SOME RESULTS ON Q - STARLIKE FUNCTIONS OF COMPLEX ORDER

A. Çetinkaya, Y. Kahramaner, Y. Polatỡãu

AbSTRACT. In this paper, we define a new subclass of starlike functions by using quantum calculus. For every $q \in(0,1), q$ - difference operator is defined by

$$
D_{q} f(z)=\frac{f(z)-f(q z)}{(1-q) z}, \quad z \in \mathbb{D}
$$

Using the above operator and definition of starlike functions of complex order, we introduce the class of $q-$ starlike functions of complex order denoted by $S_{q}^{*}(1-b)$. In the present paper, we will investigate coefficient inequality, growth and distortion theorems and radius of $q-$ starlikeness for the class $S_{q}^{*}(1-b)$.

2010 Mathematics Subject Classification: 30C45.
Keywords: $q-$ starlike functions of complex order, coefficient inequality, distortion theorem, growth theorem, radius of $q-$ starlikeness.

1. Introduction

Let \mathcal{A} be the class of functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the open unit $\operatorname{disc} \mathbb{D}=\{z:|z|<1\}$ and satisfy the conditions $f(0)=0, f^{\prime}(0)=1$ for every $z \in \mathbb{D}$. We say that f_{1} is subordinate to f_{2}, written as $f_{1} \prec f_{2}$, if there exists a Schwarz function ϕ which is analytic in \mathbb{D} with $\phi(0)=0$ and $|\phi(z)|<1$ such that $f_{1}(z)=f_{2}(\phi(z))$. In particular, when f_{2} is univalent, then the above subordination is equivalent to $f_{1}(0)=f_{2}(0)$ and $f_{1}(\mathbb{D}) \subset f_{2}(\mathbb{D})$ (Subordination principle [4]).

A. Çetinkaya, Y. Kahramaner, Y. Polatoğlu - Some results on q - Starlike ...

A function $f \in \mathcal{A}$ is said to be starlike function of complex order $b,(b \in \mathbb{C} \backslash\{0\})$ denoted by $S^{*}(1-b)$ if and only if $f(z) / z \neq 0$ and

$$
\operatorname{Re}\left[1+\frac{1}{b}\left(z \frac{f^{\prime}(z)}{f(z)}-1\right)\right]>0
$$

for all $z \in \mathbb{D}$. This class was introduced and studied by Nasr and Aouf (see [8]).
In 1909 and 1910 Jackson [5, 6] initiated a study of q-difference operator by

$$
\begin{equation*}
D_{q} f(z)=\frac{f(z)-f(q z)}{(1-q) z} \quad \text { for } \quad z \in B \backslash\{0\}, \tag{2}
\end{equation*}
$$

where B is a subset of complex plane \mathbb{C}, called q - geometric set if $q z \in B$, whenever $z \in B$. Note that if a subset B of \mathbb{C} is q - geometric, then it contains all geometric sequences $\left\{z q^{n}\right\}_{0}^{\infty}, z q \in B$. Obviously, $D_{q} f(z) \rightarrow f^{\prime}(z)$ as $q \rightarrow 1^{-}$. The $q-$ difference operator (2) is also called Jackson q - difference operator. Note that such an operator plays an important role in the theory of hypergeometric series and quantum physics (see for instance $[1,3,7]$).

Also, note that $D_{q} f(0) \rightarrow f^{\prime}(0)$ as $q \rightarrow 1^{-}$and $D_{q}^{2} f(z)=D_{q}\left(D_{q} f(z)\right)$. In fact, $q-$ calculus is ordinary classical calculus without the notion of limits. Recent interest in q - calculus is because of its applications in various branches of mathematics and physics. For definitions and properties of q - difference operator and $q-$ calculus, one may refer to $[1,3,7]$.

