No. 55/2018 pp. 113-126

doi: 10.17114/j.aua.2018.55.09

SUBORDINATION RESULTS FOR CLASSES OF MULTIVALENT NON-BAZILEVIC ANALYTIC FUNCTIONS DEFINED BY LINEAR **OPERATOR**

A.O. Mostafa, G. M. El-Hawsh

ABSTRACT. By making use of the principle of subordination between analytic functions, we introduce non-Bazlevic classes of multivalent functions defined by linear operator. Various results as subordination properties, superordination properties, sandwich type results and distortion theorems are obtained.

2010 Mathematics Subject Classification: 30C45.

Keywords: Analytic function, p-valent function, Hadamarh product, Linear operator

1. Introduction

Let H[a, k] be the class of analytic functions of the form:

$$f(z) = a + a_k z^k + a_{k+1} z^{k+1} + \dots \qquad (z \in \mathbb{U}),$$

and $\mathbb{A}(p)$ be the class of functions of the form

$$f(z) = z^p + \sum_{n=1}^{\infty} a_{p+n} z^{p+n} \qquad (p \in \mathbb{N} = \{1, 2, ...\}),$$
 (1)

which are analytic and p-valent in $\mathbb{U} = \{z : |z| < 1\}$.

Let M be the class of functions $\Phi(z)$ which are analytic and univalent in U and for which $\Phi(\mathbb{U})$ is convex with $\Phi(0) = 1$ and $\Re\{\Phi(z)\} > 0$.

For $m \in \mathbb{N}_0$, $\zeta \geq 0$, μ and $\eta \in \mathbb{R}$; $\mu < p+1$; $-\infty < \lambda < \eta + p+1$; $\delta > -p$. Aouf et al. [2] defined the operator $N_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}: \mathbb{A}(p) \to \mathbb{A}(p)$ as follows:

$$\begin{split} \mathbb{N}_{p,\lambda,\mu,\eta}^{1,\delta,\zeta}f(z) &= \mathbb{N}_{p,\lambda,\mu,\eta}^{\delta,\zeta}f(z) \\ &= (1-\zeta)\,\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta}f(z) + \zeta\frac{z}{p}\left[\mathbb{H}_{p,\eta,\mu}^{\lambda,\delta}f(z)\right]' \\ &= z^p + \sum_{n=1}^{\infty}\left(\frac{p+\zeta n}{p}\right)\frac{(\delta+p)_n(1+p-\mu)_n(1+p+\eta-\lambda)_n}{(1)_n(1+p)_n(1+p+\eta-\mu)_n}a_{p+n}z^{p+n}, \end{split}$$

$$\mathbb{N}_{p,\lambda,\mu,\eta}^{2,\delta,\zeta}f(z) = (1-\zeta)\,\mathbb{N}_{p,\lambda,\mu,\eta}^{\delta,\zeta}f(z) + \zeta \frac{z}{p} \left[\mathbb{N}_{p,\lambda,\mu,\eta}^{\delta,\zeta}f(z)\right]' \\
= z^{p} + \sum_{n=1}^{\infty} \left(\frac{p+\zeta n}{p}\right)^{2} \frac{(\delta+p)_{n}(1+p-\mu)_{n}(1+p+\eta-\lambda)_{n}}{(1)_{n}(1+p)_{n}(1+p+\eta-\mu)_{n}} a_{p+n}z^{p+n},$$

and, in general

$$\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z) = \mathbb{N}_{p,\lambda,\mu,\eta}^{\delta,\zeta}\left(N_{p,\lambda,\mu,\eta}^{m-1,\delta,\zeta}f(z)\right) \\
= z^{p} + \sum_{n=1}^{\infty} \left(\frac{p+\zeta n}{p}\right)^{m} \frac{(\delta+p)_{n}(1+p-\mu)_{n}(1+p+\eta-\lambda)_{n}}{(1)_{n}(1+p)_{n}(1+p+\eta-\mu)_{n}} a_{p+n}z^{p+n}.$$
(2)

From (1.2), we can easily obtain the following identities:

$$\zeta z (\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta} f(z))' = p \mathbb{N}_{p,\lambda,\mu,\eta}^{m+1,\delta,\zeta} f(z) - p (1-\zeta) \mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta} f(z) \quad (\zeta > 0),$$
 (3)

$$z(\mathbb{N}_{p,\lambda+1,\mu,\eta}^{m,\delta,\zeta}f(z))' = (p+\eta-\lambda)\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z) - (\eta-\lambda)\mathbb{N}_{p,\lambda+1,\mu,\eta}^{m,\delta,\zeta}f(z) \tag{4}$$

and

$$z(\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z))' = (p+\delta)\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta+1,\zeta}f(z) - \delta\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z). \tag{5}$$

Using the operator $\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)$ and for $\rho \in \mathbb{C}, -1 \leq B < A \leq 1$, let:

