Generalization on local property of absolute matrix summability of factored Fourier series

Şebnem Yıldız
Ahi Evran University/Department of Mathematicst, Kırşehir,Turkey sebnemyildiz@ahievran.edu.tr; sebnem.yildiz82@gmail.com

Abstract

In this paper, a known theorem dealing with $\left|\bar{N}, p_{n}\right|_{k}$ summability methods of Fourier series is generalized to more general cases by taking normal matrices and by using local property of absolute matrix summability of factored Fourier series.

Keywords: Summability factors, absolute matrix summability, Fourier series, infinite series, Hölder inequality, Minkowski inequality.

MSC2010: 26D15; 42A24; 40F05; 40G99.

1 Introduction

Let $\left(s_{n}\right)$ denote the n-th partial sum of the series $\sum a_{n}$. We write

$$
R_{n}=\left\{s_{1}+\frac{1}{2} s_{2}+\ldots+\frac{1}{n} s_{n}\right\} / \log n
$$

Then the series $\sum a_{n}$ is said to be absolutely summable $(R, \operatorname{logn}, 1)$ or summable $|R, \operatorname{logn}, 1|$ if the sequence $\left\{R_{n}\right\}$ is of bounded variation, that is, the infinite series

$$
\sum\left|R_{n}-R_{n+1}\right|
$$

is convergent. Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty \quad \text { as } \quad n \rightarrow \infty, \quad\left(P_{-i}=p_{-i}=0, \quad i \geq 1\right)
$$

The sequence-to-sequence transformation

$$
w_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v}
$$

defines the sequence $\left(w_{n}\right)$ of the Riesz mean or simply the $\left(\bar{N}, p_{n}\right)$ mean of the sequence $\left(s_{n}\right)$ generated by the sequence of coefficients $\left(p_{n}\right)$ (see [8]). The series $\sum a_{n}$ is said to be summable $\left|\bar{N}, p_{n}\right|_{k}, k \geq 1$, if (see [3])

$$
\sum_{n=1}^{\infty}\left(\frac{P_{n}}{p_{n}}\right)^{k-1}\left|w_{n}-w_{n-1}\right|^{k}<\infty
$$

In the special case when $p_{n}=1$ for all values of n (resp. $k=1$), $\left|\bar{N}, p_{n}\right|_{k}$ summability is the same as $|C, 1|_{k}\left(\right.$ resp. $\left.\left|\bar{N}, p_{n}\right|\right)$ summability. Also, if we take $k=1$ and $p_{n}=1 /(n+1),\left|\bar{N}, p_{n}\right|_{k}$ summability is equivalent to $|R, \log n, 1|$ summability.
A lower triangular matrix of nonzero diagonal entries is said to be a normal matrix. Let $A=$ $\left(a_{n v}\right)$ be a normal matrix, we associate two lower semimatrices $\bar{A}=\left(\bar{a}_{n v}\right)$ and $\hat{A}=\left(\hat{a}_{n v}\right)$ with entries defined by,

$$
\bar{a}_{n v}=\sum_{i=v}^{n} a_{n i}, \quad n, v=0,1, \ldots
$$

and

$$
\hat{a}_{00}=a_{00}, \quad \hat{a}_{n v}=\bar{\Delta} \bar{a}_{n v}, \quad n=1,2, \ldots
$$

It should be noted that \hat{A} and \bar{A} are the well-known matrices of series to series and series to sequence transformations, respectively. Then, we have

$$
\begin{gathered}
A_{n}(s)=\sum_{v=0}^{n} a_{n v} s_{v}=\sum_{v=0}^{n} \bar{a}_{n v} a_{v} \\
\bar{\Delta} A_{n}(s)=\sum_{v=0}^{n} \hat{a}_{n v} a_{v}
\end{gathered}
$$

Let $\left(\theta_{n}\right)$ be any sequence of positive real numbers. The series $\sum a_{n}$ is said to be summable $\left|A, \theta_{n}\right|_{k}, k \geq 1$, (see [12],[20]) if

$$
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|A_{n}(s)-A_{n-1}(s)\right|^{k}<\infty
$$

In the special case, if we take $a_{n v}=\frac{p_{v}}{P_{n}}$ and $\theta_{n}=\frac{P_{n}}{p_{n}}$, then we have $\left|\bar{N}, p_{n}\right|_{k}$ summability. Also, if we take $\theta_{n}=n$ and $a_{n v}=\frac{p_{v}}{P_{n}}$, then we have $\left|R, p_{n}\right|_{k}$ summability (see [5]).

