Coefficient Estimates for Initial Taylor-Maclaurin Coefficients for a Subclass of Analytic and Bi-univalent Functions Associated with q-Derivative Operator

H. Aldweby ${ }^{1}$ and M.Darus ${ }^{2}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Al Asmarya Islamic University, Libya
${ }^{2}$ School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia
${ }^{1}$ hu. aldweby@asmarya.edu.ly; ${ }^{2}$ maslina@ukm.edu.my

Abstract

In the present paper, we introduce and investigate a new subclass of analytic and bi-univalent functions $\Sigma_{q}(\varphi)$ in the open unit disk with respect to q-derivative operator. For functions belonging to this class, we obtain estimates on the first two Taylor- Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$. Various other results, which presented in this paper, would generalize and improve those in related works of several earlier authors

Keywords: Analytic functions, Bi-univalent functions, q-derivative, Coefficient estimates.
MSC2010: 30C45, 30C50.

1 Introduction

Let \mathcal{A} be the class of all analytic functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1}
\end{equation*}
$$

in the open unit disk $\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}$.
An analytic function f is subordinate to an analytic function g, written as $f \prec g$, provided there is an analytic (Schwarz) function w with $w(0)=0,|w(z)|<1$, for all $z \in \mathbb{U}$ satisfying $f(z)=g(w(z))$ for all $z \in \mathbb{U}$.

The well-known Koebe one-quarter theorem [1] ensure that the image of \mathbb{U} under every univalent function $f \in A$ contains a disk of radius $\frac{1}{4}$. Hence, every univalent function f has an inverse f^{-1} satisfying $f^{-1}(f(z))=z, \quad(z \in \mathbb{U})$ and

$$
f^{-1}(f(w))=w, \quad\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)
$$

where

$$
g(w)=f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots
$$

A function $f \in A$ is said to be bi-univalent in \mathbb{U} if both f and f^{-1} are univalent in \mathbb{U}. Let Σ denote the class of bi univalent functions in \mathbb{U} given by (1).

In 1986, Brannan and Taha [2] introduced certain subclasses of the bi-univalent function class Σ similar to the familiar subclasses of starlike and convex functions of order α. In 2012, Ali et al. [3] widen the result of Brannan and Taha using subordination. Since then, various subclasses of the bi-univalent function class Σ were introduced and non-sharp estimates on the first two oefficients a_{2} and a_{3} of the Taylor-Maclaurin series expansion (1) were found in several recent studies. For interesting study on this topic can be found in ([5]-[6]-[7]-[8]).
In [11], [12], Jackson defined the q-derivative operator D_{q} of a function as follows:

$$
\begin{equation*}
D_{q} f(z)=\frac{f(q z)-f(z)}{(q-1) z} \quad(z \neq 0, q \neq 0) \tag{2}
\end{equation*}
$$

and $D_{q} f(z)=f^{\prime}(0)$. In case $f(z)=z^{k}$ for k is a positive integer, the q-derivative of $f(z)$ is given by

$$
D_{q} z^{k}=\frac{z^{k}-(z q)^{k}}{z(1-q)}=[k]_{q} z^{k-1}
$$

As $q \rightarrow 1^{-}$and $k \in \mathbb{N}$, we have

$$
\begin{equation*}
[k]_{q}=\frac{1-q^{k}}{1-q}=1+q+\ldots+q^{k} \rightarrow k \tag{3}
\end{equation*}
$$

Quite a number of great mathematicians studied the concepts of q-derivative, for example by Gasper and Rahman [10], Aral et.al [13] and many others (see [15]-[20]).
Let φ be an analytic function with positive real part in \mathbb{U} such that $\varphi(0)=1, \varphi^{\prime}(0)>0$ and $\varphi(\mathbb{U})$ is symmetric with respect to real axis. Such a function has a series expansion of the form:

$$
\begin{equation*}
\varphi(z)=1+B_{1} z+B_{2} z^{2}+B_{3} z^{3}+\cdots \quad\left(B_{1}>0\right) \tag{4}
\end{equation*}
$$

We now introduce the following subclass of analytic and bi-univalent functions using the q operator.

