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COEFFICIENT BOUNDS FOR ω-QUASI-CONVEX FUNCTIONS
DEFINED ON THE UNIT DISC

A. Jenifer, C. Selvaraj

Abstract. Main aim of this paper is to introduce a generalized class of ω-
quasi-convex functions f(z) defined on the unit disk E := {z/

∣∣z∣∣ < 1} normalized
by the conditions f(0) = 0 = f ′(0)− 1 and we obtain several sharp bounds for f(z),

its inverse f−1(w), log(f(z)z ) and the Second Hankel determinant
∣∣a2a4 − a23∣∣.
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1. Introduction And Basic Results

Denote by S the family of regular and univalent functions in the unit disk E with
the series expansion

f(z) = z +
∞∑
n=2

anz
n (1)

and normalized by the conditions f(0) = 0 = f ′(0)−1. Let us designate by C and K
the well-known sub-classes of convex and close-to-convex functions respectively. In
the year 1980, K.I.Noor and D.K.Thomas introduced the concept of quasi convex-
ity and investigated various properties by defining a new subclass of quasi-convex
functions(C∗) in [9]. Moreover, f(z) is quasi-convex if and only if zf ′(z) is close-
to-convex. It was further generalized to α-quasi-convex functions by K.I.Noor and
F.M.Al-oboudi in [8].

For α ≥ 0, if the real part of arithmetic mean of f ′(z)
g′(z) and (zf ′(z))′

g′(z) is positive,

where z ∈ E and g(z) ∈ C, then f(z) is said to be α-quasi-convex. In the year
2018, D.K.Thomas in [12] introduced and investigated the subclass Mγ of γ-starlike

functions by considering the geometric mean of the quantities zf ′(z)
f(z) and (zf ′(z))′

f ′(z) for

functions f(z) of the form (1). Motivated by their work, we in this paper, define a

121

http://www.uab.ro/auajournal/


A. Jenifer, C. Selvaraj – Coefficient Bounds For ω - Quasi . . .

subclass Qω of ω-quasi-convex functions. A function f(z) of the form (1) is said to
be in Qω if there is a convex function g(z) in C such that

Re[{(zf ′(z))′

g′(z)
}ω{f

′(z)

g′(z)
}1−ω}] ≥ 0 (2)

for z ∈ E.
We observe that when ω = 1, Qω = C∗, the class of quasi-convex functions.When

ω = 1 and f(z) = g(z), Qω reduces to the familiar class of convex functions. Thus
every ω-quasi-convex function is convex and hence univalent in E. If ω = 0, Qω

becomes K, the class of close-to-convex functions studied by Kaplan [4]. For
0 ≤ ω ≤ 1, the transition from close-to-convexity to quasi-convexity is smooth.

2. PRELIMINARIES

We need the following lemmas which will be used as tools to prove our results.
Denote by P the class of Caratheodory functions p(z) analytic in E for which
Re(p(z)) > 0, p(0) = 1 and

p(z) = 1 +

∞∑
n=1

pnz
n. (3)

Lemma 1. [2] If p(z) ∈ P, is of the form (3), then

2p2 = p21 + y(4− p21) (4)

for some y, |y| ≤ 1 and

4p3 = p31 + 2(4− p21)p1y − p1(4− p21)y2 + 2(4− p21)(1− |y|2)ξ (5)

for some ξ, |ξ| ≤ 1.

Lemma 2. [1] If p(z) ∈ P, then the sharp estimate

|pn| ≤ 2 (6)

holds for n=1,2,....

Lemma 3. [3] If p(z) ∈ P,then the following estimate holds for
n, k ∈ {1,2,...}

|pn − µkpn−k| ≤ max{2, 2
∣∣2µ− 1

∣∣}. (7)

Lemma 4. [6] If 0 ≤ β ≤ 1 and β(2β − 1) ≤ α ≤ β then

|p3 − 2βp1p2 + αp31| ≤ 2. (8)

122



A. Jenifer, C. Selvaraj – Coefficient Bounds For ω - Quasi . . .

3. THE COEFFICIENTS OF f(z)

In this section we state and prove a theorem that yields sharp coefficient bounds for
functions belonging to Qω and in the sequel we obtain the results proved in [4] and
[9].