Under the hypothesis of the definition of q - difference operator, we have the following rules:
(1) For a function $f(z)=z^{n}$, we observe that

$$
D_{q} z^{n}=\frac{1-q^{n}}{1-q} z^{n-1}
$$

Therefore we have

$$
D_{q} f(z)=1+\sum_{n=2}^{\infty} a_{n} \frac{1-q^{n}}{1-q} z^{n-1}
$$

where $[n]_{q}=\frac{1-q^{n}}{1-q}$. Clearly, as $q \rightarrow 1^{-},[n]_{q} \rightarrow n$.
(2) If functions f and g are defined on a $q-$ geometric set $B \subset \mathbb{C}$ such that $q-$ derivatives of f and g exist for all $z \in B$, then
(i) $D_{q}(a f(z) \pm b g(z))=a D_{q} f(z) \pm b D_{q} g(z)$ where a and b are real or complex constants.
(ii) $D_{q}(f(z) \cdot g(z))=g(z) D_{q} f(z)+f(q z) D_{q} g(z)$.
(iii) $D_{q}\left(\frac{f(z)}{g(z)}\right)=\frac{g(z) D_{q} f(z)-f(z) D_{q} g(z)}{g(z) g(q z)}, \quad g(z) g(q z) \neq 0$.
(iv) As a right inverse, Jackson introduced the q - integral

$$
\int_{0}^{z} f(\zeta) d_{q} \zeta=z(1-q) \sum_{n=0}^{\infty} q^{n} f\left(z q^{n}\right)
$$

provided that the series converges.
Denote by \mathcal{P}_{q} the family of functions of the form $p(z)=1+p_{1} z+p_{2} z^{2}+p_{3} z^{3}+\cdots$, analytic in \mathbb{D} and satisfying the condition

$$
\left|p(z)-\frac{1}{1-q}\right| \leq \frac{1}{1-q}
$$

where $q \in(0,1)$ is a fixed real number.
Lemma 1. [2] $p \in \mathcal{P}_{q}$ if and only if $p(z) \prec \frac{1+z}{1-q z}$. This result is sharp for the functions $p(z)=\frac{1+\phi(z)}{1-q \phi(z)}$, where ϕ is a Schwarz function.

Using definitions of starlike functions of complex order [8] and q - difference operator, we define $q-$ starlike functions of complex order as below:

Definition 1. A function $f \in \mathcal{A}$ is said to be in the class $S_{q}^{*}(1-b)$ such that

$$
\begin{equation*}
\operatorname{Re}\left[1+\frac{1}{b}\left(z \frac{D_{q} f(z)}{f(z)}-1\right)\right]>0 \tag{3}
\end{equation*}
$$

where $q \in(0,1), b \in \mathbb{C} \backslash\{0\}, z \in \mathbb{D}$, then f is called $q-$ starlike function of complex order. Clearly, as $q \rightarrow 1^{-}$, this class reduces to the class of starlike functions of complex order.

The aim of this paper is to give coefficient inequality, growth and distortion theorems and radius of q-starlikeness for the class $q-$ starlike function of complex order.

2. Main results

We first prove coefficient inequality for the class $S_{q}^{*}(1-b)$. For our main theorem, we need the following lemma.
A. Çetinkaya, Y. Kahramaner, Y. Polatog̃lu - Some results on q - Starlike ...

Lemma 2. If p is an element of \mathcal{P}_{q}, then $\left|p_{n}\right| \leq 1+q$. This result is sharp for all $n \geq 1$.
Proof. In view Lemma 1, we have $p(z)=\frac{1+\phi(z)}{1-q \phi(z)}$. Therefore we get

$$
\begin{equation*}
p(z)-1=(1+q p(z)) \phi(z) . \tag{4}
\end{equation*}
$$

Thus the equality in (4) can be written in the form

$$
\begin{equation*}
\sum_{k=1}^{n} p_{k} z^{k}+\sum_{k=n+1}^{\infty} d_{k} z^{k}=q \phi(z) \sum_{k=1}^{n} p_{k} z^{k} \Rightarrow F(z)=q \phi(z) G(z) \tag{5}
\end{equation*}
$$