(i)
$$R_{p,\lambda,\eta,\mu}^{m,\delta,\zeta}(\alpha,\rho;A,B) =$$

$$\left\{ f \in \mathbb{A}(p) : \begin{array}{l} (1+\rho) \left(\frac{z^p}{\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)} \right)^{\alpha} - \rho \left(\frac{\mathbb{N}_{p,\lambda,\mu,\eta}^{m+1,\delta,\zeta}f(z)}{\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)} \right) \left(\frac{z^p}{\mathbb{N}_{p,\lambda,\mu,\eta}^{m+1,\delta,\zeta}f(z)} \right)^{\alpha} = \chi(z) \end{array} \right\},$$

$$< \frac{1+Az}{1+Bz},$$

$$(6)$$

(ii)
$$T_{p,\lambda,\eta,\mu}^{m,\delta,\zeta}(\alpha,\rho;A,B) =$$

$$\left\{ f \in \mathbb{A}(p) : \begin{array}{l} (1+\rho) \left(\frac{z^p}{\mathbb{N}_{p,\lambda+1,\mu,\eta}^{m,\delta,\zeta}} \right)^{\alpha} - \rho \left(\frac{\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)}{\mathbb{N}_{p,\lambda+1,\mu,\eta}^{m,\delta,\zeta}} \right) \left(\frac{z^p}{\mathbb{N}_{p,\lambda+1,\mu,\eta}^{m,\delta,\zeta}} \right)^{\alpha} \\
\prec \frac{1+Az}{1+Bz}, \end{array} \right\}, \tag{7}$$

(iii)
$$V_{p,\lambda,\eta,\mu}^{m,\delta,\zeta}(\alpha,\rho;A,B) =$$

$$\left\{ f \in \mathbb{A}(p) : \begin{array}{l} (1+\rho) \left(\frac{z^p}{\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)} \right)^{\alpha} - \rho \left(\frac{\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta+1,\zeta}f(z)}{\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)} \right) \left(\frac{z^p}{\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)} \right)^{\alpha} \\
\prec \frac{1+Az}{1+Bz} \end{array} \right\}, \quad (8)$$

where \prec denotes the subordination (see for details [1, 3, 6]; see also [9]).

Throughout this paper unless otherwise stated, the parameters $\eta, \mu, \lambda, \delta, \rho, \alpha, m, \zeta, A$ and B satisfy the constraints:

$$\begin{array}{lcl} \eta, \mu & \in & R, \ \mu < p+1, -\infty < \lambda < \eta + p+1, \ \delta > -p; \\ 0 & < & \alpha < 1, m \in \mathbb{N}_0, \zeta > 0, \ \text{and} \ p \in \mathbb{N}, \end{array}$$

2. Preliminary results

In order to establish our main results, we need the following definition and Lemmas.

Definition 1. [7]. Denote by **L** the set of all functions f that are analytic and injective on $\overline{U}\setminus E(f)$, where

$$E(q) = \left\{ \xi \in \partial \mathbb{U} : \lim_{z \to \xi} f(z) = \infty \right\},\,$$

and such that $f'(\xi) \neq 0$ for $\xi \in \bar{U} \setminus E(f)$.

Lemma 1. [6]. Let h(z) be analytic and convex in \mathbb{U} with h(0) = 1, and

$$g(z) = 1 + c_k z^k + c_{k+1} z^{k+1} + \dots$$
(9)

be analytic in \mathbb{U} . If

$$g(z) + \frac{zg'(z)}{\gamma} \prec h(z) \qquad (\Re(\gamma) > 0), \qquad (10)$$

then

$$g(z) \prec q(z) = \frac{\gamma}{k} z^{-\frac{\gamma}{k}} \int h(t) t^{\frac{\gamma}{k} - 1} dt \prec h(z),$$

and q(z) is the best dominant of (2.2).

Lemma 2. [9]. Let q(z) be a convex univalent in \mathbb{U} and $\sigma \in \mathbb{C}$, $\tau \in \mathbb{C}^* = \mathbb{C} \setminus \{0\}$ with

$$\Re\left(1 + \frac{zq''(z)}{q'(z)}\right) > \max\left\{0, -\Re\left(\frac{\sigma}{\tau}\right)\right\}.$$

If g(z) is analytic in \mathbb{U} and

$$\sigma g(z) + \tau z g'(z) \prec \sigma q(z) + \tau z q'(z),$$

then $g(z) \prec q(z)$ and q(z) is the best dominant.

Lemma 3. [7] Let q(z) be convex univalent in \mathbb{U} and $\tau \in \mathbb{C}$. Further assume that $\Re(\tau) > 0$. If $g(z) \in H[q(0), 1] \cap \mathbf{L}$, and $g(z) + \tau z g'(z)$ is univalent in \mathbb{U} , then

$$q(z) + \tau z q'(z) \prec g(z) + \tau z g'(z),$$

implies $q(z) \prec g(z)$ and q(z) is the best subordinant.