Theorem 5. Let f(z) ∈ Qω for ω ≥ 0 and given by (1). Then

|a2| ≤
2

(1 + ω)

|a3| ≤

{
(ω2+26ω+9)

3(1+ω)2(1+2ω)
, ω ≤ 1

(ω2+8ω+3)
(1+ω)2(1+2ω)

, ω ≥ 1

|a4| ≤


2ω4+37ω3+160ω2+77ω+12

3(1+ω)3(1+2ω)(1+3ω)
, 0 ≤ ω ≤ 0.2

2(ω4+11ω3+89ω2+37ω+6)
3(1+ω)3(1+2ω)(1+3ω)

, 0.2 ≤ ω ≤ 1
4(ω4+11ω3+38ω2+19ω+3)
3(1+ω)3(1+2ω)(1+3ω)

, ω ≥ 1

Proof. Let g(z) be a convex function, with the Taylor series expansion

g(z) = z +
∞∑
n=2

bnz
n.

From (2), we have

{(zf ′(z))′

g′(z)
}ω{f

′(z)

g′(z)
}1−ω = p(z)

where p(z) ∈ P. Then equating the coefficients we have

a2 =
p1 + 2b2
2(1 + ω)

a3 =
p2

3(1 + 2ω)
+

2(1 + 3ω)b2p1
3(1 + ω)2(1 + 2ω)

+
b3

(1 + 2ω)
− ω(ω − 1)p21

6(1 + ω)2(1 + 2ω)

− 2ω(ω − 1)b22
3(1 + ω)2(1 + 2ω)

a4 =
1

4(1 + 3ω)
(p3 +

2(1 + 5ω)b2p2
(1 + ω)(1 + 2ω)

+
3(1 + 5ω)b3p1

(1 + ω)(1 + 2ω)
− 12ω(ω − 1)b2b3

(1 + ω)(1 + 2ω)

+
2ω(ω − 1)(1− 5ω)b22p1

(1 + ω)3(1 + 2ω)
− 2ω(ω − 1)p1p2

(1 + ω)(1 + 2ω)
+
ω(ω − 1)(1− 5ω)b2p

2
1

(1 + ω)3(1 + 2ω)

+
ω(ω − 1)(4ω2 + 3ω + 5)p31

6(1 + ω)3(1 + 2ω)
+

4ω(ω − 1)(4ω2 + 3ω + 5)b32
3(1 + ω)3(1 + 2ω)

+ 4b4)
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Since g(z) ∈ C,
(zg′(z))′

g′(z)
= c(z)

where c(z) ∈ P and let c(z) = 1 +
∞∑
n=1

cnz
n. Then b2 = c1

2 , b3 = c2
6 +

c21
6 and

b4 = c3
12 + c1c2

8 +
c31
24 . Thus we have,

a2 =
p1 + c1

2(1 + ω)

a3 =
1

3(1 + 2ω)
[p2 −

ω(ω − 1)p21
2(1 + ω)2

+
(1 + 3ω)p1c1

(1 + ω)2
+

1

2
(c2 +

(1 + 3ω)c21
(1 + ω)2

)]

a4 =
1

4(1 + 3ω)
[p3 −

2ω(ω − 1)p1p2
(1 + ω)(1 + 2ω)

+
ω(4ω3 − ω2 + 2ω − 5)p31

6(1 + ω)3(1 + 2ω)

+
(1 + 5ω)

(1 + ω)(1 + 2ω)
{c1(p2 −

ω(5ω2 − 6ω + 1)p21
2(1 + ω)2(1 + 5ω)

) +
p1
2

(c2

+
(17ω2 + 6ω + 1)c21
(1 + ω)2(1 + 5ω)

)}+
1

3
(c3 +

3(1 + 5ω)c1c2
2(1 + ω)(1 + 2ω)

+
ω(17ω2 + 6ω + 1)c31
2(1 + ω)3(1 + 2ω)

)]

By the inequality (6) the first inequality follows. Since the coefficients of p21 is
positive when ω ≤ 1,the first inequality of |a3| follows from Lemma 2.
Now when ω ≥ 1, consider

a3 =
1

3(1 + 2ω)
[p2 −

µp21
2

+
(1 + 3ω)p1c1

(1 + ω)2
+

1

2
(c2 +

(1 + 3ω)c21
(1 + ω)2

)]

where µ = ω(ω−1)
(1+ω)2

. Now using Lemma 3, the second inequality for |a3| follows.