2 The Known Results

Let f be a periodic function with period 2π and integrable (L) over $(-\pi, \pi)$. Without any loss of generality the constant term in the constant term in the Fourier series of f can be taken to be zero, so that

$$
f(t) \sim \sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)=\sum_{n=1}^{\infty} C_{n}(t) .
$$

where

$$
a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) d t, \quad a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos (n t) d t, \quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin (n t) d t .
$$

We write

$$
\varphi(t)=\frac{1}{2}\{f(x+t)+f(x-t)\} .
$$

It is well known that the convergence of the Fourier series at $t=x$ is a local property of f (i.e., depends only on the behaviour of f in an arbitrarily small neighbourhood of x), and so the summability of the Fourier series $t=x$ by any regular linear summability method is also a local property of f.
It has been pointed out by Bosanquet [1] that for the case $\lambda_{n}=\operatorname{logn}$, the definition of absolutely summable $(R, \log n, 1)$ or summable $|R, \operatorname{logn}, 1|$ is equivalent to the definition of the summability $\left|R, \lambda_{n}, 1\right|$ used by Mohanty [11], λ_{n} being a monotonic increasing sequence tending to infinity with n.
Matsumoto [9] improved this result by replacing the series $\sum(\log n)^{-1} C_{n}(t)$ by

$$
\sum(\log \log n)^{-p} C_{n}(t), \quad p>1
$$

Bhatt [2] showed that the factor $(\log \log n)^{-p}$ in the above series can be replaced by the more general factor $\gamma_{n} \operatorname{logn}$ where $\left(\gamma_{n}\right)$ is a convex sequence such that $\sum n^{-1} \gamma_{n}$ is convergent. Borwein [7] generalized Bhatt's result by proving that $\left(\lambda_{n}\right)$ is a sequence for which

$$
\sum_{n=1}^{\infty} \frac{p_{n}}{P_{n}}\left|\lambda_{n}\right|<\infty \quad \text { and } \quad \sum_{n=1}^{\infty}\left|\Delta \lambda_{n}\right|<\infty
$$

then the summability $\left|R, P_{n}, 1\right|$ of the factored Fourier series

$$
\sum_{n=1}^{\infty} \lambda_{n} C_{n}(t)
$$

at any point is a local property of f. On the other hand, Mishra [10] proved that if $\left(\gamma_{n}\right)$ is as above, and if

$$
P_{n}=O\left(n p_{n}\right) \quad \text { and } \quad P_{n} \Delta p_{n}=O\left(p_{n} p_{n+1}\right)
$$

the summability $\left|\bar{N}, p_{n}\right|$ of the series

$$
\sum_{n=1}^{\infty} \gamma_{n} \frac{P_{n}}{n p_{n}} C_{n}(t)
$$

at any point is a local property of f. Bor [4] showed that $\left|\bar{N}, p_{n}\right|$ in Mishra's result can be replaced by a more general summability method $\left|\bar{N}, p_{n}\right|_{k}$, and introduced the following theorem on the local property of the summability $\left|\bar{N}, p_{n}\right|_{k}$ of the factored Fourier series, which generalizes most of the above results under more appropriate conditions then those given in them.
Theorem 2.1[6] Let $k \geq 1$ and the sequences $\left(p_{n}\right)$ and $\left(\lambda_{n}\right)$ be such that

$$
\begin{align*}
& \Delta X_{n}=O(1 / n) \tag{1}\\
& \sum_{n=1}^{\infty} n^{-1}\left\{\left|\lambda_{n}\right|^{k}+\left|\lambda_{n+1}\right|^{k}\right\} X_{n}^{k-1}<\infty \tag{2}\\
& \sum_{n=1}^{\infty}\left(X_{n}^{k}+1\right)\left|\Delta \lambda_{n}\right|<\infty \tag{3}
\end{align*}
$$

where $X_{n}=\left(n p_{n}\right)^{-1} P_{n}$. Then the summability $\left|\bar{N}, p_{n}\right|_{k} k \geq 1$ of the series $\sum_{n=1}^{\infty} \lambda_{n} X_{n} C_{n}(t)$ at a point can be ensured by a local property.