Definition 1.1 A function $f \in \Sigma$ is said to be in the class $\Sigma_{q}(\varphi)$ if each of the following subordination condition holds true:

$$
\begin{equation*}
D_{q}(f(z)) \prec \varphi(z), \quad z \in \mathbb{U} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{q}(g(w)) \prec \varphi(w), \quad w \in \mathbb{U} \tag{6}
\end{equation*}
$$

where $g(w)=f^{-1}(w)$.

The subclass $\Sigma_{q}(\varphi)$ in Definition 1.1 can be reduced to many subclasses introduced before as seen in the following Remarks.

Remark 1.2 Setting $q \rightarrow 1^{-}$, the class $\Sigma_{q}(\varphi)$ reduces to the class $\mathcal{H}_{\sigma}(\varphi)$ introduced by Ali et al. [3] which is a subclass of the functions $f \in \Sigma$ satisfying

$$
f^{\prime}(z) \prec \varphi(z), \quad g^{\prime}(w) \prec \varphi(z)
$$

Remark 1.3 Setting $q \rightarrow 1^{-}$and

$$
\varphi(z)=\frac{1+(1-2 \beta)}{1-z} \quad(0 \leq \beta<1), \quad \varphi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad(0<\alpha \leq 1)
$$

the class $\Sigma_{q}(\varphi)$ reduces to the classes $\mathcal{H}_{\Sigma}^{\alpha}$ and $\mathcal{H}_{\Sigma}(\beta)$ introduced by Srivastava et al.[4] which are subclasses of the functions $f \in \Sigma$ satisfying

$$
\left|\arg \left(f^{\prime}(z)\right)\right|<\frac{\alpha \pi}{2}, \quad\left|\arg \left(g^{\prime}(w)\right)\right|<\frac{\alpha \pi}{2}
$$

and

$$
\operatorname{Re}\left(f^{\prime}(z)\right)>\beta, \quad \operatorname{Re}\left(g^{\prime}(w)\right)>\beta
$$

respectively.

Remark 1.4 Setting

$$
\varphi(z)=\frac{1+(1-2 \beta)}{1-z} \quad(0 \leq \beta<1) \quad \text { and } \quad \varphi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha} \quad(0<\alpha \leq 1)
$$

the class $\Sigma_{q}(\varphi)$ reduces to the classes $\mathcal{H}_{\Sigma}^{q, \alpha}$ and $\mathcal{H}_{\Sigma}^{q}(\beta)$ introduced by Bulut[9] which are subclasses of the functions $f \in \Sigma$ satisfying

$$
\left|\arg \left(D_{q} f(z)\right)\right|<\frac{\alpha \pi}{2}, \quad\left|\arg \left(D_{q} g(w)\right)\right|<\frac{\alpha \pi}{2}
$$

and

$$
\operatorname{Re}\left(D_{q} f(z)\right)>\beta, \quad \operatorname{Re}\left(D_{q} g(w)\right)>\beta
$$

respectively.

In our investigation, we shall need the following Lemma
Lemma 1.5 [14] Let the function $p \in \mathcal{P}$ be given by the following series:

$$
p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots \quad(z \in \mathbb{U})
$$

The sharp estimate given by

$$
\left|p_{n}\right| \leq 2 \quad(n \in \mathbb{N})
$$

holds true.
The object of the present paper is to find estimates on the Taylor-Maclaurin coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in this new subclass $\Sigma_{q}(\varphi)$ of the function class Σ.

2 A set of main results

For functions in the class $\Sigma_{q}(\varphi)$, the following result is obtained.

Theorem 2.1 Let $f \in \Sigma_{q}(\varphi)$ be of the form (1). Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\frac{B_{1}}{[2]_{q}}, \frac{B_{1}^{\frac{3}{2}}}{\sqrt{[3]_{q} B_{1}^{2}+[2]_{q}^{2}\left(B_{1}-B_{2}\right)}}\right\} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \min \left\{\frac{B_{2}}{[3]_{q}}, \frac{B_{1}}{[3]_{q}}+\frac{B_{1}^{2}}{[2]_{q}^{2}}\right\} \tag{8}
\end{equation*}
$$

where the coefficients B_{1} and B_{2} are given as in (4).