In deriving the inequality for a4, note that the coefficients of p31 is positive and p21
and p1p2 are negative, when ω ≥ 1.

a4 =
1

4(1 + 3ω)
[(p3 − 2βp1p2 + αp31) +

1 + 5ω

(1 + ω)(1 + 2ω)
c1(p2 −

µp21
2

)

+
(1 + 5ω)p1

2(1 + ω)(1 + 2ω)
(c2 +

(17ω2 + 6ω + 1)c21
(1 + ω)2(1 + 5ω)

)

+
1

3
(c3 +

3(1 + 5ω)c1c2
2(1 + ω)(1 + 2ω)

+
(17ω2 + 6ω + 1)c31
2(1 + ω)3(1 + 2ω)

)]

where β = ω(ω−1)
(1+ω)(1+2ω) , α = ω(4ω3−ω2+2ω−5)

6(1+ω)3(1+2ω)
and µ = ω(5ω2−6ω+1)

(1+ω)2(1+5ω)
.

Here α − β ≤ 0 and 2β(β − 1) ≤ α ≤ β, for all ω ≥ 1.
⇒ |p3 − 2βp1p2 + p31| ≤ 2, for all ω ≥ 1. Upon using Lemma 2, 3 and 4 third
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inequality follows. To estimate |a4|, corresponding to ω ∈ [.2, 1], we first express
p2 and p3 in terms of p1 using Lemma 1. Then normalize p1 so that p1 = p and
0 ≤ p ≤ 2. After a simple calculation and using Lemma 3 we arrive at

|a4| ≤
(3 + 17ω + 43ω2 + 7ω3 + 2ω4)p3

48(1 + ω)3(1 + 2ω)(1 + 3ω)
+

(1 + 5ω)p|y|(4− p2)
8(1 + ω)(1 + 2ω)(1 + 3ω)

+
(4− p2)(1− |y|2)

8(1 + 3ω)
+

(2ω4 + 37ω3 + 313ω2 + 131ω + 21)

6(1 + ω)3(1 + 2ω)(1 + 3ω)
− p(4− p2)|y|2

16(1 + 3ω)

Let

φ(p, |y|) =
(3 + 17ω + 43ω2 + 7ω3 + 2ω4)p3

48(1 + ω)3(1 + 2ω)(1 + 3ω)
+

(4− p2)(1− |y|2)
8(1 + 3ω)

− p(4− p2)|y|2

16(1 + 3ω)

+
(1 + 5ω)p|y|(4− p2)

8(1 + ω)(1 + 2ω)(1 + 3ω)

The maximum and a saddle point of φ(p, |y|) are p = |y| = 0 and p = 2,

|y| = (1+5ω)
2(1+ω)(1+2ω) respectively. When p = |y| = 0 we led to the second inequality

for |a4|. It is remaining to prove the inequality in 0 ≤ ω ≤ .2. The coefficients of p21
and p31 are negative when 0 ≤ ω ≤ .2. By using the same procedure used above, we
arrive at,

a4 ≤ (2ω4 + 7ω3 + 43ω2 + 17ω + 3)

48(1 + ω)3(1 + 2ω)(1 + 3ω)
p3 +

(1 + 5ω)p|y|(4− p2)
8(1 + ω)(1 + 2ω)(1 + 3ω)

+
(4− p2)(1− |y|2)

8(1 + 3ω)
+

4ω4 + 134ω3 + 554ω2 + 274ω + 42

12(1 + ω)3(1 + 2ω)(1 + 3ω)
− p(4− p2)|y|2

16(1 + 3ω)

Let

φ(p, |y|) =
(2ω4 + 7ω3 + 43ω2 + 17ω + 3)

48(1 + ω)3(1 + 2ω)(1 + 3ω)
p3 +

(4− p2)(1− |y|2)
8(1 + 3ω)

− p(4− p2)|y|2

16(1 + 3ω)

+
(1 + 5ω)p|y|(4− p2)

