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1 Introduction

Let (sn) denote the n-th partial sum of the series
∑
an. We write

Rn =

{
s1 +

1

2
s2 + ...+

1

n
sn

}
/logn.

Then the series
∑
an is said to be absolutely summable (R, logn, 1) or summable |R, logn, 1| if

the sequence {Rn} is of bounded variation, that is, the infinite series∑
|Rn −Rn+1|

is convergent. Let (pn) be a sequence of positive numbers such that

Pn =
n∑
v=0

pv →∞ as n→∞, (P−i = p−i = 0, i ≥ 1).

The sequence-to-sequence transformation

wn =
1

Pn

n∑
v=0

pvsv

defines the sequence (wn) of the Riesz mean or simply the (N̄ , pn) mean of the sequence (sn)
generated by the sequence of coefficients (pn) (see [8]).
The series

∑
an is said to be summable

∣∣N̄ , pn∣∣k, k ≥ 1, if (see [3])

∞∑
n=1

(
Pn
pn

)k−1
| wn − wn−1 |k<∞.
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In the special case when pn = 1 for all values of n (resp.k = 1),
∣∣N̄ , pn∣∣k summability is the

same as |C, 1|k (resp.
∣∣N̄ , pn∣∣) summability. Also, if we take k = 1 and pn = 1/(n+ 1),

∣∣N̄ , pn∣∣k
summability is equivalent to |R, logn, 1| summability.
A lower triangular matrix of nonzero diagonal entries is said to be a normal matrix. Let A =
(anv) be a normal matrix, we associate two lower semimatrices Ā = (ānv) and Â = (ânv) with
entries defined by,

ānv =

n∑
i=v

ani, n, v = 0, 1, ...

and

â00 = a00, ânv = ∆̄ānv, n = 1, 2, ...

It should be noted that Â and Ā are the well-known matrices of series to series and series to
sequence transformations, respectively. Then, we have

An(s) =
n∑
v=0

anvsv =
n∑
v=0

ānvav

∆̄An(s) =

n∑
v=0

ânvav

Let (θn) be any sequence of positive real numbers. The series
∑
an is said to be summable

|A, θn|k, k ≥ 1, (see [12],[20]) if

∞∑
n=1

θk−1n |An(s)−An−1(s)|k <∞.

In the special case, if we take anv = pv
Pn

and θn = Pn
pn

, then we have |N̄ , pn|k summability. Also,

if we take θn = n and anv = pv
Pn

, then we have |R, pn|k summability (see [5]).

2 The Known Results

Let f be a periodic function with period 2π and integrable (L) over (−π, π). Without any loss
of generality the constant term in the constant term in the Fourier series of f can be taken to
be zero, so that

f(t) ∼
∞∑
n=1

(ancosnt+ bnsinnt) =

∞∑
n=1

Cn(t).

where

a0 =
1

π

∫ π

−π
f(t)dt, an =

1

π

∫ π

−π
f(t)cos(nt)dt, bn =

1

π

∫ π

−π
f(t)sin(nt)dt.

We write

ϕ(t) =
1

2
{f(x+ t) + f(x− t)} .
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It is well known that the convergence of the Fourier series at t = x is a local property of f
(i.e., depends only on the behaviour of f in an arbitrarily small neighbourhood of x), and so
the summability of the Fourier series t = x by any regular linear summability method is also a
local property of f .
It has been pointed out by Bosanquet [1] that for the case λn = logn, the definition of absolutely
summable (R, logn, 1) or summable |R, logn, 1| is equivalent to the definition of the summability
|R, λn, 1| used by Mohanty [11], λn being a monotonic increasing sequence tending to infinity
with n.
Matsumoto [9] improved this result by replacing the series

∑
(logn)−1Cn(t) by∑

(loglogn)−pCn(t), p > 1.

Bhatt [2] showed that the factor (loglogn)−p in the above series can be replaced by the more
general factor γnlogn where (γn) is a convex sequence such that

∑
n−1γn is convergent. Borwein

[7] generalized Bhatt’s result by proving that (λn) is a sequence for which

∞∑
n=1

pn
Pn
|λn| <∞ and

∞∑
n=1

|∆λn| <∞,

then the summability |R,Pn, 1| of the factored Fourier series

∞∑
n=1

λnCn(t)

at any point is a local property of f . On the other hand, Mishra [10] proved that if (γn) is as
above, and if

Pn = O(npn) and Pn∆pn = O(pnpn+1),

the summability |N̄ , pn| of the series

∞∑
n=1

γn
Pn
npn

Cn(t),

at any point is a local property of f . Bor [4] showed that |N̄ , pn| in Mishra’s result can be
replaced by a more general summability method |N̄ , pn|k, and introduced the following theorem
on the local property of the summability |N̄ , pn|k of the factored Fourier series, which generalizes
most of the above results under more appropriate conditions then those given in them.
Theorem 2.1[6] Let k ≥ 1 and the sequences (pn) and (λn) be such that

