPRKN(s, p)):

∆t ≤ c(CPRKN(s, p))∆tFE. (12)

This coefficient describes the ratio of the maximal CPRKN(s, p) time step to the
time step ∆tFE, for which conditions (7), (8) and (9) hold.

Similar to Huang and Innanen [6], we compare the numerical performance of
selected CPRKN(4, 4), CPRKN(6, 6), Dormand–El-Mikkawy–Prince DEP(4,3)4FM
and DEP(6,4)6FM [1] on Kepler orbit with eccentricities e = 0.3, 0.5, 0.7 over an
interval of 1000 periods on the basis of the relative energy error (EE) as a func-
tion of the number of function evaluations (NFE). It is seen that CPRKN(4,4) and
CPRKN(6,6) compare well with DEP(4,3)4FM and DEP(6,4)6FM.

The existence of the new methods CPRKN(s, p) and the above results would
suggest that these CPRKN(s, p) can be combined with Taylor series or HO series
methods developed earlier [10] to form new higher order methods with contractivity-
preserving (CP) properties and nonnegative coefficients for solving efficiently equa-
tions (1).

Section 2 introduces new CPRKN(s, p), p = 3, 4, . . . , 6 and the necessary order
conditions are listed in Section 3. Section 4 derives Y sub

i , i = 2, 3, . . . , s + 1, of
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CPRKN(s, p) in contractivity-preserving form (CP form). Section 5 presents y′n+1

of CPRKN(s, p) in CP form for deriving contractivity-preserving (CP) property.
Optimizing CP coefficient c of CPRKN(s, p) is considered in Section 6. Section 7
describes the intervals of absolute stability of CPRKN(4,4) and CPRKN(6,6). In
Section 8, numerical results are used to compare CPRKN(4,4) and CPRKN(6,6)
with Dormand–El-Mikkawy–Prince DEP(4,3)4FM and DEP(6,4)6FM. Coefficients
of CPRKN(s, p), p = 3, 4, . . . , 6, are listed in Appendix A.

2. New CPRKN(s, p) with contractivity-preserving properties

New CPRKN(s, p) are constructed by the following (s+ 1) formulae which perform
integration from tn to tn+1.

Let ∆t denote the step size. The abscissa vector [c1, c2, . . . , cs]
T defines the s

off-step points tn + cj∆t, j = 1, 2, . . . , s and cs+1 = 1. In all cases c1 = 0 and, by
convention, c0

1 = 1. Let Y ′′1 = y′′n.
A Hermite–Birkhoff (HB) polynomial is used as stage formula Pi to obtain the

stage value Yi,

Yi = yn + ci∆ty
′
n + ∆t2

( i−1∑
j=1

aijY
′′
j

)
, i = 2, 3, . . . , s. (13)

HB polynomials are used as the integration formula IF for y and IF’ for y′ to
obtain yn+1 = Y3 and y′n+1, respectively, to order p,

yn+1 = Ys+1 = yn + ∆ty′n + ∆t2
( s∑
j=1

bjY
′′
j

)
, (14)

y′n+1 = y′n + ∆t

( s∑
j=1

bjY
′′
j

)
, (15)

where Y ′′i := f(tn + ci∆t, Yi), i = 2, 3, . . . , s denotes the stage second derivatives.
Formulae (13)–(15) are the usual form of CPRKN(s, p).
The defining formulae of CPRKN(s, p) involve the usual Runge–Kutta–Nystrom

(RKN) parameters ci, ai,j , bj and bj .
Thus we can represent CPRKN(s, p) by its coefficient scheme (A, b, b), where

A = (ai,j) is a s × s matrix, b = (b1, b2, . . . , bs)
T , b = (b1, b2, . . . , bs)

T are two s-
vector. One can display the coefficient scheme (A, b, b), and the ci in the Butcher
tableau
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c1

c2 a21

c3 a31 a32

c4 a41 a42 a43
...

...
. . .

. . .

cs as1 as2 as3 · · · as,s−1

b1 b2 b3 · · · bs−1 bs
b1 b2 b3 · · · bs−1 bs

2.1. Subformulae of Yi, i = 2, 3, . . . , s+ 1 of CPRKN(s, p)

We consider now the following form of Yi, i = 2, 3, . . . , s+1 with Ys+1 = yn+1 defined
in (13) and (14) respectively,

Yi = yn + ∆t
(
Y sub
i

)
, i = 2, 3, . . . , s, (16)

yn+1 = Ys+1 = yn + ∆t
(
ysub
n+1

)
, (17)

where subformulae Y sub
i , i = 2, 3, . . . , s+ 1 are

Y sub
i = ciy

′
n + ∆t

( i−1∑
j=1

aijY
′′
j

)
, i = 2, 3, . . . , s, (18)

ysub
n+1 = Y sub

s+1 = y′n + ∆t

( s∑
j=1

bjY
′′
j

)
. (19)

Subformulae (18) and (19) are called the usual form of Y sub
i , i = 2, 3, . . . , s+ 1.

3. Order conditions for CPRKN(s, p)

As in similar search for solvers of (1), we impose the following simplifying assump-
tions for Yi :

i−1∑
j=1

ai,j =
c2
i

2
, i = 2, 3, . . . , s. (20)

Under the assumption bi = bi(1− ci), i = 1, 2, . . . , s, there remains the following
11 sets of equations for y′n+1 to be solved:

s∑
i=1

bi
cki
k!