8(1 + ω)(1 + 2ω)(1 + 3ω)

Differentiating φ(p, |y|) with respect to p and |y| we get the maximum point at

p = |y| = 0 and the only saddle point is p = 2 and |y| = (1+5ω)
2(1+ω)(1+2ω) . We arrive

at third inequality when p = |y| = 0. Now by considering the boundary points in
[0, 2]× [0, 1], again we obtain the third inequality.
The first inequality is sharp for the function p(z) = 1+z

1−z with respect to the convex

function g(z) = z
1−z and the second inequality is sharp for the function p(z) = 1+z2

1−z2
with respect to the convex function g(z) = z

1−z .
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Remark 1. At this junction we remark that when f(z) = g(z) and ω = 1, Qω

reduces to the well known class of convex functions and our result reduces to

|an| ≤ 1.

When ω = 0, Qω reduces to C∗ and our result reduces to

|an| ≤ n,

the well known coefficient conjecture for class of close-to-convex functions. When
ω = 1 , Qω reduces to the well known class of quasi-convex functions and our result
reduces to

|an| ≤ 1.

4. THE COEFFICIENTS OF log{f(z)z }

For f(z) ∈ S, the logarthmic coefficients are derived from

1

2
log
(f(z)

z

)
=

∞∑
n=1

δnz
n. (9)

These coefficients are very important in the study of Univalent(Schlict) functions.
For f(z) ∈ Qω, in the following theorem, we obtain similar results and these results
are sharp for |δ1|.

Theorem 6. Let f ∈ Qω for ω ≥ 0 and the coefficients of log f(z)z is given by (9).
Then

|δ1| ≤
1

(1 + ω)

|δ2| ≤
(2ω2 + 10ω + 3)

4(1 + ω)2(1 + 2ω)

|δ3| ≤

{
ω4+8ω3+14ω2+8ω+1
2(1+ω)3(1+2ω)(1+3ω)

, if ω < 1
5

2(ω4+8ω3+19ω2+7ω+1)
3(1+ω)3(1+2ω)(1+3ω)

, if ω ≥ 1
5

Proof. Differentiating both sides of (9) and equating the coefficients we get,

δ1 =
1

2
a2

δ2 =
1

2
[a3 −

a22
2

]

δ3 =
1

2
[a4 − a2a3 +

a32
3

]
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The inequality for δ1 is trivial from Theorem 5. Now we have,

δ2 =
p2

6(1 + 2ω)
− 4ω2 + 2ω + 3

48(1 + ω)2(1 + 2ω)
p21 +

1 + 6ω

48(1 + ω)2(1 + 2ω)
c21

+
c2

12(1 + 2ω)
+

1 + 6ω

24(1 + ω)2(1 + 2ω)
p1c1

The coefficients of p21 is negative for all ω ≥ 0. Consider

δ2 =
1

6(1 + 2ω)
[p2 −

µ

2
p21 +

c2
2

+
1 + 6ω

8(1 + ω)2
c21 +

1 + 6ω

4(1 + ω)2
p1c1]

where µ = 4ω2+2ω+3
4(1+ω)2

. By using Lemma (3) we obtain the second inequality.

δ3 =
1

8(1 + 3ω)
(p3 −

2(1 + 3ω2)p1p2
3(1 + ω)(1 + 2ω)

+
(4ω4 + 5ω3 + 4ω2 − 2ω + 1)

6(1 + ω)3(1 + 2ω)
p31)

+
(1 + 9ω)c1

24(1 + ω)(1 + 2ω)(1 + 3ω)
(p2 −

(9ω3 + 4ω2 + 14ω + 1)

2(1 + ω)2(1 + 9ω)
p21) +

c3
24(1 + 3ω)

+
(1 + 9ω)c1c2

48(1 + ω)(1 + 2ω)(1 + 3ω)
+

ω(5ω − 1)c31
48(1 + ω)3(1 + 2ω)(1 + 3ω)

+
(1 + 9ω)p1

48(1 + ω)(1 + 2ω)(1 + 3ω)
(c2 −

3ω(1− 5ω)

(1 + ω)2(1 + 9ω)
c21)

The coefficients of p1p2 and p21 are always negative. The coefficient of p31 is always
positive. When ω ≥ 1