Lemma 4. [4]. let F be analytic and convex in \mathbb{U} . If $f, g \in \mathbb{A} = \mathbb{A}(1)$ and $f, g \prec F$ then

$$\lambda f(z) + (1 - \lambda)g(z) \prec F(z) \quad (0 \le \lambda \le 1).$$

Lemma 5. [8]. Let $f(z) = 1 + \sum_{k=1}^{\infty} a_k z^k$ be analytic in \mathbb{U} and $g(z) = 1 + \sum_{k=1}^{\infty} b_k z^k$ be analytic and convex in \mathbb{U} . If $f(z) \prec g(z)$, then

$$|a_k| < |b_1| \quad (k \in \mathbb{N}).$$

3. Main results

In the remender of this paper, $\chi(z)$ is given by (6).

Theorem 6. Let $f(z) \in R_{p,\lambda,\eta,\mu}^{m,\delta,\zeta}(\alpha,\rho;A,B)$ with $\Re(\rho) > 0$. Then

$$\left(\frac{z^{p}}{\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)}\right)^{\alpha} \quad \prec \quad q(z) = \frac{\alpha p}{\zeta \rho} \int_{0}^{1} \frac{1 + Azu}{1 + Bzu} u^{\frac{\alpha p}{\zeta \rho} - 1} du$$

$$\prec \quad \frac{1 + Az}{1 + Bz} \tag{11}$$

and q(z) is the best dominant.

Proof. let

$$g(z) = \left(\frac{z^p}{\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta} f(z)}\right)^{\alpha}.$$
 (12)

Then g(z) is of the form (9) and is analytic in \mathbb{U} . Differentiating (12) and using (3), we get

$$\chi(z) = g(z) + \frac{\zeta \rho z g'(z)}{\alpha p}.$$
 (13)

As $f(z) \in R_{p,\lambda,n,\mu}^{m,\delta,\zeta}(\alpha,\rho;A,B)$, we have

$$g(z) + \frac{\zeta \rho z g'(z)}{\alpha p} \prec \frac{1 + Az}{1 + Bz}.$$

Applying Lemma 1 with $\gamma = \frac{\alpha p}{\zeta \rho}$, leades to

$$\left(\frac{z^{p}}{\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)}\right)^{\alpha} \quad \prec \quad q(z) = \frac{\alpha p}{\zeta\rho}z^{-\frac{\alpha p}{\zeta\rho}} \int_{0}^{z} \frac{1+At}{1+Bt} t^{\frac{\alpha p}{\zeta\rho}-1} dt$$

$$= \frac{\alpha p}{\zeta\rho} \int_{0}^{1} \frac{1+Azu}{1+Bzu} u^{\frac{\alpha(p+\delta)}{\rho}-1} du \prec \frac{1+Az}{1+Bz}, \tag{14}$$

and q(z) is the best dominant, which ends the proof of Theorem 6.

Theorem 7. Let $\rho \in \mathbb{C}^*$ and q(z) be univalent in \mathbb{U} satisfies

$$\Re\left(1 + \frac{zq''(z)}{q'(z)}\right) > \max\left\{0, -\Re\left(\frac{\alpha p}{\zeta \rho}\right)\right\}. \tag{15}$$

If $f(z) \in \mathbb{A}(p)$ satisfies

$$\chi(z) \prec q(z) + \frac{\zeta \rho z q'(z)}{\alpha p},$$
 (16)

then

$$\left(\frac{z^p}{\mathbb{N}_{p,\lambda,\mu,n}^{m,\delta,\zeta}f(z)}\right)^{\alpha} \prec q(z),$$

and q(z) is the best dominant.

Proof. Let g(z) be defined by (12). We know that (13) holds. Combining (13) and (16), we fined that

$$g(z) + \frac{\zeta \rho z g'(z)}{\alpha p} \prec q(z) + \frac{\zeta \rho z q'(z)}{\alpha p}.$$
 (17)

By using Lemma 2 and (??), we easily get the assertion of Theorem 7.

Taking $q(z) = \frac{1+Az}{1+Bz} (-1 \le B < A \le 1)$ in Theorem 7, we get the following result.

Corollary 8. Let $\rho \in \mathbb{C}^*$ and $-1 \leq B < A \leq 1$, suppose also that

$$\Re\left(\frac{1-Bz}{1+Bz}\right) > \max\left\{0, -\Re\left(\frac{\alpha p}{\zeta \rho}\right)\right\}.$$

If $f(z) \in \mathbb{A}(p)$ satisfies

$$\chi(z) \prec \frac{1+Az}{1+Bz} + \frac{\zeta \rho (A-B) z}{\alpha \rho (1+Bz)^2},$$

then

$$\left(\frac{z^p}{\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)}\right)^{\alpha} \prec \frac{1+Az}{1+Bz},$$

and $\frac{1+Az}{1+Bz}$ is the best dominant.