=
1

(k + 1)!
, k = 0, 1, . . . , p− 1, (21)
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s∑
i=2

bi

[ i−1∑
j=1

aij cj

]
=

1

4!
, (22)

s∑
i=2

bi
ci
4

[ i−1∑
j=1

aij cj

]
=

1

5!
, (23)

s∑
i=2

bi

[ i−1∑
j=1

aij
c2
j

2!

]
=

1

5!
, (24)

s∑
i=2

bi
c2
i

4× 5

[ i−1∑
j=1

aij cj

]
=

1

6!
, (25)

s∑
i=2

bi
ci
5

[ i−1∑
j=1

aij
c2
j

2!

]
=

1

6!
, (26)

s∑
i=2

bi

[ i−1∑
j=1

aij
c3
j

3!

]
=

1

6!
, (27)

s∑
i=2

bi

[ i−1∑
j=1

aij

[j−1∑
k=1

ajk ck

]]
=

1

6!
, (28)

s∑
i=2

bi
ci
6

[ i−1∑
j=1

aij

[j−1∑
k=1

ajk ck

]]
=

1

7!
, (29)

s∑
i=2

bi
c2
i

5× 6

[ i−1∑
j=1

aij
c2
j

2!

]
=

1

7!
, (30)

s∑
i=2

bi
ci
6

[ i−1∑
j=1

aij
c3
j

3!

]
=

1

7!
. (31)

Besides conditions (20),

CPRKN(2, 3) satisfies (21) with k = 0, 1, 2,

CPRKN(3, 4) satisfies (21) with k = 0, 1, . . . , 4 and (22),

CPRKN(4, 4) satisfies (21) with k = 0, 1, . . . , 4, (22) and (23),

CPRKN(5, 5) satisfies (21) with k = 0, 1, . . . , 5, (22) to (27),

CPRKN(6, 6) satisfies (21) with k = 0, 1, . . . , 6, (22) to (31).

(32)

It is to be noted that, in (32), to reduce the norm of the principal local trunca-
tion error coefficients, some additional order conditions associated with (∆t)p+1 are
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satisfied.

4. From modified contractivity-preserving (CP) form to canonical
CP form of Y sub

i , i = 2, 3, . . . , s+ 1 of CPRKN(s, p)

Gottlieb, Ketcheson and Shu presented canonical Shu–Osher forms in compact vector
notation for RK methods (see [4, Section 3.1–3.4] for details).

Our construction of the canonical CP form (similar to the canonical Shu–Osher
form for RK methods) of Y sub

i , i = 2, 3, . . . , s+ 1 of CPRKN(s, p) proceeds in three
steps in Subsections 4.1–4.3.

4.1. Contractivity preserving of Y sub
i , i = 2, 3, . . . , s+1 of CPRKN(s, p)

Similar to the Shu-Osher form of RK methods [12], equations (18)–(19) of Y sub
i ,

i = 2, 3, . . . , s and Y sub
s+1 = ysub

n+1, respectively, can be written in the form,

Y sub
i = αi1y

′
n + ∆t βi1y

′′
n +

[ i−1∑
j=1

αijY
sub
j + ∆t βijY

′′
j

]
, i = 2, 3, . . . , s+ 1,

ysub
n+1 = Y sub

s+1 ,

(33)

with consistency conditions:

αi1 +

i−1∑
j=2

αijcj = ci, i = 2, 3, . . . , s+ 1. (34)

Form (33) is called the contractivity preserving form (CP form) (similar to Shu–
Osher form for RK methods [4]) of Y sub

i , i = 2, 3, . . . , s+ 1 of CPRKN(s, p).
By setting vi = αi1 and wi = βi1, i = 2, 3, . . . , s+1, in (33), we have the modified

CP form of Y sub
i , i = 2, 3, . . . , s+ 1 of CPRKN(s, p):

Y sub
i = viy

′
n + ∆t wiy

′′
n +

[ i−1∑
j=2

αijY
sub
j + ∆t βijY

′′
j

]
, i = 2, 3, . . . , s+ 1,

ysub
n+1 = Y sub

s+1 .

(35)

We can rearrange the stage values Y sub
i , i = 2, 3, . . . , s+ 1, in (35) as follows:

Y sub
i = vi

[
y′n + ∆t

wi
vi
y′′n

]
+

i−1∑
j=2

αij

(
Y sub
j + ∆t

βij
αij

Y ′′j

)
,

i = 2, 3, . . . , s+ 1, (36)
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with consistency conditions:

vi +

i−1∑
j=2

αijcj = ci, i = 2, 3, . . . , s+ 1. (37)

Thus we obtain the difference Y sub
i − Ỹ sub

i , i = 2, 3, . . . , s+ 1, from (36) as follows:

Y sub
i − Ỹ sub

i = vi

[(
y′n + ∆t

wi
vi
y′′n

)
−
(
ỹ′n + ∆t

wi
vi
ỹ′′n

)]
+

i−1∑
j=2

αij

[(
Y sub
j + ∆t

βij
αij

Y ′′j

)
−

(
Ỹ sub
j + ∆t

βij
αij

Ỹ ′′j

)]
, i = 2, 3, . . . , s+ 1.

(38)

Provided all the coefficients of (36) are nonnegative, the following straightforward
extension of a result presented in [2, 5] holds.