Proof. Let $f \in \Sigma_{q}(\varphi)$ and $g=f^{-1}$. Then there are analytic functions $u, v: \mathbb{U} \rightarrow \mathbb{U}$ with $u(0)=v(0)=0$, satisfying the following conditions:

$$
\begin{equation*}
D_{q}(f(z))=\varphi(u(z)), \quad z \in \mathbb{U} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{q}(g(w))=\varphi(v(w)), \quad w \in \mathbb{U} \tag{10}
\end{equation*}
$$

Define the functions p and q by

$$
\begin{equation*}
p(z)=\frac{1+u(z)}{1-u(z)}=1+p_{1} z+p_{2} z^{2}+\cdots \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
q(z)=\frac{1+v(z)}{1-v(z)}=1+q_{1} z+q_{2} z^{2}+\cdots . \tag{12}
\end{equation*}
$$

Then p and q are analytic in \mathbb{U} with $p(0)=q(0)=1$. Since $u, v: \mathbb{U} \rightarrow \mathbb{U}$, each of the functions p and q has a positive real part in \mathbb{U}. Therefore, in view of the above Lemma, we have

$$
\begin{equation*}
\left|p_{n}\right| \leq 2 \quad \text { and } \quad\left|q_{n}\right| \leq 2 \quad(n \in \mathbb{N}) \tag{13}
\end{equation*}
$$

Solving for $u(z)$ and $v(z)$, we get

$$
\begin{equation*}
u(z)=\frac{p(z)-1}{p(z)+1}=\frac{1}{2}\left[p_{1} z+\left(p_{2}-\frac{p_{1}^{2}}{2}\right) z^{2}\right]+\cdots \quad(z \in \mathbb{U}) \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
v(z)=\frac{q(z)-1}{q(z)+1}=\frac{1}{2}\left[q_{1} z+\left(q_{2}-\frac{q_{1}^{2}}{2}\right) z^{2}\right]+\cdots \quad(z \in \mathbb{U}) . \tag{15}
\end{equation*}
$$

Upon substituting from (14) and (15) into (9) and (10), respectively, and making use of (4), we obtain

$$
\begin{equation*}
\left.D_{q}(f(z))=\varphi\left(\frac{p(z)-1}{p(z)+1}\right)=1+B_{1} p_{1} z+\left[\frac{1}{2} B_{1}\left(p_{2}-\frac{p_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} p_{1}^{2}\right]\right] z^{2}+\cdots \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.D_{q}(g(w))=\varphi\left(\frac{q(w)-1}{q(w)+1}\right)=1+B_{1} q_{1} w+\left[\frac{1}{2} B_{1}\left(q_{2}-\frac{q_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} q_{1}^{2}\right]\right] w^{2}+\cdots \tag{17}
\end{equation*}
$$

Equating the coefficients in (9) and (10), we find that

$$
\begin{gather*}
{[2]_{q} a_{2}=\frac{1}{2} B_{1} p_{1}} \tag{18}\\
{[3]_{q} a_{3}=\frac{1}{2} B_{1}\left(p_{2}-\frac{p_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} p_{1}^{2}} \tag{19}\\
-[2]_{q} a_{2}=\frac{1}{2} B_{1} p_{1} \tag{20}\\
{[3]_{q}\left(2 a_{2}^{2}-a_{3}\right)=\frac{1}{2} B_{1}\left(q_{2}-\frac{q_{1}^{2}}{2}\right)+\frac{1}{4} B_{2} q_{1}^{2}} \tag{21}
\end{gather*}
$$

From (18) and (20), we get

$$
\begin{equation*}
p_{1}=-q_{1} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
2[2]_{q}^{2} a_{2}^{2}=\frac{1}{4} B_{1}^{2}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{23}
\end{equation*}
$$