3 The Main Results

Many studies have been done for matrix generalization of Fourier series (see [13]-[28]). The aim of this paper is to extend Theorem 2.1 for $\left|A, \theta_{n}\right|_{k}$ summability method by taking normal matrices instead of weighted mean matrices.
Theorem 3.1 Let $A=\left(a_{n v}\right)$ be a positive normal matrix such that

$$
\begin{align*}
\bar{a}_{n 0} & =1, n=0,1, \ldots \tag{4}\\
a_{n-1, v} & \geq a_{n v}, \text { for } n \geq v+1, \tag{5}\\
\sum_{v=1}^{n-1} a_{v v} \hat{a}_{n, v+1} & =O\left(a_{n n}\right) . \tag{6}
\end{align*}
$$

Let $\left(\theta_{n} a_{n n}\right)$ be a non increasing sequence. If $\left(\lambda_{n}\right)$ and $\left(X_{n}\right)$ are sequences satisfying the following conditions:

$$
\begin{align*}
& \sum_{n=1}^{\infty}\left(\theta_{n} a_{n n}\right)^{k-1} n^{-1}\left\{\left|\lambda_{n}\right|^{k}+\left|\lambda_{n+1}\right|^{k}\right\} X_{n}^{k-1}<\infty \tag{7}\\
& \sum_{n=1}^{\infty}\left(\theta_{n} a_{n n}\right)^{k-1}\left(X_{n}^{k}+1\right)\left|\Delta \lambda_{n}\right|<\infty \tag{8}\\
& \Delta X_{n}=O(1 / n) \tag{9}
\end{align*}
$$

where $X_{n}=\left(n a_{n n}\right)^{-1}$, and $\left(\theta_{n}\right)$ is any sequence of positive constants, then the summability $\left|A, \theta_{n}\right|_{k}, k \geq 1$ of the series

$$
\sum \lambda_{n} X_{n} C_{n}(t)
$$

at a point can be ensured by a local property.
We need the following lemma for the proof of Theorem 3.1.
Lemma 3.2 Let $\left(\theta_{n} a_{n n}\right)$ be a non increasing sequence. Suppose that the matrix A and the sequences $\left(\lambda_{n}\right)$ and $\left(X_{n}\right)$ satisfy all the conditions of Theorem 3.1, and that $\left(s_{n}\right)$ is bounded and $\left(\theta_{n}\right)$ is any sequence of positive constants. Then the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} \lambda_{n} X_{n} a_{n} \tag{10}
\end{equation*}
$$

is summable $\left|A, \theta_{n}\right|_{k}, k \geq 1$.

4 Proof of Lemma 3.2

Let $\left(T_{n}\right)$ denotes the A-transform of the series (10). Then we have,

$$
\bar{\Delta} T_{n}=\sum_{v=1}^{n} \hat{a}_{n v} a_{v} \lambda_{v} X_{v}, \quad X_{0}=0 .
$$

Applying Abel's transformation to this sum we have

$$
\bar{\Delta} T_{n}=\sum_{v=1}^{n-1} \Delta\left(\hat{a}_{n v} \lambda_{v} X_{v}\right) s_{v}+a_{n n} \lambda_{n} X_{n} s_{n}
$$

By the formula for the difference of products of sequences (see [8], p.129) we have

$$
\begin{aligned}
& \Delta\left(\hat{a}_{n v} \lambda_{v} X_{v}\right)=\lambda_{v} X_{v} \Delta \hat{a}_{n v}+\Delta\left(\lambda_{v} X_{v}\right) \hat{a}_{n, v+1}=\lambda_{v} X_{v} \Delta \hat{a}_{n v}+\left(X_{v} \Delta \lambda_{v}+\Delta X_{v} \lambda_{v+1}\right) \hat{a}_{n, v+1} \\
& \bar{\Delta} T_{n}=\sum_{v=1}^{n-1} \hat{a}_{n, v+1} X_{v} \Delta \lambda_{v} s_{v}+\sum_{v=1}^{n-1} \hat{a}_{n, v+1} \lambda_{v+1} \Delta X_{v} s_{v}+\sum_{v=1}^{n-1} \bar{\Delta} a_{n v} \lambda_{v} X_{v} s_{v}+a_{n n} \lambda_{n} X_{n} s_{n} \\
& =T_{n}(1)+T_{n}(2)+T_{n}(3)+T_{n}(4)
\end{aligned}
$$

To complete the proof of Lemma 3.2, by Minkowski inequality, it is sufficient to show that

$$
\begin{equation*}
\sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|T_{n, r}\right|^{k}<\infty, \quad \text { for } \quad r=1,2,3,4 \tag{11}
\end{equation*}
$$

The elements $\hat{a}_{n v} \geq 0$ for each v, n. it is easily seen by using conditions (4) and (5) of Theorem 3.1. For detail (see [18]).