it follows that

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|F\left(r e^{i \theta}\right)\right|^{2} d \theta \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|G\left(r e^{i \theta}\right)\right|^{2} d \theta \tag{6}
\end{equation*}
$$

for each $r,(0<r<1)$. By expressing (6) in terms of the coefficients in (5), we obtain the inequality

$$
\begin{equation*}
\sum_{k=1}^{n}\left|p_{k}\right|^{2} r^{2 k}+\sum_{k=n+1}^{\infty}\left|d_{k}\right|^{2} r^{2 k} \leq q^{2} \sum_{k=1}^{n}\left|p_{k}\right|^{2} r^{2 k} \tag{7}
\end{equation*}
$$

Taking limit in (7) as $r \rightarrow 1$, we conclude that

$$
\begin{equation*}
\left|p_{n}\right|^{2} \leq(1+q)^{2}+\left(q^{2}-1\right) \sum_{k=1}^{n}\left|p_{k}\right|^{2} \tag{8}
\end{equation*}
$$

Since $\left(q^{2}-1\right) \leq 0$, inequality in (8) gives

$$
\left|p_{n}\right| \leq 1+q, \quad n \geq 1
$$

This completes the proof.
Theorem 3. If a function f of the form (1) belongs to $S_{q}^{*}(1-b)$, then

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{1}{\left([n]_{q}-1\right)!} \prod_{k=1}^{n-1}\left(\left([k]_{q}-1\right)+|b|(1+q)\right) \tag{9}
\end{equation*}
$$

where $q \in(0,1), b \in \mathbb{C} \backslash\{0\}, z \in \mathbb{D}$. This inequality is sharp for every $n \geq 2$.

Proof. In view of definition of the class $S_{q}^{*}(1-b)$ and subordination principle, we can write

$$
1+\frac{1}{b}\left(z \frac{D_{q} f(z)}{f(z)}-1\right)=p(z)
$$

where $p \in \mathcal{P}_{q}$ with $p(0)=1$. Since $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ and $p(z)=1+p_{1} z+$ $p_{2} z^{2}+\ldots$, then we have

$$
\begin{array}{r}
z+[2]_{q} a_{2} z^{2}+[3]_{q} a_{3} z^{3}+\ldots=z+\left(a_{2}+b p_{1}\right) z^{2}+\left(a_{3}+b p_{1} a_{2}+b p_{2}\right) z^{3}+ \\
\left(a_{4}+b p_{1} a_{3}+b p_{2} a_{2}+b p_{3}\right) z^{4}+\ldots .
\end{array}
$$

Comparing the coefficients of z^{n} on both sides, we obtain

$$
[n]_{q} a_{n}=a_{n}+b p_{1} a_{n-1}+b p_{2} a_{n-2}+\ldots+b p_{n-2} a_{2}+b p_{n-1}
$$

for all integer $n \geq 2$. In view of Lemma 2, we get

$$
\left([n]_{q}-1\right)\left|a_{n}\right| \leq|b|(1+q)\left(\left|a_{n-1}\right|+\ldots+\left|a_{2}\right|+1\right)
$$

or equivalently

$$
\begin{equation*}
\left|a_{n}\right| \leq \frac{1}{[n]_{q}-1}|b|(1+q) \sum_{k=1}^{n-1}\left|a_{k}\right|, \quad\left|a_{1}\right|=1 . \tag{10}
\end{equation*}
$$

In order to prove (9), we will use process of iteration. Let $c=|b|(1+q)$ and use our assumption $\left|a_{1}\right|=1$ in (10), we obtain successively

$$
\begin{aligned}
& \text { for } \quad n=2, \quad\left|a_{2}\right| \leq \frac{1}{[2]_{q}-1} c, \\
& \text { for } \quad n=3, \quad\left|a_{3}\right| \leq \frac{1}{\left([3]_{q}-1\right)!} c\left(\left([2]_{q}-1\right)+c\right) \\
& \text { for } \quad n=4, \quad\left|a_{4}\right| \leq \frac{1}{\left([4]_{q}-1\right)!} c\left(\left([2]_{q}-1\right)+c\right)\left(\left([3]_{q}-1\right)+c\right) .
\end{aligned}
$$