5 the coefficients of c21 and c31 are positive. We have

δ3 =
1

8(1 + 3ω)
[p3 − 2βp1p2 + αp31] +

c3
24(1 + 3ω)

+
(1 + 9ω)c1c2

48(1 + ω)(1 + 2ω)(1 + 3ω)

+
ω(5ω − 1)c31

48(1 + ω)3(1 + 2ω)(1 + 3ω)
+

(1 + 9ω)

24(1 + ω)(1 + 2ω)(1 + 3ω)
c1[p2 −

µ

2
p21]

+
(1 + 9ω)p1c2

48(1 + ω)(1 + 2ω)(1 + 3ω)
+

ω(5ω − 1)c21p1
16(1 + ω)3(1 + 2ω)(1 + 3ω)

where β = 1+3ω2

3(1+ω)(1+2ω) , α = 4ω4+5ω3+4ω2−2ω+1
6(1+ω)3(1+2ω)

and µ = 9ω3+4ω2+14ω+1
(1+ω)2(1+9ω)

.

Note that 0 ≤ β ≤ 1 and β(2β− 1) ≤ α ≤ β, when ω ≥ 1
5 and now applying Lemma

3 and 4 we arrive at the second inequality for |δ3|. When ω ≤ 1
5 , the coefficients of
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c31 and c21 are negative. So let

δ3 =
1

8(1 + 3ω)
[p3 − 2βp1p2 + αp31] +

(1 + 9ω)

24(1 + ω)(1 + 2ω)(1 + 3ω)
c1[p2 −

µ

2
p21]

+
(1 + 9ω)

48(1 + ω)(1 + 2ω)(1 + 3ω)
p1[c2 −

λ

2
c21] +

(1 + 9ω)c1c2
48(1 + ω)(1 + 2ω)(1 + 3ω)

+
ω(5ω − 1)c31

48(1 + ω)3(1 + 2ω)(1 + 3ω)
+

c3
24(1 + 3ω)

where β = 1+3ω2

3(1+ω)(1+2ω) , α = 4ω4+5ω3+4ω2−2ω+1
6(1+ω)3(1+2ω)

, µ = 9ω3+4ω2+14ω+1
(1+ω)2(1+9ω)

and

λ = 6ω(1−5ω)
(1+ω)2(1+9ω)

. Here 0 ≤ β ≤ 1 and β(2β − 1) ≤ α ≤ β, when ω < 1
5 and now we

use the same normalization procedure used in finding a4 to obtain the inequality,

|δ3| ≤
ω2 + 6ω + 1

2(1 + ω)(1 + 2ω)(1 + 3ω)
+

(ω4 + 8ω3 + 19ω2 + 7ω + 1)

48(1 + ω)3(1 + 2ω)(1 + 3ω)
c3

+
(4ω2 + 6ω + 1)(4− c2)c|y|
96(1 + ω)(1 + 2ω)(1 + 3ω)

− (4− c2)c|y|2

96(1 + 3ω)
+

(4− c2)(1− |y|2)
48(1 + 3ω)

:= φ(c, |y|)

Differentiating φ(c, |y|) with respect to c and |y|, using elementary calculus it is
easily seen that the maximum point is c = 0 = |y| and the saddle point is c = 2 and

|y| = 16ω2+33ω+9
16(2ω2+3ω+1)

. We obtain maximum for the first inequality of |δ3| at the end

points of [0, 2]× [0, 1].
The first inequality is sharp for the function p(z) = 1+z

1−z with respect to the convex
function g(z) = z

1−z .

5. THE COEFFICIENTS OF INVERSE FUNCTION

Qω ⊂ S, inverse function f−1 exists and defined in some disk |w| < r0(f). Let

f−1(w) = w +A2w
2 +A3w

3 + ...,

then f(f−1(w)) = w. Then equating the coefficients we have,

A2 = −a2
A3 = 2a22 − a3
A4 = −5a32 + 5a2a3 − a4
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Theorem 7. Let f(z) ∈ Qω for ω ≥ 0 and f−1(w) be the inverse of f(z). Then

|A2| ≤
2

(1 + ω)

|A3| ≤
3ω2 + 30ω + 19

3(1 + ω)2(1 + 2ω)

|A4| ≤


(55+197ω+171ω2+39ω3+2ω4)