Also from (19) and equation (21), we get

$$
\begin{equation*}
2[3]_{q} a_{2}^{2}=\frac{1}{2} B_{1}\left[p_{2}+q_{2}-\left(\frac{p_{1}^{2}+q_{1}^{2}}{2}\right)\right]+\frac{1}{4} B_{2}\left[p_{1}^{2}+q_{1}^{2}\right], \tag{24}
\end{equation*}
$$

by using (23), we get

$$
\begin{equation*}
a_{2}^{2}=\frac{B_{1}^{3}\left(p_{2}+q_{2}\right)}{4\left[[3]_{q} B_{1}^{2}+[2]_{q}^{2}\left(B_{1}-B_{2}\right)\right]} \tag{25}
\end{equation*}
$$

Applying Lemma 1.5 for the coefficients $p_{1}, p_{2}, q_{1}, q_{2}$ in the equalities (23) and (25), we obtain

$$
\begin{gather*}
\left|a_{2}\right| \leq \frac{B_{1}^{\frac{3}{2}}}{\sqrt{[3]_{q} B_{1}^{2}+[2]_{q}^{2}\left(B_{1}-B_{2}\right)}} \tag{26}\\
\left|a_{2}\right| \leq \frac{B_{1}}{[2]_{q}} \tag{27}
\end{gather*}
$$

Hence equations (26) and (27) gives the estimates of $\left|a_{2}\right|$.

Next, in order to find the bound on $\left|a_{3}\right|$, we subtract (21) from (19) and also from (22), we get $p_{1}^{2}=q_{1}^{2}$, hence

$$
\begin{equation*}
2[3]_{q} a_{3}-2[3]_{q} a_{2}^{2}=\frac{1}{2} B_{1}\left(p_{2}-q_{2}\right) \tag{28}
\end{equation*}
$$

which, upon substitution of the value of a_{2}^{2} from (23) into (28), yields

$$
\begin{equation*}
a_{3}=\frac{B_{1}}{[3]_{q}}\left(p_{2}-q_{2}\right)+\frac{B_{1}^{2}}{[2]_{q}^{2}}\left(p_{1}^{2}+q_{1}^{2}\right) \tag{29}
\end{equation*}
$$

So we get

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{B_{1}}{[3]_{q}}+\frac{B_{1}^{2}}{[2]_{q}^{2}} \tag{30}
\end{equation*}
$$

On the other hand, upon substituting the value of a_{2}^{2} from (24) into (28), it follows that

$$
\begin{equation*}
a_{3}=\frac{4 B_{1} p_{2}+\left(B_{2}-B_{1}\right)\left(p_{1}^{2}+q_{1}^{2}\right)}{8[3]_{q}} \tag{31}
\end{equation*}
$$

And we get

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{B_{2}}{[3]_{q}} \tag{32}
\end{equation*}
$$

Thus, we get the desired estimate on the coefficient $\left|a_{3}\right|$ as asserted in (40).

3 Corollaries and Consequensec

Taking $q \rightarrow 1^{-}$in Theorem 2.1, we obtain the following corollary.

Corollary 3.1 Let the function f given by (1) be in the class $\Sigma(\varphi)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\frac{B_{1}}{2}, \frac{B_{1} \sqrt{B_{1}}}{\sqrt{3 B_{1}^{2}+4\left(B_{1}-B_{2}\right)}}\right\} \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \min \left\{\frac{B_{2}}{3},\left(\frac{1}{3}+\frac{B_{1}}{4}\right) B_{1}\right\} \tag{34}
\end{equation*}
$$

Remark 3.2 Corollary 3.1 is an improvement of the following estimates obtained by Ali et al.[3].