Theorem 1. If f satisfies conditions (7), (8) and (9) of the FE method, then
ysub
n+1 = Y sub

s+1 of the CPRKN(s, p) method (36) satisfies the CP property

‖ysub
n+1 − ỹsub

n+1‖ ≤ ‖y′n − ỹ′n‖ ≤ ‖ysub
n − ỹsub

n ‖

provided
∆t ≤ cfeasible ∆tFE,

where the feasible CP coefficient, cfeasible, is the minimum of the following numbers:

αij

βij
, j = 2, 3, . . . , i− 1, and

vi
wi
, i = 2, 3, . . . , s+ 1, (39)

under the assumption that all coefficients of (36) are nonnegative, with the conven-
tion that the ratios a/0 = +∞, and the ratios 0/0 are ignored.

Proof. The difference Y sub
i − Ỹ sub

i of CPRKN(s, p) can be rewritten as a convex
combination of the two terms on the right-hand side of (38). Thus, by the convexity
of the norm ‖ · ‖, we have

‖Y sub
i − Ỹ sub

i ‖ ≤ vi
∥∥∥∥(y′n + ∆t

wi
vi
y′′n

)
−
(
ỹ′n + ∆t

wi
vi
ỹ′′n

)∥∥∥∥
+

i−1∑
j=2

αij

∥∥∥∥
(
Y sub
j + ∆t

βij
αij

Y ′′j

)
−

(
Ỹ sub
j + ∆t

βij
αij

Ỹ ′′j

)∥∥∥∥, i = 2, 3, . . . , s+ 1.

(40)
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We present a proof by induction on i. When i = 2, the right-hand side of (40)
has the following upper bound, since w2

v2
∆t ≤ ∆t

cfeasible
≤ ∆tFE,

v2

∥∥∥∥(y′n + ∆t
w2

v2
y′′n

)
−
(
ỹ′n + ∆t

w2

v2
ỹ′′n

)∥∥∥∥
≤ v2

∥∥y′n − ỹ′n∥∥ by (7),

≤ c2

∥∥y′n − ỹ′n∥∥ by (37) with i = 2,

≤ c2‖ysub
n − ỹsub

n ‖ by (9). (41)

Suppose now that, for k = 2, 3, . . . , i − 1, ‖Y sub
k − Ỹ sub

k ‖ of (40) has the following
upper bound,

‖Y sub
k − Ỹ sub

k ‖ ≤ ck
∥∥y′n − ỹ′n∥∥ ≤ ck‖ysub

n − ỹsub
n ‖. (42)

Then, for k = i, ‖Y sub
i − Ỹ sub

i ‖ of (40) has the following upper bound, since
βij

αij
∆t ≤

∆t
cfeasible

≤ ∆tFE,

‖Y sub
i − Ỹ sub

i ‖ ≤ vi
∥∥∥∥(y′n + ∆t

wi
vi
y′′n

)
−
(
ỹ′n + ∆t

wi
vi
ỹ′′n

)∥∥∥∥
i−1∑
j=2

αij

∥∥∥∥∥
(
Y sub
j + ∆t

βij
αij

Y ′′j

)
−

(
Ỹ sub
j + ∆t

βij
αij

Ỹ ′′j

)∥∥∥∥∥
≤ vi

∥∥y′n − ỹ′n∥∥+
i−1∑
j=2

αij

∥∥∥∥(Y sub
j +

∆t

cfeasible
Y ′′j

)
−
(
Ỹ sub
j +

∆t

cfeasible
Ỹ ′′j

)∥∥∥∥
≤ vi

∥∥y′n − ỹ′n∥∥+
i−1∑
j=2

αij

∥∥∥Y sub
j − Ỹ sub

j

∥∥∥ by (8) and (9),

≤ vi
∥∥y′n − ỹ′n∥∥+

i−1∑
j=2

αijcj
∥∥y′n − ỹ′n∥∥ by (42), (43)

≤ ci
∥∥y′n − ỹ′n∥∥ by (37), (44)

≤ ci
∥∥∥ysub

n − ỹsub
n

∥∥∥ by (9). (45)

Thus, we have, from (44) and (45), the following upper bound of
∥∥∥Y sub

i − Ỹ sub
i

∥∥∥,∥∥∥Y sub
i − Ỹ sub

i

∥∥∥ ≤ ci ∥∥y′n − ỹ′n∥∥ , (46)

≤ ci
∥∥∥ysub

n − ỹsub
n

∥∥∥ , i = 2, 3, . . . , s+ 1, (47)
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and, naturally, ∥∥∥Y sub
i − Ỹ sub

i

∥∥∥ ≤ ∥∥y′n − ỹ′n∥∥ , (48)

≤
∥∥∥ysub

n − ỹsub
n

∥∥∥ , i = 2, 3, . . . , s+ 1. (49)

In particular, this yields
∥∥ysub

n+1 − ỹsub
n+1

∥∥ ≤ ‖y′n − ỹ′n‖ ≤ ∥∥ysub
n − ỹsub

n

∥∥.

It is to be noted here that each representation (36) of Y sub
i , i = 2, 3, . . . , s +

1 (to obtain Ys+1 = yn+1 to order p) with coefficients vi, wi, αij and βij , will

produce a feasible CP coefficient, cfeasible, defined in Theorem 1 and feasible Y sub
i ,

i = 2, 3, . . . , s+ 1 of CPRKN(s, p) in modified CP form (36). What we really want
is not merely feasible Y sub

i , i = 2, 3, . . . , s + 1 of method CPRKN(s, p) in CP form
but best Y sub

i , i = 2, 3, . . . , s+ 1. This question will be considered in Section 6.
Transforming the usual form (18)–(19) into the modified CP form (35) of Y sub

i ,
i = 2, 3, . . . , s+1 of CPRKN(s, p) and vice versa will be considered in Subsection 4.2.