3(1+ω)3(1+2ω)(1+3ω)
, 0 ≤ ω ≤ ω0 and ω1 ≤ ω ≤ ω2

(107+391ω+367ω2+59ω3+4ω4)
6(1+ω)3(1+2ω)(1+3ω)

, ω0 ≤ ω < ω1

(50+181ω+163ω2+46ω3+4ω4)
3(1+ω)3(1+2ω)(1+3ω)

, ω2 ≤ ω

where ω0 = 0.5855, ω1 = 1 and ω2 = 1.769.

Proof. By Theorem 5 the inequality for |A2| is trivial . We have

A3 = − p2
3(1 + 2ω)

+
(3 + 5ω + ω2)

6(1 + ω)2(1 + 2ω)
p21 +

(2 + 3ω)

3(1 + ω)2(1 + 2ω)
c1p1

− c2
6(1 + ω)

+
(2 + 3ω)c21

6(1 + ω)2(1 + 2ω)

=
1

3(1 + 2ω)
[−{(p2 −

µ

2
p21) +

1

2
(c2 −

λ

2
c21)}+

(2 + 3ω)

(1 + ω)2
c1p1]

where µ = (3+5ω+ω2)
(1+ω)2

and λ = 2(2+3ω)
(1+ω)2

. Using Lemma 4, we have

max{2, 2|2µ− 1|} =
2(ω2 + 8ω + 5)

(1 + ω)2

and
max{2, 2|2λ− 1|} = 2.

Now using lemma 3 we obtain the inequality for |A3|.

A4 = − 1

4(1 + 3ω)
[p3 − 2β1p1p2 + α1p

3
1] +

(7 + 15ω)c1
12(1 + ω)(1 + 2ω)(1 + 3ω)

[p2 −
µ

2
p21]

− 1

12(1 + 3ω)
[c3 − 2β2c1c2 + α2c

3
1] +

(7 + 15ω)p1
24(1 + ω)(1 + 2ω)(1 + 3ω)

[c2 −
λ

2
c21]

where β1 = 3ω2+12ω+5
3(1+ω)(1+2ω) , α1 = 15+60ω+72ω2+29ω3+4ω4

6(1+ω)3(1+2ω)
, µ = 25+92ω+88ω2+15ω3

(1+ω)2(7+15ω)
,

λ = 2(6+21ω1+7ω2)
(1+ω)2(7+15ω)

, β2 = 7+15ω
4(1+ω)(1+2ω) and α2 = 5+16ω+6ω2+17ω3

2(1+ω)3(1+2ω)
.
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Here we see that 0 ≤ β1 ≤ 1 and β1(2β1 − 1) ≤ α1 ≤ β1 for ω ≥ ω2 where
ω2 = 1.769..., is the only positive root of 5 + 16ω + 8ω2 − 7ω3 − 2ω4. Whenever
ω ≤ ω2, we have α1−β1 ≥ 0. There we use Lemma 4 with α1 = β1. Also 0 ≤ β2 ≤ 1
and β2(2β2 − 1) ≤ α2 ≤ β2 for ω0 ≤ ω ≤ ω1 where ω0 = 0.5855 and ω1 = 1 are the
positive roots of 3 + 3ω − 25ω2 + 19ω3. Similarly whenever ω 6∈ [0.5855, 1], we have
α2 − β2 ≥ 0. There we use Lemma 4 with α2 = β2. Using these along with Lemma
2, we arrive at the required inequalities for

∣∣A4

∣∣. The inequality for |A2| is sharp for
the function p(z) = 1+z

1−z with respect to the convex function g(z) = z
1−z .

6. THE SECOND HANKEL DETERMINANT

In [10], Pommerenke defined qth Hankel determinant for a function f(z). Here
we find the second Hankel determinant H2(2) = |a2a4 − a23| for f(z) ∈ Qω, when
0 ≤ ω ≤ 1.