Theorem 9. Let q(z) be convex univalent in \mathbb{U} with $\Re(\rho) > 0$. Also let

$$\left(\frac{z^p}{\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)}\right)^{\alpha} \in H\left[q(0),1\right] \cap \mathbf{L}$$

and $\chi(z)$ be univalent in \mathbb{U} . If

$$q(z) + \frac{\zeta \rho z q'(z)}{\alpha p} \prec \chi(z),$$

then

$$q(z) \prec \left(\frac{z^p}{\mathbb{N}_{p,\lambda,\mu,n}^{m,\delta,\zeta}f(z)}\right)^{\alpha},$$

and q(z) is the best subdominant.

Proof. Let g(z) be defined by (12). Then

$$q(z) + \frac{\zeta \rho z q'(z)}{\alpha p} \prec \chi(z) = g(z) + \frac{\zeta \rho z g'(z)}{\alpha p}.$$

Applying Lemma 3 yields the assertion of Theorem 9. ■

Taking $q(z) = \frac{1+Az}{1+Bz} (-1 \le B < A \le 1)$ in Theorem 9, we get the following result.

Corollary 10. Let q(z) be convex univalent in \mathbb{U} and $-1 \leq B < A \leq 1$ with $\Re(\rho) > 0$. Also let

$$\left(\frac{z^p}{\mathbb{N}^{m,\delta,\zeta}_{p,\lambda,\mu,\eta}f(z)}\right)^{\alpha}\in H\left[q(0),1\right]\cap\mathbf{L},$$

and $\chi(z)$ be univalent in \mathbb{U} . If

$$\frac{1+Az}{1+Bz} + \frac{\zeta \rho(A-B)z}{\alpha p(1+Bz)^2} \prec \chi(z),$$

then

$$\frac{1+Az}{1+Bz} \prec \left(\frac{z^p}{\mathbb{N}_{p,\lambda,\mu,p}^{m,\delta,\zeta}f(z)}\right)^{\alpha},$$

and $\frac{1+Az}{1+Bz}$ is the best subdominant.

Combining Theorem 7 and Theorem 9, we easily get the following "Sandwich type result".

Theorem 11. Let $q_1(z)$ be convex univalent, $q_2(z)$ be univalent in \mathbb{U} and satisfies (15) with $\rho \in \mathbb{C}^*$. If

$$\left(\frac{z^p}{\mathbb{N}_{n,\lambda,\mu,n}^{m,\delta,\zeta}f(z)}\right)^{\alpha} \in H\left[q_1(0),1\right] \cap \mathbf{L},$$

and $\chi(z)$ is univalent in \mathbb{U} , and if also

$$q_1(z) + \frac{\zeta \rho z q_1'(z)}{\alpha p} \prec \chi(z) = q_2(z) + \frac{\zeta \rho z q_2'(z)}{\alpha p},$$

then

$$q_1(z) \prec \left(\frac{z^p}{\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)}\right)^{\alpha} \prec q_2(z),$$

and $q_1(z)$ and $q_2(z)$ are the best subordinant and dominant respectively.

Theorem 12. If ρ , $\alpha > 0$ and $f(z) \in R_{p,\lambda,\eta,\mu}^{m,\delta,\zeta}(\alpha,0;1-2\psi,-1)$ $(0 \le \psi < 1)$, then $f(z) \in R_{p,\lambda,\eta,\mu}^{m,\delta,\zeta}(\alpha,\rho;1-2\psi,-1)$ for |z| < R, where

$$R = \left(\sqrt{\left(\frac{\zeta\rho}{\alpha p}\right)^2 + 1} - \frac{\zeta\rho}{\alpha p}\right). \tag{18}$$

The bound R is the best possible.

Proof. We begin by writing

$$\left(\frac{z^p}{\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)}\right)^{\alpha} = \psi + (1-\psi)g(z) \quad (0 \le \psi < 1).$$
(19)

Then, clearly, g(z) is of the form (9), analytic and has positive real part in \mathbb{U} . Differentiating (19) and using (3), we obtain

$$\frac{1}{1-\psi}\left(\chi(z)-\psi\right) = g(z) + \frac{\zeta \rho z g'(z)}{\alpha p}.$$
 (20)

By making use of the following well-known estimate (see [5]):

$$\frac{|zg'(z)|}{\Re\{g(z)\}} \le \frac{2r}{1-r^2} \quad (|z| = r < 1)$$

(20) leads to

$$\Re\left(\frac{1}{1-\psi}\left\{\chi(z)-\psi\right\}\right) \ge \Re\left\{g(z)\right\}\left(1-\frac{2\zeta\rho r}{\alpha p(1-r^2)}\right). \tag{21}$$

It is seen that the right-hand side of (21) is positive, provided that r < R, where R is given by (18). In order to show that the bound R is the best possible, we consider the function $f(z) \in \mathbb{A}(p)$ defined by

$$\left(\frac{z^p}{N_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)}\right)^{\alpha} = \psi + (1-\psi)\left(\frac{1+z}{1-z}\right) \quad (0 \le \psi < 1).$$

Noting that

$$\frac{1}{1-\psi}\left\{\chi(z) - \psi\right\} = \frac{1+z}{1-z} + \frac{2\zeta\rho z}{\alpha p(1-z)^2} = 0,\tag{22}$$

for |z|=R, we conclude that the bound is the best possible, which ends the proof.