4.2. Vector notation of Y sub
i , i = 2, 3, . . . , s+ 1 of CPRKN(s, p)

Vector and matrix notation will help represent Y sub
i , i = 2, 3, . . . , s+1 of CPRKN(s, p)

in canonical CP form.
We define (s+ 1)-vectors

v = [0, v2, v3, . . . , vs+1]T , w = [0, w2, w3, . . . , ws+1]T ,

strictly lower triangular real matrices α,β ∈ R(s+1)×(s+1),

α = {αij}, β = {βij}.

The components vi, wi, αij , βij come from the modified CP form (35) of Y sub
i ,

i = 2, 3, . . . , s+ 1 of CPRKN(s, p).
Moreover,

Y sub = [0, Y sub
2 , Y sub

3 , . . . , Y sub
s+1 ]T , F = [0, Y ′′2 , Y

′′
3 , . . . , Y

′′
s+1]T , (50)

with the following N -vectors: Y sub
j , Yj , Y

′′
j for j = 1, 2, 3, . . . , s + 1, Y1 = yn, Y ′′1 =

y′′n = fn, Y sub
s+1 = ysub

n+1 and Y ′′s+1 = y′′n+1 = fn+1.
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4.2.1. Modified CP form of Y sub
i , i = 2, 3, . . . , s+ 1 in vector notation

Using the above notation, we rewrite the modified CP form (35) of Y sub
j , i =

2, 3, . . . , s+ 1 of CPRKN(s, p) in vector notation:

Y sub = v(y′n)T + ∆tw(y′′n)T +αY sub + ∆tβF ,

ysub
n+1 = Y sub

s+1 ,
(51)

with consistency conditions (37) written in vector form,

v +αes+1 = es+1, (52)

where
es+1 = [0, c2, c3, . . . , cs+1]T ∈ Rs+1. (53)

It is to be noted that, by setting the first row of matrices Y sub,F equal to zero,
αi1 and βi1, i = 2, 3, . . . , s+ 1 are not used in formulae (51) and are replaced by vi
and wi, i = 2, 3, . . . , s+ 1, respectively.

4.2.2. Usual form of Y sub
i , i = 2, 3, . . . , s+ 1 in vector notation

If α = 0, then the modified CP form (51) becomes

Y sub = v(y′n)T + ∆tw(y′′n)T + ∆tβF ,

ysub
n+1 = Y sub

s+1 ,
(54)

which is the usual form. The elements v, w, β of (54) are then denoted as v0, w0,
β0 respectively, and hence the usual form (54) can be rewritten as

Y sub = v0(y′n)T + ∆tw0(y′′n)T + ∆tβ0F ,

ysub
n+1 = Y sub

s+1 ,
(55)

with the consistency condition,
v0 = es+1, (56)

where es+1 is defined in (53).
To find the relation between the CP form coefficients and the usual form coeffi-

cients, we can solve (51) for Y sub since I − α is invertible because the matrix α is
strictly lower triangular,

Y sub = (I −α)−1 v(y′n)T + ∆t (I −α)−1w(y′′n)T + ∆t (I −α)−1 βF . (57)
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Comparing (57) with (55), we have the following relations between the generalized
CP form coefficients and the usual form coefficients,

v0 = (I −α)−1 v, w0 = (I −α)−1w, β0 = (I −α)−1 β. (58)

These relations allow a simple transformation of the vectors and matrices v, w, β
of a CP form into v0, w0, β0 of a usual form and vice versa.

In fact, the form (55) is the usual form (18) and (19) with

v0 = [0, c2, c3, . . . , cs+1]T , w0 = [0, a21, a31, . . . , b1]T , (59)

β0 =



0 0 0 0 · · · 0 0
a21 0 0 0 · · · 0 0
a31 a32 0 0 · · · 0 0
a41 a42 a43 0 · · · 0 0
...

...
. . .

. . .
...

as1 as2 as3 · · · as,s−1 0 0

b1 b2 b3 · · · bs−1 bs 0


. (60)

4.3. Canonical CP form of Y sub of CPRKN(s, p) in vector notation

To find the CP coefficient of CPRKN(s, p), it is useful to consider a particular
modified CP form (51) where the elements of the matrices α and β satisfy the same

ratio r =
αij

βij
for every i, j, i = 3, 4, . . . , s + 1 and j = 2, 3, . . . , i − 1, such that

βij 6= 0, or, in vector notation,

αr = rβr. (61)

Substituting this relation into (58), we can solve for βr in terms of β0 and r.
First, we have(
I − rβr

)−1
βr = β0 ⇔ βr = β0 − rβrβ0 ⇔ βr

(
I + rβ0

)
= β0.