∆Xn = O(1/n), (1)
∞∑
n=1

n−1
{
|λn|k + |λn+1|k

}
Xk−1
n <∞, (2)

∞∑
n=1

(Xk
n + 1)|∆λn| <∞, (3)

where Xn = (npn)−1Pn. Then the summability |N̄ , pn|k k ≥ 1 of the series
∑∞

n=1 λnXnCn(t) at
a point can be ensured by a local property.
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3 The Main Results

Many studies have been done for matrix generalization of Fourier series (see [13]-[28]). The
aim of this paper is to extend Theorem 2.1 for |A, θn|k summability method by taking normal
matrices instead of weighted mean matrices.
Theorem 3.1 Let A = (anv) be a positive normal matrix such that

an0 = 1, n = 0, 1, ..., (4)

an−1,v ≥ anv, for n ≥ v + 1, (5)

n−1∑
v=1

avvân,v+1 = O(ann). (6)

Let (θnann) be a non increasing sequence. If (λn) and (Xn) are sequences satisfying the following
conditions:

∞∑
n=1

(θnann)k−1 n−1
{
|λn|k + |λn+1|k

}
Xk−1
n <∞, (7)

∞∑
n=1

(θnann)k−1 (Xk
n + 1)|∆λn| <∞, (8)

∆Xn = O(1/n), (9)

where Xn = (nann)−1, and (θn) is any sequence of positive constants, then the summability
|A, θn|k, k ≥ 1 of the series ∑

λnXnCn(t),

at a point can be ensured by a local property.
We need the following lemma for the proof of Theorem 3.1.
Lemma 3.2 Let (θnann) be a non increasing sequence. Suppose that the matrix A and the
sequences (λn) and (Xn) satisfy all the conditions of Theorem 3.1, and that (sn) is bounded and
(θn) is any sequence of positive constants. Then the series

∞∑
n=1

λnXnan (10)

is summable |A, θn|k, k ≥ 1.

4 Proof of Lemma 3.2

Let (Tn) denotes the A-transform of the series (10). Then we have,

∆̄Tn =

n∑
v=1

ânvavλvXv, X0 = 0.

Applying Abel’s transformation to this sum we have

∆̄Tn =
n−1∑
v=1

∆(ânvλvXv)sv + annλnXnsn.
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By the formula for the difference of products of sequences (see [8], p.129) we have

∆(ânvλvXv) = λvXv∆ânv + ∆(λvXv)ân,v+1 = λvXv∆ânv + (Xv∆λv + ∆Xvλv+1)ân,v+1,

∆̄Tn =

n−1∑
v=1

ân,v+1Xv∆λvsv +

n−1∑
v=1

ân,v+1λv+1∆Xvsv +

n−1∑
v=1

∆̄anvλvXvsv + annλnXnsn

= Tn(1) + Tn(2) + Tn(3) + Tn(4).

To complete the proof of Lemma 3.2, by Minkowski inequality, it is sufficient to show that

∞∑
n=1

θk−1n |Tn,r|k <∞, for r = 1, 2, 3, 4. (11)

The elements ânv ≥ 0 for each v, n. it is easily seen by using conditions (4) and (5) of Theorem
3.1. For detail (see [18]).

Also,

n−1∑
v=1

|∆̄anv| =
n−1∑
v=1

(an−1,v − anv) = ān−1,0 − ān0 + an0 − an−1,0 + ann

= an0 − an−1,0 + ann ≤ ann. (12)

First, by applying Hölder’s inequality with indices k and k′, where k > 1 and 1
k + 1

k′ = 1, we
have that

m+1∑
n=2

θk−1n |Tn,1|k ≤
m+1∑
n=2

θk−1n

(
n−1∑
v=1

ân,v+1Xv|∆λv||sv|

)k

= O(1)
m+1∑
n=2

θk−1n

(
n−1∑
v=1

ân,v+1X
k
v |∆λv|

)(
n−1∑
v=1

ân,v+1|∆λv|

)k−1
,

and by taking account of (4) and (5), we have ân,v+1 ≤ ann, for 1 ≤ v ≤ n − 1 which implies
that

n−1∑
v=1

ân,v+1|∆λv| ≤ ann
n−1∑
v=1

|∆λv| = O(ann),

thus,

m+1∑
n=2

θk−1n |Tn,1|k = O(1)
m+1∑
n=2

θk−1n ak−1nn

n−1∑
v=1

ân,v+1X
k
v |∆λv|

= O(1)