Hence induction shows that for n, we obtain

$$
\left|a_{n}\right| \leq \frac{1}{\left([n]_{q}-1\right)!} c\left(\left([2]_{q}-1\right)+c\right)\left(\left([3]_{q}-1\right)+c\right) \ldots\left(\left([n-1]_{q}-1\right)+c\right) .
$$

This proves (9).
Extremal function is the solution of the q - differential equation

$$
1+\frac{1}{b}\left(z \frac{D_{q} f(z)}{f(z)}-1\right)=\frac{1+z}{1-q z} .
$$

Corollary 4. Taking $q \rightarrow 1^{-}$and choosing $b=1$ in (9), we get $\left|a_{n}\right| \leq n$ for every $n \geq 2$. This is the well known coefficient inequality for starlike functions.

We now introduce growth and distortion theorems and radius of q - starlikeness for the class $S_{q}^{*}(1-b)$.

Theorem 5. If a function f of the form (1) belongs to $S_{q}^{*}(1-b)$, then

$$
\begin{equation*}
\left(r F_{2}(q, \operatorname{Re} b,|b|, r)\right)^{\frac{1-q}{\log q-1}} \leq|f(z)| \leq\left(r F_{1}(q, \operatorname{Re} b,|b|, r)\right)^{\frac{1-q}{\log q-1}} \tag{11}
\end{equation*}
$$

where

$$
\begin{aligned}
& F_{1}(q, \operatorname{Re} b,|b|, r)=\frac{1}{(1-q r)^{\frac{1}{2 q}(1+q)(\text { Reb }+|b|)}(1+q r)^{\frac{1}{2 q}(1+q)(\text { Reb-|b|)}}}, \\
& F_{2}(q, \operatorname{Re} b,|b|, r)=\frac{1}{(1-q r)^{\frac{1}{2 q}(1+q)(\text { Reb-|b|)}}(1+q r)^{\frac{1}{2 q}(1+q)(\text { Reb+|b|) }}} .
\end{aligned}
$$

These bounds are sharp.
Proof. In view of Lemma 1 and subordination principle, we write

$$
\left[1+\frac{1}{b}\left(z \frac{D_{q} f(z)}{f(z)}-1\right)\right] \prec \frac{1+z}{1-q z}
$$

The linear transformation $\left(\frac{1+z}{1-q z}\right)$ maps $|z|=r$ onto the disc with the centre $C(r)=$ $\frac{1+q r^{2}}{1-q^{2} r^{2}}$ and the radius $\rho(r)=\frac{(1+q) r}{1-q^{2} r^{2}}$, therefore we obtain

$$
\begin{equation*}
\left|z \frac{D_{q} f(z)}{f(z)}-\frac{1+\left(b\left(q+q^{2}\right)-q^{2}\right) r^{2}}{1-q^{2} r^{2}}\right| \leq \frac{|b|(1+q) r}{1-q^{2} r^{2}} \tag{12}
\end{equation*}
$$

From inequality in (12), we get

$$
\begin{align*}
& \operatorname{Re}\left(z \frac{D_{q} f(z)}{f(z)}\right) \leq \frac{1+(1+q)|b| r+\left(\left(q^{2}+q\right) \operatorname{Reb}-q^{2}\right) r^{2}}{(1-q r)(1+q r)} \tag{13}\\
& \operatorname{Re}\left(z \frac{D_{q} f(z)}{f(z)}\right) \geq \frac{1-(1+q)|b| r+\left(\left(q^{2}+q\right) \operatorname{Reb}-q^{2}\right) r^{2}}{(1-q r)(1+q r)} \tag{14}
\end{align*}
$$