Then, since I + rβ0 is invertible, the coefficients of the CP form (51) are given in
terms of the coefficients of the usual form (55) by the expressions

vr =
(
I + rβ0

)−1
v0 = (I −αr)v0, (62)

wr =
(
I + rβ0

)−1
w0 = (I −αr)w0, (63)

αr = rβr = rβ0

(
I + rβ0

)−1
=rβ0 (I −αr) , (64)

βr = β0

(
I + rβ0

)−1
=β0 (I −αr) , (65)
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where the identity (I −αr) =
(
I + rβ0

)−1
follows from

(I −αr)
(
I + rβ0

)
=
(
I − rβr

) (
I + rβ0

)
= I + rβ0 − rβr − r2βrβ0 = I,

since rβr = rβ0 − r2βrβ0.
It is to be noted that using (58) and (65), βr can then be written as

βr = β0

(
I + rβ0

)−1
= β0 (I −αr) = (I −αr)β0 =

(
I + rβ0

)−1
β0. (66)

As in [4], we shall refer to the form given by the coefficients (62)–(65), as the
canonical CP form of CPRKN(s, p):

Y sub = vr(y
′
n)T + ∆twr(y

′′
n)T +αrY

sub + ∆tβrF , (67)

which can be written solely in terms of the vectors and matrices v0, w0, β0 of the
usual form (55),

Y sub =
(
I + rβ0

)−1
v0(y′n)T + ∆t

(
I + rβ0

)−1
w0(y′′n)T

+ rβ0

(
I + rβ0

)−1
Y sub + ∆tβ0

(
I + rβ0

)−1
F . (68)

The canonical CP form (67) and the form (68) will allow us to formulate simply the
optimization problem considered in Section 6.

Using (66) and (68), we obtain

Y sub =
(
I + rβ0

)−1
[
v0(y′n)T + ∆tw0(y′′n)T + β0

(
rY sub + ∆tF

)]
. (69)

Here consistency requires that(
I + rβ0

)−1
v0 + r

(
I + rβ0

)−1
β0es+1 = es+1, (70)

where es+1 is defined in (53). Condition (70) is equivalent to the consistency condi-
tion (52).

Note that the vectorial usual form (55), with v0, w0, β0, corresponds to the
canonical CP form (67) or (69) with r = 0.

Relations (62)–(65) will enable us to obtain simply the vectors and matrices of
a canonical CP form (67) from those of a usual form (55) and vice versa.

To simplify notation, in the following theorem, the ratio r =
αij

βij
which is the

same for every i, j, i = 3, 4, . . . , s+ 1 and j = 2, 3, . . . , i− 1, becomes a feasible CP
coefficient of CPRKN(s, p). Hence, r must satisfy the conditions:

r ≤ vi
wi
, i = 2, 3, . . . , s+ 1. (71)

Therefore, the following slight modification of Theorem 1 holds.
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Theorem 2. If f satisfies conditions (7), (8) and (9) of the FE method, then ysub
n+1

of CPRKN(s, p) method (36) satisfies the CP property

‖ysub
n+1 − ỹsub

n+1‖ ≤ ‖y′n − ỹ′n‖ ≤ ‖ysub
n − ỹsub

n ‖

provided
∆t ≤ c(vr,wr,αr,βr)∆tFE,

where

• c(vr,wr,αr,βr) is equal to

r =
αij

βij
,

{
i = 3, 4, . . . , s+ 1,

j = 2, 3, . . . , i− 1,
(72)

and satisfies conditions (71),

under the assumption that all coefficients of (36) are nonnegative, with the conven-
tion that ratios a/0 = +∞, and ratios 0/0 are ignored.

5. Contractivity preserving (CP) form of y′n+1 of CPRKN(s, p) for
deriving CP property

Similar to the Shu–Osher form of RK methods [12], equation (15) of y′n+1 can be
written in the following CP form,

y′n+1 = αs+1,1y
′
n + ∆t βs+1,1y

′′
n +

s∑
j=2

[
αs+1,jY

sub
j + ∆t βs+1,jY

′′
j

]
, (73)

with consistency condition:

αs+1,1 +
s∑
j=2

αs+1,j cj = 1. (74)

To find the relation between the CP form and the usual form coefficients, compar-
ing (73) with (15), we have the following relations between the CP form coefficients
and the usual form coefficients (here Y sub

j , j = 2, 3, . . . , s in (73) are replaced by the
formula (36) for j = 2, 3, . . . , s, respectively),
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βs+1,j = bj −

 s∑
k=j+1

αs+1,k akj


αs+1,j = rβs+1,j

 j = s, s− 1, . . . , 2, (75)

βs+1,1 = b1 −

(
s∑

k=2

αs+1,k ak1

)

αs+1,1 = 1−

(
s∑

k=2

αs+1,k ck

)

j = 1. (76)

Using the order mentioned above of substitution operations, relations (75) and (76)
allow a simple transformation of the usual coefficients of (15) to convenient CP
coefficients of (73) for deriving CP property.

It is to be noted that one can also obtain relations (75) and (76) by using natu-
rally the canonical CP form (67) and the form (68) with bi (in β0 and w0) replaced
by bi, i = 1, 2, . . . , s.

Form (73) is called the CP form of y′n+1. We can rearrange y′n+1 in (73) as
follows:

y′n+1 = αs+1,1

[
y′n + ∆t

βs+1,1

αs+1,1
y′′n

]
+

s∑
j=2

αs+1,j

[
Y sub
j + ∆t

βs+1,j

αs+1,j
Y ′′j

]
, (77)

with consistency condition (74).
Thus we obtain the difference y′n+1 − ỹ′n+1 from (77) as follows:

y′n+1 − ỹ′n+1 = αs+1,1

[(
y′n + ∆t

βs+1,1

αs+1,1
y′′n

)
−
(
ỹ′n + ∆t

βs+1,1

αs+1,1
ỹ′′n

)]
+

s∑
j=2

αs+1,j

[(
Y sub
j + ∆t

βs+1,j

αs+1,j
Y ′′j

)
−
(
Ỹ sub
j + ∆t

βs+1,j

αs+1,j
Ỹ ′′j

)]
. (78)