Theorem 8. f(z) ∈ Qω for 0 ≤ ω ≤ 1

|H2(2)| ≤


1
8 , if ω = 0
390+4090ω+14835ω2+23065ω3+15425ω4+2655ω5+456ω6

36(1+ω)4(1+2ω)2(1+3ω)
, if 0 < ω ≤ 0.0799

489+3427ω+8553ω2+11683ω3+14486ω4+12114ω5+4848ω6

18(1+ω)4(1+2ω)2(1+3ω)
, if 0.0799 ≤ ω ≤ 1

(10)

Proof. When ω = 0, Qω = K, the corresponding inequality was proved by Duren in
[1]. Now consider ω 6= 0. Then we have,

H2(2) = A+B

where,

A =
p1

8(1 + ω)(1 + 2ω)
[p3 +

ω(12ω4 + 26ω3 + 5ω2 − 28ω − 15)p31
18(1 + ω)3(1 + 2ω)

− 2ω(ω − 1)p1p2
(1 + ω)(1 + 2ω)

] +
(1 + 15ω + 18ω2)

72(1 + ω)2(1 + 2ω)2(1 + 3ω)
c21[p2

−(18ω4 + 393ω3 + 436ω2 + 161ω + 16)

2(1 + 15ω + 18ω2)
p21] +

c1
8(1 + ω)(1 + 3ω)

[p3

−(36ω3 + 36ω2 + 15ω + 7)p1p2
9(1 + ω)(1 + 2ω)2

+
ω(12ω4 − 114ω3 + 60ω2 + 46ω − 4)

9(1 + ω)3(1 + 2ω)2
p31]

− c2
9(1 + 2ω)2

[p2 −
ω(ω − 1)

2(1 + ω)2
p21]−

p2
9(1 + 2ω)2

[p2 −
ω(ω − 1)

(1 + ω)2
p21]
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and

B = − c22
36(1 + 2ω)2

+
(1 + 5ω)p21

16(1 + ω)2(1 + 2ω)(1 + 3ω)
[c2 +

(17ω2 + 6ω + 1)c21
(1 + ω)2(1 + 5ω)

]

+
p1

24(1 + ω)(1 + 3ω)
[c3 +

(180ω3 + 252ω2 + 111ω + 11)c1c2
6(1 + ω)(1 + 2ω)2

−(102ω4 − 39ω3 − 147ω2 − 69ω − 7)c31
6(1 + ω)3(1 + 2ω)2

] +
c1

24(1 + ω)(1 + 3ω)
[c3

+
(18ω2 + 15ω + 1)c1c2

6(1 + ω)(1 + 2ω)
− (102ω4 − 21ω3 − 84ω2 − 33ω − 4)c31

6(1 + ω)3(1 + 2ω)
].

The coefficient of p41 in A is negative for all 0 < ω ≤ 1, where 1 is the root of the
equation 12ω4+26ω3+5ω2−28ω−15 and the coefficient of c1p

3
1 in A is negative when

ω ≤ 0.0799, where 0.0799 is the root of the equation 12ω4−114ω3 + 60ω2 + 46ω−4.
Other coefficients are positive both in A and B for all the values of ω ∈ (0, 1].
Now consider 0 < ω ≤ 0.0799. Use Lemma 1 to express p2 and p3 in terms of p1 in
A. Then normalize p1 so that p1 = p and 0 ≤ p ≤ 2. After subsequent simplification
using Lemma 2 and 3, we get

|H2(2)| ≤ 1296ω6 + 2878ω5 + 1819ω4 + 1069ω3 + 661ω2 + 481ω + 96

9(1 + ω)4(1 + 2ω)2(1 + 3ω)
p3

− (5 + 11ω)(4− p2)p1|y|2

16(1 + ω)(1 + 2ω)(1 + 3ω)
+

(11ω + 5)p(4− p2)(1− |y|2)
8(1 + ω)(1 + 2ω)

+
(27 + 189ω + 75ω2 − 62ω3 − 648ω4)(4− p2)|y|p1

72(1 + ω)2(1 + 2ω)2(1 + 3ω)

+
78 + 740ω + 2227ω2 + 2386ω3 + 699ω4 − 168ω5

9(1 + ω3)(1 + 2ω)2(1 + 3ω)
.

Using elementary calculus we arrive at the second inequality. Now to prove the
third inequality in 0.0799 < ω ≤ 1. Using similar arguments we arrive at the third
inequality.
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