Also,

$$
\begin{align*}
& \sum_{v=1}^{n-1}\left|\bar{\Delta} a_{n v}\right|=\sum_{v=1}^{n-1}\left(a_{n-1, v}-a_{n v}\right)=\bar{a}_{n-1,0}-\bar{a}_{n 0}+a_{n 0}-a_{n-1,0}+a_{n n} \\
& =a_{n 0}-a_{n-1,0}+a_{n n} \leq a_{n n} \tag{12}
\end{align*}
$$

First, by applying Hölder's inequality with indices k and k^{\prime}, where $k>1$ and $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we have that

$$
\begin{aligned}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 1}\right|^{k} & \leq \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\sum_{v=1}^{n-1} \hat{a}_{n, v+1} X_{v}\left|\Delta \lambda_{v}\right|\left|s_{v}\right|\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\sum_{v=1}^{n-1} \hat{a}_{n, v+1} X_{v}^{k}\left|\Delta \lambda_{v}\right|\right)\left(\sum_{v=1}^{n-1} \hat{a}_{n, v+1}\left|\Delta \lambda_{v}\right|\right)^{k-1}
\end{aligned}
$$

and by taking account of (4) and (5), we have $\hat{a}_{n, v+1} \leq a_{n n}$, for $1 \leq v \leq n-1$ which implies that

$$
\sum_{v=1}^{n-1} \hat{a}_{n, v+1}\left|\Delta \lambda_{v}\right| \leq a_{n n} \sum_{v=1}^{n-1}\left|\Delta \lambda_{v}\right|=O\left(a_{n n}\right)
$$

thus,

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 1}\right|^{k}=O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1} a_{n n}^{k-1} \sum_{v=1}^{n-1} \hat{a}_{n, v+1} X_{v}^{k}\left|\Delta \lambda_{v}\right| \\
& =O(1) \sum_{v=1}^{m} X_{v}^{k}\left|\Delta \lambda_{v}\right| \sum_{n=v+1}^{m+1}\left(\theta_{n} a_{n n}\right)^{k-1} \hat{a}_{n, v+1}=O(1) \sum_{v=1}^{m}\left(\theta_{v} a_{v v}\right)^{k-1} X_{v}^{k}\left|\Delta \lambda_{v}\right| \sum_{n=v+1}^{m+1} \hat{a}_{n, v+1} \\
& =O(1) \sum_{v=1}^{m}\left(\theta_{v} a_{v v}\right)^{k-1} X_{v}^{k}\left|\Delta \lambda_{v}\right| \\
& =O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

in view of condition (8). Note that from (9) follows that $\Delta X_{v}=O\left(a_{v v} X_{v}\right)$. Also, we have

$$
\begin{aligned}
& \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 2}\right|^{k} \leq \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\sum_{v=1}^{n-1} \hat{a}_{n, v+1}\left|\lambda_{v+1}\right|\left|\Delta X_{v}\right|\left|s_{v}\right|\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\sum_{v=1}^{n-1} \hat{a}_{n, v+1}\left|\lambda_{v+1}\right| a_{v v} X_{v}\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\sum_{v=1}^{n-1} \hat{a}_{n, v+1}\left|\lambda_{v+1}\right|^{k} a_{v v} X_{v}^{k}\right)\left(\sum_{v=1}^{n-1} a_{v v} \hat{a}_{n, v+1}\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1} a_{n n}^{k-1}\left(\sum_{v=1}^{n-1} a_{v v} \hat{a}_{n, v+1}\left|\lambda_{v+1}\right|^{k} X_{v}^{k}\right) \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v+1}\right|^{k} a_{v v} X_{v}^{k} \sum_{n=v+1}^{m+1}\left(\theta_{n} a_{n n}\right)^{k-1} \hat{a}_{n, v+1}=O(1) \sum_{v=1}^{m}\left(\theta_{v} a_{v v}\right)^{k-1}\left|\lambda_{v+1}\right|^{k} a_{v v} X_{v}^{k} \sum_{n=v+1}^{m+1} \hat{a}_{n, v+1} \\
& =O(1) \sum_{v=1}^{m}\left(\theta_{v} a_{v v}\right)^{k-1}\left|\lambda_{v+1}\right|^{k} a_{v v} X_{v}^{k-1} X_{v}=O(1) \sum_{v=1}^{m}\left(\theta_{v} a_{v v}\right)^{k-1}\left|\lambda_{v+1}\right|^{k} v^{-1} X_{v}^{k-1} \\
& =O(1) \text { as } m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Lemma 3.2. On the other hand, we have