To find the CP coefficient of y′n+1 of CPRKN(s, p), it is natural and useful to
consider a particular CP form (77) where (αs+1,j , βs+1,j), j = 2, 3, . . . , s satisfy the
same ratio r defined in (61) for Y sub,

r =
αs+1,j

βs+1,j
, j = 2, 3, . . . , s and r ≤ αs+1,1

βs+1,1
. (79)

Provided all the coefficients of (77) are nonnegative, the following straightforward
extension of a result presented in [2, 5] holds.
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Theorem 3. If f satisfies conditions (7), (8) and (9) of the FE method, then y′n+1

of (77) of CPRKN(s, p) method satisfies the CP property

‖y′n+1 − ỹ′n+1‖ ≤ ‖y′n − ỹ′n‖

provided
∆t ≤ c′feasible ∆tFE,

where the feasible CP coefficient c′feasible is equal to r of (79) under the assumption
that all coefficients of (77) are nonnegative, with the convention that the ratios
a/0 = +∞, and the ratios 0/0 are ignored.

Proof. The proof of this theorem is similar to the proof of theorem 1.

It is to be noted here that each representation (77) of y′n+1 (to obtain y′n+1 to
order p) with coefficients αs+1,j , βs+1,j will produce a feasible CP coefficient, c′feasible,
defined in Theorem 3 and a feasible y′n+1 of CPRKN(s, p) in CP form (77). What
we really want is not merely a feasible y′n+1 of method CPRKN(s, p) in CP form
but a best y′n+1. This question will be considered in Section 6.

6. Optimizing CP coefficient c(CPRKN(s, p)) of CPRKN(s, p)

We can now formulate the problem to optimize simultaneously

• formulae for Y sub
i , i = 2, 3, . . . , s+ 1 using the CP form (68) which is written

solely in terms of the vectors and matrices of the usual form,

• formula for y′n+1, using the usual form (15) and the CP form (77),

and obtain the CP coefficient c(CPRKN(s, p)).
Hence, the problem of optimizing CPRKN(s, p) can be formulated as

maximize r, (80)

subject to

• the componentwise inequalities for Y sub
i ,

vr =
(
I + rβ0

)−1
v0 ≥ 0, (81)

wr =
(
I + rβ0

)−1
w0 ≥ 0, (82)

βr = β0

(
I + rβ0

)−1 ≥ 0, (83)

together with conditions (71) and order conditions mentioned in (32) for
RKN(s, p) to obtain Ys+1 = yn+1 to order p,
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• the following inequalities for y′n+1,

bi ≥ 0, i = 1, 2, . . . , s, (84)

αs+1,j ≥ 0, j = 1, 2, . . . , s, (85)

βs+1,j ≥ 0, j = 1, 2, . . . , s, (86)

together with conditions (79) and order conditions mentioned in (32) for
RKN(s, p) to obtain y′n+1 to order p.

Here a maximized r is the CP coefficient c(CPRKN(s, p)).
Since the consistency condition (70) is satisfied, condition (81) is equivalent to

the following condition, in vector notation,

rβ0

(
I + rβ0

)−1
es+1 ≤ es+1.

It is to be noted here that

• each representation of the canonical CP form (67) of Y sub with coefficients
(vr,wr,αr,βr), which satisfy conditions (81)–(83) together with conditions
(71) and order conditions mentioned in (32) for RKN(s, p) to obtain yn+1 to
order p, will produce a feasible CP coefficient
r = c(vr,wr,αr,βr) and a feasible Yi

sub, i = 2, 3, . . . , s+ 1, in CP form (36),

• each representation of the CP form (77) of y′n+1 with coefficients bi, αs+1,j , βs+1,j

which satisfy conditions (84)–(86) together with conditions (79) and order con-
ditions mentioned in (32) for RKN(s, p) to obtain y′n+1 to order p, will produce
a feasible CP coefficient r and a feasible y′n+1, in CP form (77).

7. Intervals of absolute stability of CPRKN(4, 4) and CPRKN(6, 6)

To obtain the numerical stability of the new methods, we consider the linear test
equation

y′ = λy, y0 = 1, (87)

similar to Huang and Innanen [6].
For given numbers s and p of CPRKN(s, p), we have the following equations:

1. the difference equation and corresponding characteristic equation

η0(z) yn + η1(z) yn+1 = 0, η0(z) yn + η1(z) r = 0, (88)

(for y of CPRKN(s, p)) obtained by applying the predictors P2, P3, . . . , Ps
(13) and the integration formula IF (14) with constant step size h to the test
equation (87). Here z = λh.
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Table 1: Intervals of absolute stability for y and y′ of CPRKN(4, 4) and of
CPRKN(6, 6) respectively.

Interval of absolute stability for
Method y y′

CPRKN(4,4) (−3.92, 0) (−4.00, 0)
CPRKN(6,6) (−4.96, 0) (−4.96, 0)

2. the difference equation and corresponding characteristic equation

η′0(z) yn + η′1(z) yn+1 = 0, η′0(z) yn + η′1(z) r = 0, (89)

(for y′) obtained by applying the predictors P2, P3, . . . , Ps and the integration
formula IF’ (15).

Similar to Dormand et al. [1], we have two regions of absolute stability R and R′:
a complex number z is in R for y and R′ for y′ if the root of the characteristic
equation in (88) and (89), respectively, satisfies the root condition (see [9, pp. 70]).