On the other hand we have

$$
\begin{equation*}
\operatorname{Re}\left(z \frac{D_{q} f(z)}{f(z)}\right)=r \frac{\partial_{q}}{\partial r} \log |f(z)| \tag{15}
\end{equation*}
$$

A. Çetinkaya, Y. Kahramaner, Y. Polatoğlu - Some results on q - Starlike ...

Considering (13), (14) and (15), we get

$$
\frac{\partial_{q}}{\partial r} \log |f(z)| \leq \frac{1}{r}+\frac{\frac{1}{2}(1+q)(R e b+|b|)}{(1-q r)}-\frac{\frac{1}{2}(1+q)(R e b-|b|)}{(1+q r)},
$$

and

$$
\frac{\partial_{q}}{\partial r} \log |f(z)| \geq \frac{1}{r}+\frac{\frac{1}{2}(1+q)(R e b-|b|)}{(1-q r)}-\frac{\frac{1}{2}(1+q)(R e b+|b|)}{(1+q r)} .
$$

Taking q - integral on both sides of the last inequalities, we get (11).
Corollary 6. Since $\lim _{q \rightarrow 1} \frac{1-q}{\log q^{-1}}=1$, for special case $b=1$, we obtain

$$
\frac{r}{(1+r)^{2}} \leq|f(z)| \leq \frac{r}{(1-r)^{2}} .
$$

This is the well known growth theorem for starlike functions [4].

Corollary 7. Inequality in (12) can be written in the following form

$$
\left|z \frac{D_{q} f(z)}{f(z)}\right| \leq \frac{\left|1+\left(b\left(q+q^{2}\right)-q^{2}\right) r^{2}\right|+|b|(1+q) r}{1-q^{2} r^{2}}
$$

and

$$
\left|z \frac{D_{q} f(z)}{f(z)}\right| \geq \frac{\left|1+\left(b\left(q+q^{2}\right)-q^{2}\right) r^{2}\right|-|b|(1+q) r}{1-q^{2} r^{2}} .
$$

Therefore, using (11) we obtain

$$
\left|D_{q} f(z)\right| \leq \frac{1+|b|(1+q) r+\left|b\left(q+q^{2}\right)-q^{2}\right| r^{2}}{r\left(1-q^{2} r^{2}\right)}\left(r F_{1}(q, \operatorname{Re} b,|b|, r)\right)^{\frac{1-q}{\log q^{-1}}}
$$

and

$$
\left|D_{q} f(z)\right| \geq \frac{1-|b|(1+q) r+\left|b\left(q+q^{2}\right)-q^{2}\right| r^{2}}{r\left(1-q^{2} r^{2}\right)}\left(r F_{2}(q, \operatorname{Re} b,|b|, r)\right)^{\frac{1-q}{\log q^{-1}}}
$$

Corollary 8. Since $\lim _{q \rightarrow 1} \frac{1-q}{\log q^{-1}}=1$, for $b=1$, Corollary 7 gives

$$
\frac{1-r}{(1+r)^{3}} \leq\left|f^{\prime}(z)\right| \leq \frac{1+r}{(1-r)^{3}} .
$$

This is the well known distortion theorem for starlike functions [4].
A. Çetinkaya, Y. Kahramaner, Y. Polatoğlu - Some results on q - Starlike ...