m∑
v=1

Xk
v |∆λv|

m+1∑
n=v+1

(θnann)k−1 ân,v+1 = O(1)

m∑
v=1

(θvavv)
k−1Xk

v |∆λv|
m+1∑
n=v+1

ân,v+1

= O(1)
m∑
v=1

(θvavv)
k−1Xk

v |∆λv|

= O(1) as m→∞,
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in view of condition (8). Note that from (9) follows that ∆Xv = O(avvXv). Also, we have

m+1∑
n=2

θk−1n |Tn,2|k ≤
m+1∑
n=2

θk−1n

(
n−1∑
v=1

ân,v+1|λv+1||∆Xv||sv|

)k

= O(1)

m+1∑
n=2

θk−1n

(
n−1∑
v=1

ân,v+1|λv+1|avvXv

)k

= O(1)

m+1∑
n=2

θk−1n

(
n−1∑
v=1

ân,v+1|λv+1|kavvXk
v

)(
n−1∑
v=1

avvân,v+1

)k−1

= O(1)

m+1∑
n=2

θk−1n ak−1nn

(
n−1∑
v=1

avvân,v+1|λv+1|kXk
v

)

= O(1)
m∑
v=1

|λv+1|kavvXk
v

m+1∑
n=v+1

(θnann)k−1 ân,v+1 = O(1)
m∑
v=1

(θvavv)
k−1 |λv+1|kavvXk

v

m+1∑
n=v+1

ân,v+1

= O(1)

m∑
v=1

(θvavv)
k−1 |λv+1|kavvXk−1

v Xv = O(1)

m∑
v=1

(θvavv)
k−1 |λv+1|kv−1Xk−1

v

= O(1) as m→∞.

by virtue of the hypotheses of Lemma 3.2. On the other hand,we have

m+1∑
n=2

θk−1n |Tn,3|k = O(1)

m+1∑
n=2

θk−1n

(
n−1∑
v=1

|∆̄anv||λv|Xv

)k

= O(1)

m+1∑
n=2

θk−1n

(
n−1∑
v=1

|∆̄anv||λv|kXk
v

)(
n−1∑
v=1

|∆̄anv|

)k−1

= O(1)
m+1∑
n=2

θk−1n ak−1nn

n−1∑
v=1

|∆̄anv||λv|kXk
v

= O(1)
m∑
v=1

|λv|kXk
v

m+1∑
n=v+1

(θnann)k−1 |∆̄anv| = O(1)
m∑
v=1

(θvavv)
k−1 |λv|kXk

v

m+1∑
n=v+1

|∆̄anv|

= O(1)

m∑
v=1

(θvavv)
k−1 |λv|kXk

v avv

= O(1)
m∑
v=1

(θvavv)
k−1 |λv|kXk−1

v v−1 = O(1) as m→∞.

by virtue of the hypotheses of Lemma 3.2. Finally, we have that
∞∑
n=1

θk−1n |Tn,4|k = O(1)
∞∑
n=1

θk−1n |λn|kXk
na

k
nn

= O(1)

∞∑
n=1

(θnann)k−1 |λn|kXk
nann

= O(1)
∞∑
n=1

(θnann)k−1 |λn|kXk−1
n n−1 <∞,

by virtue of the hypotheses of Lemma 3.2, This completes the proof of Lemma 3.2.
Proof of Theorem 3.1. Since the convergence of the Fourier series at a point is a local property
of its generating function f , the theorem follows by formula (7.1) from Chapter II of the book
(see [29]) and from Lemma 3.2.
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5 APPLICATIONS

We can apply Theorem 3.1 to weighted mean A = (anv) is defined as anv = pv
Pn

when 0 ≤ v ≤ n,
where Pn = p0 + p1 + ...+ pn. We have that,

ānv =
Pn − Pv−1

Pn
and ân,v+1 =

pnPv
PnPn−1

.

The following results can be easily verified.
1. If we take θn = Pn

pn
in Theorem 3.1, then we have another theorem dealing with absolute

matrix summability (see [18]).
2. If we take θn = Pn

pn
and anv = pv

Pn
in Theorem 3.1, then we have a theorem dealing with∣∣N̄ , pn∣∣k summability (see [6]).

3. If we take θn = n and anv = pv
Pn

in Theorem 3.1, then we obtain a new result dealing with
|R, pn|k summability method.
4. If we take θn = n, anv = pv

Pn
and pn = 1 for all values of n in Theorem 3.1, then we have a

result for |C, 1|k summability.
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[23] Ş. Yıldız, A new theorem on absolute matrix summability of Fourier series, Pub. Inst.
Math. (N.S.) 102 (116) (2017), 107-113.
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