The scanning method used to find the regions of absolute stability is similar to
the one used for Runge–Kutta methods (see [9]).

The intervals of absolute stability for y and y′ of CPRKN(4, 4) and of CPRKN(6, 6),
respectively, are shown in Table 1.

8. Numerical results

The relative energy error (EE(t)) at time t is defined as

EE(t) =

∣∣∣∣E(t)− E(0)

E(0)

∣∣∣∣ , (90)

where E(t) is the energy at time t.
We compare the relative energy error (EE(t)) as a function of number of function

evaluations (NFE) of CPRKN(4, 4), CPRKN(6, 6), Dormand–El-Mikkawy–Prince
DEP(4,3)4FM and DEP(6,4)6FM [1] after a 1000 periods integration of a Hamilto-
nian system (Huang and Innanen [6]) using fixed step sizes.

Tables 2, 3 and 4 list relative energy errors (EE) at t = 2000π as a function of
number of function evaluations (NFE) for CPRKN(4,4), CPRKN(6,6), DEP(4,3)4FM
and DEP(6,4)6FM after a 1000 periods integration of Kepler’s two-body problem
with eccentricities e = 0.3, 0.5, 0.7 respectively. It is seen, from Tables 2, 3 and
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Table 2: Relative energy error (EE) at t = 2000π as a function of number of function
evaluations (NFE) after a 1000 periods integration of Kepler’s two-body problem
with eccentricity e = 0.3.

Relative energy error in Relative energy error in
NFE CPRKN(4, 4) DEP(4,3)4FM NFE CPRKN(6, 6) DEP(6,4)6FM

2.24e+05 3.55e-04 2.82e-03 1.50e+05 4.48e-04 5.75e-04
7.44e+05 8.99e-07 7.00e-06 2.64e+05 9.30e-06 1.11e-05
1.26e+06 6.36e-08 4.95e-07 3.78e+05 7.70e-07 9.04e-07
1.78e+06 1.14e-08 8.85e-08 4.92e+05 1.23e-07 1.43e-07
2.30e+06 3.16e-09 2.47e-08 6.06e+05 2.86e-08 3.35e-08
2.82e+06 1.14e-09 8.92e-09 7.20e+05 8.59e-09 1.00e-08
3.34e+06 4.91e-10 3.83e-09 8.34e+05 3.07e-09 3.60e-09
3.86e+06 2.38e-10 1.86e-09 9.48e+05 1.25e-09 1.47e-09
4.38e+06 1.27e-10 9.90e-10 1.06e+06 5.67e-10 6.65e-10
4.90e+06 7.22e-11 5.65e-10 1.18e+06 2.78e-10 3.26e-10
5.42e+06 4.38e-11 3.42e-10 1.29e+06 1.45e-10 1.71e-10

4, that CPRKN(4,4) and CPRKN(6,6) compare favorably with DEP(4,3)4FM and
DEP(6,4)6FM.

The NFE percentage efficiency gain (NFE PEG) is defined by the formula (cf.
Sharp [11]),

(NFE PEG) = 100
∑
j

[
NFE1,j

NFE2,j
− 1

]
, (91)

where NFE1,j and NFE2,j are the NFE of methods 1 and 2, respectively, associated
with a given problem P, and j = − log10 (EE). The NFE was obtained from the
curves which fit, in a least-squares sense, the data (log10(EE), log10(NFE)) by means
of MATLAB’s polyfit.

Table 5 lists the NFE PEGs of CPRKN(4,4) and CPRKN(6,6) over DEP(4,3)4FM
and DEP(6,4)6FM after a 1000 periods integration of Kepler’s two-body prob-
lem with e = 0.3, 0.5, 0.7 respectively. It is seen that CPRKN(4, 4) wins over
DEP(4,3)4FM and CPRKN(6, 6) is similar to DEP(6,4)6FM.
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Table 3: Relative energy error (EE) at t = 2000π as a function of number of function
evaluations (NFE) after a 1000 periods integration of Kepler’s two-body problem
with eccentricity e = 0.5.

Relative energy error in Relative energy error in
NFE CPRKN(4, 4) DEP(4,3)4FM NFE CPRKN(6, 6) DEP(6,4)6FM

7.20e+05 2.65e-05 2.03e-04 4.80e+05 1.34e-05 1.70e-05
1.55e+06 5.81e-07 4.43e-06 7.20e+05 8.05e-07 9.98e-07
2.38e+06 6.84e-08 5.21e-07 9.60e+05 1.08e-07 1.33e-07
3.20e+06 1.53e-08 1.17e-07 1.20e+06 2.28e-08 2.80e-08
4.03e+06 4.86e-09 3.70e-08 1.44e+06 6.38e-09 7.83e-09
4.86e+06 1.91e-09 1.46e-08 1.68e+06 2.17e-09 2.67e-09
5.69e+06 8.70e-10 6.63e-09 1.92e+06 8.54e-10 1.05e-09
6.52e+06 4.41e-10 3.36e-09 2.16e+06 3.75e-10 4.60e-10
7.34e+06 2.43e-10 1.85e-09 2.40e+06 1.79e-10 2.20e-10
8.17e+06 1.42e-10 1.08e-09 2.64e+06 9.20e-11 1.13e-10
9.00e+06 8.79e-11 6.69e-10 2.88e+06 5.02e-11 6.15e-11

Table 4: Relative energy error (EE) at t = 2000π as a function of number of function
evaluations (NFE) after a 1000 periods integration of Kepler’s two-body problem
with eccentricity e = 0.7.