Theorem 13. Let $f(z) \in R_{p,\lambda,\eta,\mu}^{m,\delta,\zeta}(\alpha,\rho;A,B)$ with $\Re(\rho) > 0$. Then

$$f(z) = \left(z^{p} \left(\frac{1 + B\omega(z)}{1 + A\omega(z)}\right)^{\frac{1}{\alpha}}\right) * \left(z^{p} + \sum_{n=1}^{\infty} \left(\frac{p}{p + \zeta n}\right)^{m} \frac{(1)_{n}(1 + p)_{n}(1 + p + \eta - \mu)_{n}}{(\delta + p)_{n}(p + 1 - \mu)_{n}(1 + p - \lambda + \eta)_{n}} z^{p + n}\right),$$
(23)

where $\omega(z)$ is analytic function with $\omega(0) = 0$ and $|\omega(z)| < 1$.

Proof. Suppose that $f(z) \in R_{p,\lambda,\eta,\mu}^{m,\delta,\zeta}(\alpha,\rho;A,B)$ with $\Re(\rho) > 0$. It follows from (11) that

$$\left(\frac{z^p}{\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)}\right)^{\alpha} = \frac{1 + A\omega(z)}{1 + B\omega(z)},$$
(24)

where $\omega(z)$ is analytic with $\omega(0) = 0$ and $|\omega(z)| < 1$. By virtue of (24), we easily find that

$$\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z) = z^p \left(\frac{1 + B\omega(z)}{1 + A\omega(z)}\right)^{\frac{1}{\alpha}}.$$
 (25)

Combining (2) and (25), we have

$$\left(z^{p} + \sum_{n=1}^{\infty} \left(\frac{p+\zeta n}{p}\right)^{m} \frac{\left(\delta+p\right)_{n}\left(p+1-\mu\right)_{n}\left(1+p-\lambda+\eta\right)_{n}}{\left(1\right)_{n}\left(1+p\right)_{n}\left(1+p+\eta-\mu\right)_{n}} z^{p+n}\right) * f(z)$$

$$= z^{p} \left(\frac{1+B\omega(z)}{1+A\omega(z)}\right)^{\frac{1}{\alpha}}.$$
(26)

The assertion (23) of Theorem 6 can now easily be derived from (26).

Theorem 14. Let $f(z) \in R_{p,\lambda,\eta,\mu}^{m,\delta,\zeta}(\alpha,\rho;A,B)$ with $\Re(\rho) > 0$. Then

$$\frac{1}{z^{p}} \left[(1 + Ae^{i\theta})^{\frac{1}{\alpha}} \left(z^{p} + \sum_{n=1}^{\infty} \left(\frac{p+\zeta n}{p} \right)^{m} \frac{(\delta+p)_{n}(p+1-\mu)_{n}(1+p-\lambda+\eta)_{n}}{(1)_{n}(1+p)_{n}(1+p+\eta-\mu)_{n}} z^{p+n} \right) \right] \\
* f(z) - z^{p} \left(1 + Be^{i\theta} \right)^{\frac{1}{\alpha}}$$

$$\neq 0 \left(0 < \theta < 2\pi \right). \tag{27}$$

Proof. Suppose that $f(z) \in R_{p,\lambda,\eta,\mu}^{m,\delta,\zeta}(\alpha,\rho;A,B)$ with $\Re(\rho) > 0$. We know that (11) holds, implying that

$$\left(\frac{z^p}{\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)}\right)^{\alpha} \neq \frac{1 + Ae^{i\theta}}{1 + Be^{i\theta}} \quad (0 < \theta < 2\pi).$$
(28)

It is easy to see that the condition (28) can be written as follows:

$$\frac{1}{z^p} \left[\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta} f(z) \left(1 + Ae^{i\theta} \right)^{\frac{1}{\alpha}} - z^p \left(1 + Be^{i\theta} \right)^{\frac{1}{\alpha}} \right] \neq 0 \quad (0 < \theta < 2\pi) \,. \tag{29}$$

Combining (2) and (29), we easily get the convolution property (27). \blacksquare

Theorem 15. Let $\rho_2 \ge \rho_1 \ge 0$ and $-1 \le B_1 \le B_2 < A_2 \le A_1 \le 1$. Then

$$R_{p,\lambda,\eta,\mu}^{m,\delta,\zeta}(\alpha,\rho_2;A_2,B_2) \subset R_{p,\lambda,\eta,\mu}^{m,\delta,\zeta}(\alpha,\rho_1;A_1,B_1). \tag{30}$$