$$
\begin{aligned}
\sum_{n=2}^{m+1} \theta_{n}^{k-1}\left|T_{n, 3}\right|^{k} & =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\bar{\Delta} a_{n v}\right|\left|\lambda_{v}\right| X_{v}\right)^{k} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1}\left(\sum_{v=1}^{n-1}\left|\bar{\Delta} a_{n v}\right|\left|\lambda_{v}\right|^{k} X_{v}^{k}\right)\left(\sum_{v=1}^{n-1}\left|\bar{\Delta} a_{n v}\right|\right)^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \theta_{n}^{k-1} a_{n n}^{k-1} \sum_{v=1}^{n-1}\left|\bar{\Delta} a_{n v}\right|\left|\lambda_{v}\right|^{k} X_{v}^{k} \\
& =O(1) \sum_{v=1}^{m}\left|\lambda_{v}\right|^{k} X_{v}^{k} \sum_{n=v+1}^{m+1}\left(\theta_{n} a_{n n}\right)^{k-1}\left|\bar{\Delta} a_{n v}\right|=O(1) \sum_{v=1}^{m}\left(\theta_{v} a_{v v}\right)^{k-1}\left|\lambda_{v}\right|^{k} X_{v}^{k} \sum_{n=v+1}^{m+1}\left|\bar{\Delta} a_{n v}\right| \\
& =O(1) \sum_{v=1}^{m}\left(\theta_{v} a_{v v}\right)^{k-1}\left|\lambda_{v}\right|^{k} X_{v}^{k} a_{v v} \\
& =O(1) \sum_{v=1}^{m}\left(\theta_{v} a_{v v}\right)^{k-1}\left|\lambda_{v}\right|^{k} X_{v}^{k-1} v^{-1}=O(1) \quad \text { as } \quad m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Lemma 3.2. Finally, we have that

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|T_{n, 4}\right|^{k}=O(1) \sum_{n=1}^{\infty} \theta_{n}^{k-1}\left|\lambda_{n}\right|^{k} X_{n}^{k} a_{n n}^{k} \\
& =O(1) \sum_{n=1}^{\infty}\left(\theta_{n} a_{n n}\right)^{k-1}\left|\lambda_{n}\right|^{k} X_{n}^{k} a_{n n} \\
& =O(1) \sum_{n=1}^{\infty}\left(\theta_{n} a_{n n}\right)^{k-1}\left|\lambda_{n}\right|^{k} X_{n}^{k-1} n^{-1}<\infty
\end{aligned}
$$

by virtue of the hypotheses of Lemma 3.2, This completes the proof of Lemma 3.2.
Proof of Theorem 3.1. Since the convergence of the Fourier series at a point is a local property of its generating function f, the theorem follows by formula (7.1) from Chapter II of the book (see [29]) and from Lemma 3.2.

5 APPLICATIONS

We can apply Theorem 3.1 to weighted mean $A=\left(a_{n v}\right)$ is defined as $a_{n v}=\frac{p_{v}}{P_{n}}$ when $0 \leq v \leq n$, where $P_{n}=p_{0}+p_{1}+\ldots+p_{n}$. We have that,

$$
\bar{a}_{n v}=\frac{P_{n}-P_{v-1}}{P_{n}} \quad \text { and } \quad \hat{a}_{n, v+1}=\frac{p_{n} P_{v}}{P_{n} P_{n-1}}
$$

The following results can be easily verified.

1. If we take $\theta_{n}=\frac{P_{n}}{p_{n}}$ in Theorem 3.1, then we have another theorem dealing with absolute matrix summability (see [18]).
2. If we take $\theta_{n}=\frac{P_{n}}{p_{n}}$ and $a_{n v}=\frac{p_{v}}{P_{n}}$ in Theorem 3.1, then we have a theorem dealing with $\left|\bar{N}, p_{n}\right|_{k}$ summability (see [6]).
3. If we take $\theta_{n}=n$ and $a_{n v}=\frac{p_{v}}{P_{n}}$ in Theorem 3.1, then we obtain a new result dealing with $\left|R, p_{n}\right|_{k}$ summability method.
4. If we take $\theta_{n}=n, a_{n v}=\frac{p_{v}}{P_{n}}$ and $p_{n}=1$ for all values of n in Theorem 3.1, then we have a result for $|C, 1|_{k}$ summability.