Corollary 3.3 (see [3]) Let the function f given by (1) be in the function class $\mathcal{H}_{\sigma}(\varphi)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{B_{1} \sqrt{B_{1}}}{\sqrt{\left.3 B_{1}^{2}-4 B_{2}+4 B_{1}\right)}} \quad \text { and } \quad\left|a_{3}\right| \leq\left(\frac{1}{3}+\frac{B_{1}}{4}\right) B_{1} \tag{35}
\end{equation*}
$$

Taking

$$
\begin{equation*}
\varphi(z)=\frac{1+(1-2 \beta) z}{1-z}=1+2(1-\beta) z+2(1-\beta) z^{2}+\cdots \quad(0 \leq \beta<1) \tag{36}
\end{equation*}
$$

in Theorem 2.1, we have the following corollary.
Corollary 3.4 [9] Let the function f given by (1) be in the function class $\Sigma_{q}(\beta) \quad(0 \leq \beta<1)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\frac{2(1-\beta)}{[2]_{q}}, \sqrt{\frac{2(1-\beta)}{[3]_{q}}}\right\} \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{2(1-\beta)}{[3]_{q}} \tag{38}
\end{equation*}
$$

Taking $q \rightarrow 1^{-}$in Corollary 3.4, we have the following corollary

Corollary 3.5 Let the function f given by (1) be in the function class $\Sigma(\beta) \quad(0 \leq \beta<1)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{(1-\beta), \sqrt{\frac{2(1-\beta)}{3}}\right\} \tag{39}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{2(1-\beta)}{3} \tag{40}
\end{equation*}
$$

Remark 3.6 Corollary 3.5 is an improvement of the following estimates obtained by Srivastave et al. [4].

Corollary 3.7 [4] Let the function f given by (1) be in the function class $\mathcal{H}_{\Sigma}(\alpha) \quad(0 \leq \alpha<1)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \sqrt{\frac{2(1-\alpha)}{3}} \tag{41}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{(1-\alpha)(5-3 \alpha)}{3} \tag{42}
\end{equation*}
$$

Taking

$$
\begin{equation*}
\varphi(z)=\left(\frac{1+z}{1-z}\right)^{\alpha}=1+2 \alpha z+2 \alpha^{2} z^{2}+\cdots \quad(0<\alpha \leq 1) \tag{43}
\end{equation*}
$$

in Theorem 2.1, we have the following corollary.

Corollary 3.8 Let the function f given by (1) be in the function class $\Sigma_{q}(\alpha) \quad(0<\alpha \leq 1)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\frac{2 \alpha}{[2]_{q}}+\frac{2 \alpha}{\sqrt{2[3]_{q} \alpha+(1-\alpha)[2]_{q}^{2}}}\right\} \tag{44}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \min \left\{\frac{2 \alpha^{2}}{[3]_{q}}, \frac{2 \alpha}{[3]_{q}}+\frac{4 \alpha^{2}}{[2]_{q}^{2}}\right\} \tag{45}
\end{equation*}
$$

Remark 3.9 Corollary 3.8 is an improvement of the following estimates obtained by Bulut [9].

Corollary 3.10 [9] Let the function f given by (1) be in the function class $\Sigma_{q}(\alpha) \quad(0<\alpha \leq 1)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \frac{2 \alpha}{\sqrt{2[3]_{q} \alpha+(1-\alpha)[2]_{q}^{2}}} \tag{46}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{2 \alpha}{[3]_{q}}+\frac{4 \alpha^{2}}{[2]_{q}^{2}} \tag{47}
\end{equation*}
$$

Taking $q \rightarrow 1^{-}$in Corollary 3.8, we have the following corollary.

Corollary 3.11 Let the function f given by (1) be in the function class $\Sigma(\alpha) \quad(0<\alpha \leq 1)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \min \left\{\alpha, \alpha \sqrt{\frac{2}{\alpha+2}}\right\} \tag{48}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \min \left\{\frac{2 \alpha^{2}}{3}, \frac{\alpha(3 \alpha+2)}{3}\right\} \tag{49}
\end{equation*}
$$

Remark 3.12 Corollary 3.11 is an improvement of the following estimates obtained by Srivastave et al. [4].