Proof. Suppose that $f(z) \in R_{p,\lambda,\eta,\mu}^{m,\delta,\zeta}(\alpha,\rho_2;A_2,B_2)$. We have

$$(1+\rho_2)\left(\frac{z^p}{\mathbb{N}^{m,\delta,\zeta}_{p,\lambda,\mu,\eta}f(z)}\right)^{\alpha} - \rho_2\left(\frac{\mathbb{N}^{m+1,\delta,\zeta}_{p,\lambda,\mu,\eta}f(z)}{\mathbb{N}^{m,\delta,\zeta}_{p,\lambda,\mu,\eta}f(z)}\right)\left(\frac{z^p}{\mathbb{N}^{m,\delta,\zeta}_{p,\lambda,\mu,\eta}f(z)}\right)^{\alpha} \prec \frac{1+A_2z}{1+B_2z}.$$

As $-1 \le B_1 \le B_2 < A_2 \le A_1 \le 1$, we easily find that

$$(1+\rho_2)\left(\frac{z^p}{\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)}\right)^{\alpha} - \rho_2\left(\frac{\mathbb{N}_{p,\lambda,\mu,\eta}^{m+1,\delta,\zeta}f(z)}{\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)}\right)\left(\frac{z^p}{\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)}\right)^{\alpha}$$

$$\prec \frac{1+A_2z}{1+B_2z} \prec \frac{1+A_1z}{1+B_1z},$$
(31)

which means that $f(z) \in R_{p,\lambda,\eta,\mu}^{m,\delta,\zeta}(\alpha,\rho_2;A_1,B_1)$. Thus the assertion (30) holds for $\rho_2 = \rho_1 \geq 0$. If $\rho_2 > \rho_1 \geq 0$, by Theorem 6 and (31), we know that $f(z) \in R_{p,\lambda,\eta,\mu}^{m,\delta,\zeta}(\alpha,0;A_1,B_1)$, that is,

$$\left(\frac{z^p}{\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)}\right)^{\alpha} \prec \frac{1+A_1z}{1+B_1z}.$$
(32)

At the same time, we have

$$(1+\rho_1) \left(\frac{z^p}{\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)} \right)^{\alpha} - \rho_1 \left(\frac{\mathbb{N}_{p,\lambda,\mu,\eta}^{m+1,\delta,\zeta}f(z)}{\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)} \right) \left(\frac{z^p}{\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)} \right)^{\alpha}$$

$$= (1-\frac{\rho_1}{\rho_2}) \left(\frac{z^p}{\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)} \right)^{\alpha} + \frac{\rho_1}{\rho_2}$$

$$\left[(1+\rho_2) \left(\frac{z^p}{\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)} \right)^{\alpha} - \rho_2 \left(\frac{\mathbb{N}_{p,\lambda,\mu,\eta}^{m+1,\delta,\zeta}f(z)}{\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)} \right) \left(\frac{z^p}{\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)} \right)^{\alpha} \right]. \tag{33}$$

Moreover

$$0 \le \frac{\rho_1}{\rho_2} < 1$$
,

and $\frac{1+A_1z}{1+B_1z}$ ($-1 \le B_1 < A_1 \le 1$; $z \in \mathbb{U}$) is analytic and convex in \mathbb{U} . Combining (31)-(33) and Lemma 4, we find that

$$(1+\rho_1)\left(\frac{z^p}{\mathbb{N}^{m,\delta,\zeta}_{p,\lambda,\mu,\eta}f(z)}\right)^{\alpha} - \rho_1\left(\frac{\mathbb{N}^{m+1,\delta,\zeta}_{p,\lambda,\mu,\eta}f(z)}{\mathbb{N}^{m,\delta,\zeta}_{p,\lambda,\mu,\eta}f(z)}\right)\left(\frac{z^p}{\mathbb{N}^{m,\delta,\zeta}_{p,\lambda,\mu,\eta}f(z)}\right)^{\alpha} \prec \frac{1+A_1z}{1+B_1z},$$

which means that $f(z) \in R_{p,\lambda,\eta,\mu}^{m,\delta,\zeta}(\alpha,\rho_1;A_1,B_1)$, which implies that the assertion (30) of Theorem 15 holds.