References

[1] L. S. Basanquet, Mathematical Review 12 (1951), 254.
[2] S. N. Bhatt, An aspect of local property of $|R, \log , 1|$ summability of the factored Fourier series, Proc. Natl. Inst. India 26 (1960), 69-73.
[3] H. Bor, On two summability methods, Math. Proc. Cambridge Philos. Soc. 97 (1) (1985), 147-149.
[4] H. Bor, Local property of $\left|\bar{N}, p_{n}\right|_{k}$ summability of factored Fourier series, Bull. Inst. Math. Acad. Sinica 17 (1989), 165-170.
[5] H. Bor, On the relative strength of two absolute summability methods, Proc. Amer. Math. Soc. 113 (1991), 1009-1012.
[6] H. Bor, On the local property of $\left|\bar{N}, p_{n}\right|_{k}$ summability of factored Fourier series, J. Math. Anal. Appl. 163 (1992), 220-226.
[7] D. Borwein, The nonlocal nature of the summability of Fourier series by certain absolute Riesz methods, Proc. Amer. Math. Soc. 114 (1992), 89-94.
[8] G. H. Hardy, Divergent Series, Clarendon Press Oxford, (1949).
[9] K. Matsumoto, Local property of the summability $\left|R, p_{n}, 1\right|$, Tohoku Math. J. 28 (1956), 114-124.
[10] K. N. Mishra, Multipliers for $\left|\bar{N}, p_{n}\right|$ summability of Fourier series, Bull. Inst. Math. Acad. Sinica 14 (1986), 431-438.
[11] R. Mohanty, On the summability $|R, \operatorname{logw}, 1|$ of Fourier series, J. London Math. Soc. 25 (1950), 67-72.
[12] H. S. Özarslan, T. Kandefer, On the relative strength of two absolute summability methods, J. Comput. Anal. Appl. 11 no. 3, (2009), 576-583.
[13] H. S. Özarslan, Ş. Yıldız, On the local property of summability of factored Fourier series, Int. J. Pure Math. 3 (2016), 1-5.
[14] H. S. Özarslan, Ş. Yıldız, A new study on the absolute summability factors of Fourier series, J. Math. Anal. 7 (2016), 31-36.
[15] H. S. Özarslan, Ş. Yıldız, Local properties of absolute matrix summability of factored Fourier series, Filomat 3115 (2017), 4897-4903.
[16] M. A. Sarıöl, On absolute summability factors, Comment. Math. Prace Mat. 31 (1991), 157-163.
[17] M. A. Sarıg̈l, On the absolute weighted mean summability methods, Proc. Amer. Math. Soc. 115 (1992), 157-160.
[18] M. A. Sarıgöl, H. Bor, On local property of $|A|_{k}$ summability of factored Fourier series, J. Math. Anal. Appl. 188 (1994), 118-127.
[19] M. A. Sarıgöl, H. Bor, Characterization of absolute summability factors, J.Math. Anal.Appl. 195 (1995), 537-545.
[20] M. A. Sarıgöl, On the local properties of factored Fourier series, Appl. Math. Comp. 216 (2010), 3386-3390.
[21] Ş. Yildiz, A new theorem on local properties of factored Fourier series, Bull Math. Anal. Appl. 8 (2) (2016) 1-8.
[22] Ş. Yildiz, A new note on local property of factored Fourier series, Bull Math. Anal. Appl. 8 (4) (2016) 91-97.
[23] Ş. Yildiz, A new theorem on absolute matrix summability of Fourier series, Pub. Inst. Math. (N.S.) 102 (116) (2017), 107-113.
[24] S. Yıldız, On absolute matrix summability factors of infinite series and Fourier series, GU J. Sci. 301 (2017), 363-370.
[25] Ş. Yıldız On Riesz summability factors of Fourier series, Trans. A. Razmadze Math. Inst. 171 (2017), 328-331.
[26] Ş. Yıldız A new generalization on absolute matrix summability factors of Fourier series, J. Inequal. Spec. Funct. 8 (2) (2017), 65-73.
[27] Ş. Yıldız, On Application of Matrix Summability to Fourier Series, Math. Methods Appl. Sci. DOI: 10.1002/mma.4635, (2017)
[28] Ş. Yıldız, On the absolute matrix summability factors of Fourier series, Math. Notes, Vol.103, No. 2 (2018), 297-303.
[29] A. Zygmund, Trigonemetric Series, vol.1, Cambridge Univ. Press, Cambridge (1959).