Relative energy error in Relative energy error in
NFE CPRKN(4, 4) DEP(4,3)4FM NFE CPRKN(6, 6) DEP(6,4)6FM

1.04e+06 4.23e-04 3.29e-03 1.08e+06 2.77e-05 3.59e-05
2.74e+06 3.45e-06 2.61e-05 1.50e+06 2.85e-06 3.61e-06
4.43e+06 3.11e-07 2.35e-06 1.92e+06 5.11e-07 6.43e-07
6.13e+06 6.15e-08 4.65e-07 2.34e+06 1.29e-07 1.61e-07
7.82e+06 1.81e-08 1.37e-07 2.76e+06 4.06e-08 5.09e-08
9.52e+06 6.80e-09 5.14e-08 3.18e+06 1.51e-08 1.89e-08
1.12e+07 3.00e-09 2.26e-08 3.60e+06 6.34e-09 7.94e-09
1.29e+07 1.48e-09 1.12e-08 4.02e+06 2.93e-09 3.67e-09
1.46e+07 8.00e-10 6.05e-09 4.44e+06 1.46e-09 1.83e-09
1.63e+07 4.62e-10 3.49e-09 4.86e+06 7.78e-10 9.75e-10
1.80e+07 2.81e-10 2.13e-09 5.28e+06 4.35e-10 5.46e-10
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Table 5: NFE PEG of CPRKN(4, 4) over DEP(4,3)4FM and CPRKN(6, 6) over
DEP(6,4)6FM after a 1000 periods integration of Kepler’s two-body problem with
e = 0.3, e = 0.5 and e = 0.7, respectively.

NFE PEG over DEP(4,3)4FM for
two-body problem with:

method e = 0.3 e = 0.5 e = 0.7

CPRKN(4,4) 51 % 50 % 50 %

NFE PEG over DEP(6,4)6FM for
two-body problem with:

method e = 0.3 e = 0.5 e = 0.7

CPRKN(6,6) 2 % 3 % 3 %

9. Conclusion

We constructed new optimal, explicit, s-stage Runge–Kutta–Nystrom method of
order p, p = 3, 4, . . . , 6 (CPRKN(s, p)), that have contractivity-preserving properties
and nonnegative coefficients.

On the basis of NFE versus the relative energy error, selected CPRKN(4,4) and
CPRKN(6,6) compare favorably with Dormand–El-Mikkawy–Prince DEP(4,3)4FM
and DEP(6,4)6FM, respectively, in solving Kepler’s problem with varying eccentric-
ity over an interval of 1000 periods.

In the light of the results obtained in this paper, these new CPRKN(s, p),
p = 3, 4, . . . , 6 appear to be promising solvers which can be combined with Tay-
lor series or CP HO series methods developed earlier [10] to form new higher order
methods with contractivity-preserving (CP) properties and nonnegative coefficients
for solving efficiently the second-order system of non-stiff ordinary differential equa-
tions.
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A. Coefficients of CPRKN(s, p), p = 3, 4, . . . , 6

The appendix lists the usual form of five new CPRKN(s, p) methods with their CP
coefficient c(CPRKN(s, p)).

CPRKN(2,3). c(CPRKN(2,3)) = 1.5.

0 aij
2
3

2
9

bi
1
4

1
4

bi
1
4

3
4

CPRKN(3,4). c(CPRKN(3,4)) = 2.2542293787479135.

0 aij
5703594
16064153

547322
8683431

10360559
12261757

112823
2496535

4709345
15104824

bi
1
9

1885193
5703594

499307
8555391

bi
1
9

20603748
40203547

2862467
7604792

CPRKN(4,4). c(CPRKN(4,4)) = 2.4743852177875874.

0

26971918
107581049

11868682
377642077 aij

58977037
101250069

972878
65595991

41074969
265316004

23277231
26105459

83526627
846839644

44674505
248163904

15185060
127738057

bi
26994554
328987169

53393375
207511886

208549974
1569486133

25168925
906469463

bi
17891713
218049315

14894263
43373362

40778691
128129371

27846884
108654621
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CPRKN(5,5). c(CPRKN(5,5)) = 2.4307903085928104.

0

68909267
178744101

31624111
425555783 aij

13013228
65692391

2299759
274780277

5514383
490121757

119047355
176052511

1570365
104029019

20347847
284778633

12591039
88620110

69512934
74012023

12808156
182165325

4231711
164606135

58976315
260757231

182143463
1532329653

bi
14520741
223581817

11229819
101906302

46531259
226905735

31617786
287289619

10588203
1087932953

bi
14520741
223581817

16327696
91046147

69883863
273275923

19674557
57884909

15571109
97257192

CPRKN(6,6) with c(CPRKN(6,6)) = 2.4672918884438562.

0

6648706
39027077

3999571
275613952 aij

30648937
79250275

1350862
522581577

9232128
127873411

75321914
105966849

20814370
224800513

10697606
442107819

47016859
346130514

6255665
10780901

2905627
204565870

18175723
134876122

3672823
307407819

1030929
138615316

469000023
506551154

16231130
578987087

3336798
14855867

43589951
610836173

8006719
151269626

8085943
156460637

bi
10892061
206668234

252458291
1241932224

14535418
137797841

55242801
1159422986

10863867
140225018

4041093
301275815

bi
10892061
206668234

139166744
567979543

24185509
140610440

40325482
244756631

30769025
166702063

106285627
587407756
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