Theorem 16. Let $f(z) \in R_{p,\lambda,\eta,\mu}^{m,\delta,\zeta}(\alpha,\rho;A,B)$ with $\rho > 0$ and $-1 \le B < A \le 1$. Then

$$\frac{\alpha p}{\zeta \rho} \int_{0}^{1} \frac{1 - Au}{1 - Bu} u^{\frac{\alpha p}{\zeta \rho} - 1} du < \Re\left(\frac{z^{p}}{N_{p,\lambda,\mu,\eta}^{m,\delta,\zeta} f(z)}\right)^{\alpha} < \frac{\alpha p}{\zeta \rho} \int_{0}^{1} \frac{1 + Au}{1 + Bu} u^{\frac{\alpha p}{\zeta \rho} - 1} du. \tag{34}$$

The extremal function of (34), is given by

$$N_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)F(z) = z^p \left(\frac{\alpha p}{\zeta \rho} \int_0^1 \frac{1 + Az^n u}{1 + Bz^n u} u^{\frac{\alpha p}{\zeta \rho} - 1} du\right)^{\frac{-1}{\alpha}}.$$
 (35)

Proof. Let $f(z) \in R_{p,\lambda,\eta,\mu}^{m,\delta,\zeta}(\alpha,\rho;A,B)$ with $\rho > 0$. From Theorem 6, we know that (11) holds, which implies that

$$\Re\left(\frac{z^{p}}{N_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)}\right)^{\alpha} < \sup_{z \in U} \Re\left\{\frac{\alpha p}{\zeta \rho} \int_{0}^{1} \frac{1 + Azu}{1 + Bzu} u^{\frac{\alpha p}{\zeta \rho} - 1} du\right\}$$

$$\leq \frac{\alpha p}{\zeta \rho} \int_{0}^{1} \sup_{z \in U} \Re\left(\frac{1 + Azu}{1 + Bzu}\right) u^{\frac{\alpha p}{\zeta \rho} - 1} du$$

$$< \frac{\alpha p}{\zeta \rho} \int_{0}^{1} \frac{1 + Au}{1 + Bu} u^{\frac{\alpha p}{\zeta \rho} - 1} du, \tag{36}$$

$$\Re\left(\frac{z^{p}}{N_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)}\right)^{\alpha} > \inf_{z \in U} \Re\left\{\frac{\alpha p}{\zeta \rho} \int_{0}^{1} \frac{1 + Azu}{1 + Bzu} u^{\frac{\alpha p}{\zeta \rho} - 1} du\right\}$$

$$\geq \frac{\alpha p}{\zeta \rho} \int_{0}^{1} \inf_{z \in U} \Re\left(\frac{1 + Azu}{1 + Bzu}\right) u^{\frac{\alpha p}{\zeta \rho} - 1} du$$

$$> \frac{\alpha p}{\zeta \rho} \int_{0}^{1} \frac{1 - Au}{1 - Bu} u^{\frac{\alpha p}{\zeta \rho} - 1} du. \tag{37}$$

Combining (36) and (37), we get (34). By noting that $\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta}f(z)F(z) \in R_{p,\lambda,\eta,\mu}^{m,\delta,\zeta}(\alpha,\rho;A,B)$, we obtain that equality (34) is sharp. \blacksquare

In a similar way, applying the method used in the proof of Theorem 16, we easily get the following result.

Corollary 17. Let $f(z) \in R_{p,\lambda,\eta,\mu}^{m,\delta,\zeta}(\alpha,\rho;A,B)$ with $\rho > 0$ and $-1 \le A < B \le 1$. Then

$$\frac{\alpha p}{\zeta \rho} \int_{0}^{1} \frac{1 + Au}{1 + Bu} u^{\frac{\alpha p}{\zeta \rho} - 1} du < \Re\left(\frac{z^{p}}{\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta} f(z)}\right)^{\alpha} < \frac{\alpha p}{\zeta \rho} \int_{0}^{1} \frac{1 - Au}{1 - Bu} u^{\frac{\alpha p}{\zeta \rho} - 1} du. \tag{38}$$

The extremal function of (38), is given by (35).

In view of Theorem 16 and Corollary 17, we easily derive the following distortion theorems for the class $R_{p,\lambda,\eta,\mu}^{m,\delta,\zeta}(\alpha,\rho;A,B)$.

Corollary 18. Let $f(z) \in R_{p,\lambda,\eta,\mu}^{m,\delta,\zeta}(\alpha,\rho;A,B)$ with $\rho > 0$ and $-1 \le B < A \le 1$. Then for |z| = r < 1, we have

$$r^{p} \left(\frac{\alpha p}{\zeta \rho} \int_{0}^{1} \frac{1 - Aur}{1 - Bur} u^{\frac{\alpha p}{\zeta \rho} - 1} du \right)^{\frac{1}{\alpha}} < \left| \mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta} f(z) \right|$$

$$< r^{p} \left(\frac{\alpha p}{\zeta \rho} \int_{0}^{1} \frac{1 + Aur}{1 + Bur} u^{\frac{\alpha p}{\zeta \rho} - 1} du \right)^{\frac{1}{\alpha}}. \tag{39}$$

The extremal function of (39) is defined by (35).