Corollary 3.13 [4] Let the function f given by (1) be in the function class $\mathcal{H}_{\Sigma}^{\alpha} \quad(0<\alpha \leq 1)$. Then

$$
\begin{equation*}
\left|a_{2}\right| \leq \alpha \sqrt{\frac{2}{\alpha+2}} \tag{50}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|a_{3}\right| \leq \frac{\alpha(3 \alpha+2)}{3} \tag{51}
\end{equation*}
$$

Acknowledgements. The work here is partially supported by MOHE grant: FRGS/1/2016/STG06/UKM/01/1 and UKM grant: GUP-2017-064.

References

[1] P. L. Duren, Univalent functions, A Series of comprehensive studies in mathematics, Vol. 259. Grundlehren der Mathematischen Wissenschaften (1983).
[2] D. A. Brannan and T. S. Taha, On some classes of bi-univalent functions, Studia BabesBolyai Math.,31(2)(1986), 70-77.
[3] R. M. Ali, S. K. Lee, V. Ravichandran and S. Supramanian, Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions, Applied Mathematics Letters, $25(3)(2012), 344-351$.
[4] H. M. Srivastava, A. K. Mishra, and P. Gochhayat, Certain subclasses of analytic and biunivalent functions, Applied Mathematics Letters, 23(10) (2010), 1188-1192.
[5] S. P. Goyal and P. Goswami, Estimate for initial Maclaurin coefficients of bi-univalent functions for a class defined by fractional derivatives, Journal of the Egyptian Mathematical Society, 20(3) (2012), 179-182.
[6] B. Frasin, and M. K. Aouf, New subclasses of bi-univalent functions, Applied Mathematics Letters 24(9) (2011), 1569-1573.
[7] E. Deniz, Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal 2(1) (2013), 49-60.
[8] S. Porwal, and M. Darus, On a new subclass of bi-univalent functions, Journal of the Egyptian Mathematical Society 21(3) (2013), 190-193.
[9] S. Bulut, Certain subclasses of analytic and bi-univalent functions involving the q-derivative operator, Communications Series A1 Mathematics and Statistics 66, no. 1 (2017).
[10] G. Gasper and M. Rahman, Basic Hypergeometric Series, Encyclopedia of Mathematics and Its Applications, Cambridge University Press, Cambridge, UK. 35, 1990.
[11] F. H. Jackson, On q-definite integrals, The Quarterly Journal of Pure and Applied Mathematics, 41(1910),193-203.
[12] F. H. Jackson, On q - functions and a certain difference operator, Transactions of the Royal Society of Edinburgh, 46(1908), 253-281.
[13] A. Aral, V. G. Ravi and P. Agarwal , Applications of q-Calculus in Operator Theory, New York, NY : Springer, 2013.
[14] Ch. Pommerenke, Univalent functions, Vandenhoeck und Ruprecht, Göttingen, 1975.
[15] H. Aldweby and M. Darus, Coefficient estimates of classes of Q-starlike and Q-convex functions, Advanced Studies in Contemporary Mathematics (Kyungshang) 26(1)(2016), 2126.
[16] H. Aldweby and M. Darus, A subclass of harmonic U univalent functions sssociated with q-analogue of Dziok-Srivatava operator, ISRN Mathematical Analysis, 2013(2013), Article ID 382312, 6 pages.
[17] H. Aldweby and M. Darus, A subclass of harmonic meromorphic functions associated with basic hypergeometric function, The Scientific World Journal, 2013 (2013), Article ID 164287, 7 pages.
[18] T.M.Seoudy and M.K.Aouf, Convolution properties for Certain classes of analytic functions defined by q-derivative operator, Abstract and Applied Analysis, 2014 (2014), Article ID 846719, 7 pages.
[19] T. M. Seoudy and M. K. Aouf, Coefficient estimates of new classes of q-starlike and q-convex functions of complex order, Journal of Mathematics Inequalities, 10(1)(2016), 135-145.
[20] U. A. Ezeafulukwe and M. Darus, A Note On q-Calculus, Fasciculi Mathematici, Nr. 55 (2015), 53-64. Doi:10.1515/fascmath-2015-0014.