Corollary 9. The radius of $q-$ starlikeness of the class $S_{q}^{*}(1-b)$ is

$$
R_{q}^{*}=\frac{2}{|b|(1+q)+\sqrt{|b|^{2}(1+q)^{2}-4\left(\left(q+q^{2}\right) R e b-q^{2}\right)}}
$$

Proof. The inequality

$$
\left|z \frac{D_{q} f(z)}{f(z)}-\frac{1+\left(b\left(q^{2}+q\right)-q^{2}\right) r^{2}}{1-q^{2} r^{2}}\right| \leq \frac{|b|(1+q) r}{1-q^{2} r^{2}}
$$

can be written in the form

$$
\operatorname{Re}\left(z \frac{D_{q} f(z)}{f(z)}\right) \geq \frac{1-|b|(1+q) r+\left(\left(q+q^{2}\right) \operatorname{Re} b-q^{2}\right) r^{2}}{1-q^{2} r^{2}}
$$

Hence for $r<R_{q}^{*}$ the right side of the preceding inequality is positive if

$$
R_{q}^{*}=\frac{2}{|b|(1+q)+\sqrt{|b|^{2}(1+q)^{2}-4\left(\left(q+q^{2}\right) \operatorname{Reb}-q^{2}\right)}}
$$

SOME SPECIAL CASES

(i) For $b=1$, we obtain $R_{q}^{*}=\frac{1}{q}$. This is the radius of $q-$ starlikeness of $q-$ starlike functions.
(ii) For $q \rightarrow 1^{-}, R_{1}^{*}=\frac{1}{|b|+\sqrt{|b|^{2}-2 \text { Reb }+1}}$. This is the radius of starlikeness of starlike functions of complex order (see [8]).

It should be noticed that by giving specific values to b, we obtain growth theorems, distortion theorems and radius of q - starlikeness of the following important subclasses.
(1) $b=1-\alpha, \quad 0 \leq \alpha<1, \quad S_{q}^{*}(1-b)=S_{q}^{*}(\alpha)$ is the class of $q-$ starlike functions of order α.
(2) $b=e^{-i \lambda} \cos \lambda, \quad|\lambda|<\frac{\pi}{2}, \quad S_{q}^{*}(1-b)=S_{q}^{*}\left(1-e^{-i \lambda} \cos \lambda\right)$ is the class of $q-\lambda-$ spirallike functions.
(3) $b=(1-\alpha) e^{-i \lambda} \cos \lambda, \quad 0 \leq \alpha<1, \quad|\lambda|<\frac{\pi}{2}$,
$S_{q}^{*}(1-b)=\left(1-(1-\alpha) e^{-i \lambda} \cos \lambda\right)$ is the class of $q-\lambda-$ spirallike functions of order α.
A. Çetinkaya, Y. Kahramaner, Y. Polatoğlu - Some results on q - Starlike ...

References

[1] G. E. Andrews, Applications of the basic hypergeometric functions, SIAM Rev. 16 (1974), 441-484.
[2] A. Çetinkaya, O. Mert, A certain class of harmonic mappings related to functions of bounded boundary rotation, Proc. of $12^{\text {th }}$ Int. Sym. on Geometric Function Theory and Applications, (2016), 67-76.
[3] N. J. Fine, Basic hypergeometric series and applications, Math. Surveys Monogr. 1988.
[4] A. W. Goodman, Univalent functions volume I and II, Polygonal Pub. House, 1983.
[5] F. H. Jackson, On q- functions and a certain difference operator, Trans. Royal Soc. Edinburgh, 46 (1909), 253-281.
[6] F. H. Jackson, On $q-$ definite integrals, Quart. J. Pure Appl. Math. 41 (1910), 193-203.
[7] V. Kac, P. Cheung, Quantum calculus, Springer, 2002.
[8] M. A. Nasr, M. K. Aouf, Starlike functions of complex order, J. Natur. Sci. 25 (1985), 1-12.

Asena Çetinkaya
Department of Mathematics and Computer Sciences, Istanbul Kültür University Istanbul, Turkey email: asnfigen@hotmail.com

Yasemin Kahramaner
Department of Mathematics, Istanbul Ticaret University
Istanbul, Turkey
email: ykahra@gmail.com
Yaşar Polatog̃lu
Department of Mathematics and Computer Sciences, Istanbul Kültür University Istanbul, Turkey
email: y.polatoglu@iku.edu.tr