Corollary 19. Let $f(z) \in R^{m,\delta,\zeta}_{p,\lambda,\eta,\mu}(\alpha,\rho;A,B)$ with $\rho > 0$ and $-1 \le A < B \le 1$. Then for |z| = r < 1, we have

$$r^{p} \left(\frac{\alpha p}{\zeta \rho} \int_{0}^{1} \frac{1 + Aur}{1 + Bur} u^{\frac{\alpha p}{\zeta \rho} - 1} du \right)^{\frac{1}{\alpha}} < \left| \mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta} f(z) \right|$$

$$< r^{p} \left(\frac{\alpha p}{\zeta \rho} \int_{0}^{1} \frac{1 - Aur}{1 - Bur} u^{\frac{\alpha p}{\zeta \rho} - 1} du \right)^{\frac{1}{\alpha}}. \tag{40}$$

The extremal function of (40) is defined by (35).

By noting that

$$\left(\Re\left(v\right)\right)^{\frac{1}{2}} \le \Re\left(v^{\frac{1}{2}}\right) \le \left|v\right|^{\frac{1}{2}} \quad \left(v \in \mathbb{C}; \ \Re\left(v\right) \ge 0\right). \tag{41}$$

we easily derive from Theorem 16 and Corollary 17 the following results.

Corollary 20. Let $f(z) \in R_{p,\lambda,\eta,\mu}^{m,\delta,\zeta}(\alpha,\rho;A,B)$ with $\rho > 0$ and $-1 \leq B < A \leq 1$.

$$\left(\frac{\alpha p}{\zeta \rho} \int_{0}^{1} \frac{1 - Au}{1 - Bu} u^{\frac{\alpha p}{\zeta \rho} - 1} du\right)^{\frac{1}{2}} < \Re\left(\frac{z^{p}}{\mathbb{N}_{p,\lambda,\mu,\eta}^{m,\delta,\zeta} f(z)}\right)^{\frac{\alpha}{2}} < \left(\frac{\alpha p}{\zeta \rho} \int_{0}^{1} \frac{1 + Au}{1 + Bu} u^{\frac{\alpha p}{\zeta \rho} - 1} du\right)^{\frac{1}{2}}.$$

The extremal function is defined by (35).

Corollary 21. Let $f(z) \in R_{p,\lambda,\eta,\mu}^{m,\delta,\zeta}(\alpha,\rho;A,B)$ with $\rho > 0$ and $-1 \le A < B \le 1$. Then

$$\left(\frac{\alpha p}{\zeta \rho} \int_{0}^{1} \frac{1+Au}{1+Bu} u^{\frac{\alpha p}{\zeta \rho}-1} du\right)^{\frac{1}{2}} < \Re\left(\frac{z^{p}}{N_{p,\lambda,\mu,\eta}^{m,\delta,\zeta} f(z)}\right)^{\frac{\alpha}{2}} < \left(\frac{\alpha p}{\zeta \rho} \int_{0}^{1} \frac{1-Au}{1-Bu} u^{\frac{\alpha p}{\zeta \rho}-1} du\right)^{\frac{1}{2}}.$$

The extremal function is defined by (35).

Remark 1. (i) Using (4) instead of (3) in the above results, we get the corresponding results for the class $T_{p,\lambda,\eta,\mu}^{m,\delta,\zeta}(\alpha,\rho;A,B)$; (ii) Using (5) instead of (3) in the above results, we get the corresponding results

for the class $V_{p,\lambda,\eta,\mu}^{m,\delta,\zeta}(\alpha,\rho;A,B)$;

References

[1] M. K. Aouf, A. O. Mostafa, T. M. Seoudy, Subordination and Superordination Results for Analytic Functions Involving Certain Operators, Lambert Acad. Publishing, 2014.

- [2] M. K. Aouf, A. O. Mostafa, H. M. Zayed, Subordination and superordination properties of p-valent functions defined by a generalized fractional different operator, Quaest. Math., (2015), 1-16.
- [3] T. Bulboaca, *Differential Subordinations and Superordinations*, Recent Results, House of Science Book Publ. Cluj-Napoca, 2005.
- [4] M.-S. Liu, On certain subclass of analytic functions, J. South China Normal Univ., 4(2002), 15-20 (in Chinese).
- [5] T.H. Macgregor, The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 14(1963), 514-520.
- [6] S. S. Miller, P. T. Mocanu, *Differential Subordinations: Theory and Applications*, Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker, New York and Basel, 2000.
- [7] S. S. Miller, P. T. Mocanu, Subordinants of differential superordinations, Complex Var. Theory Appl. 48(2003), no.10, 815-826.
- [8] W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc., (Ser. 2) 48(1943), 48-82.
- [9] T. N. Shanmugam, V. Ravichandran, S. Sivasubramanian, Differential Sandwich theorems for subclasses of analytic functions, Austral. J. Math. Anal. Appl., 3(2006), Art. 8, 1-11.

A.O. Mostafa

Department of Mathematics, Faculty of Science, University of Mansoura, Mansoura, Egypt email: adelaeg254@yahoo.com

G. M. El-Hawsh

Department of Mathematics, Faculty of Science, Fayoum University, Fayoum 63514, Egypt email: qma05@fayoum.edu.eq