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COEFFICIENT BOUNDS FOR w-QUASI-CONVEX FUNCTIONS
DEFINED ON THE UNIT DISC

A. JENIFER, C. SELVARAJ

ABSTRACT. Main aim of this paper is to introduce a generalized class of w-
quasi-convex functions f(z) defined on the unit disk E := {z/|z| < 1} normalized
by the conditions f(0) = 0 = f’(0) — 1 and we obtain several sharp bounds for f(z),

its inverse f~1(w), log(@) and the Second Hankel determinant |azas — a3|.
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1. INTRODUCTION AND BAsic RESULTS

Denote by S the family of regular and univalent functions in the unit disk £ with
the series expansion

f(z)=2z+ Zanz" (1)
n=2

and normalized by the conditions f(0) = 0 = f’(0) —1. Let us designate by C' and K
the well-known sub-classes of convex and close-to-convex functions respectively. In
the year 1980, K.I.Noor and D.K.Thomas introduced the concept of quasi convex-
ity and investigated various properties by defining a new subclass of quasi-convex
functions(C*) in [9]. Moreover, f(z) is quasi-convex if and only if zf’(z) is close-
to-convex. It was further generalized to a-quasi-convex functions by K.I.Noor and
F.M.Al-oboudi in [8].

For o > 0, if the real part of arithmetic mean of (zf(2)

9'(2)
where z € E and g(z) € C, then f(z) is said to be a-quasi-convex. In the year
2018, D.K.Thomas in [12] introduced and investigated the subclass M"” of -starlike

functions by considering the geometric mean of the quantities Z}CES) and (ZJ{,, ((j)))l for

?;,/(Z) is positive,

© and

functions f(z) of the form (1). Motivated by their work, we in this paper, define a
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subclass Q“ of w-quasi-convex functions. A function f(z) of the form (1) is said to
be in Qv if there is a convex function g(z) in C such that

(zf'(2))
9 ()

R LE o Loy 2 0 )

for z € F.

We observe that when w = 1, Q¥ = C*, the class of quasi-convex functions. When
w=1and f(z2) = g(z), @ reduces to the familiar class of convex functions. Thus
every w-quasi-convex function is convex and hence univalent in F. If w = 0, Q¥
becomes K, the class of close-to-convex functions studied by Kaplan [4]. For
0 < w < 1, the transition from close-to-convexity to quasi-convexity is smooth.

2. PRELIMINARIES

We need the following lemmas which will be used as tools to prove our results.
Denote by P the class of Caratheodory functions p(z) analytic in E for which
Re(p(z)) > 0, p(0) =1 and

p(z) =1+ paz". (3)
n=1

Lemma 1. [2] If p(z) € P, is of the form (3), then
2p> = pi +y(4 — pi) (4)
for some y, |y| <1 and
4ps = pi +2(4 — pi)pry — pr(d = p)y* +2(4 — p)(1 — y*)¢ (5)
for some &,1§] < 1.
Lemma 2. [1] If p(z) € P, then the sharp estimate
pn| <2 (6)
holds for n=1,2,....

Lemma 3. [3] If p(z) € P,then the following estimate holds for
n, ke {1,2,...}
[pn — pePn—i| < max{2,2|2p — 1]} (7)

Lemma 4. [6/ If0 <3 <1 and 528 —1) < a < (3 then
Ips — 2Bpips + api| < 2. (8)
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3. THE COEFFICIENTS OF f(z)

In this section we state and prove a theorem that yields sharp coefficient bounds for
functions belonging to @ and in the sequel we obtain the results proved in [4] and

[9]-

Theorem 5. Let f(z) € Q¥ for w > 0 and given by (1). Then
2

(14+w)

{ (W2 +26w+9) w<1

las] <

3(1ng)2(1+2w)
(w*+8w+3)
Atw)2(1+2w) w=>1
2wt +37w3 +160w? +77w+12
3(1w)% (142 (14 8w) 0<w=<02
2(w? +11w3+89w% +37w+6) <
3(1-+w)(1+2w) (T+3w) yUs S W
4w +11w3+38w?+19w+3) >1
3(1+w)? (1+2w) (1+3w) W Z

IN

|as|

IN

|ay]

Proof. Let g(z) be a convex function, with the Taylor series expansion

oo
z)=z+ anz".
n=2

From (2), we have

(2f'(2) o f'(2)

w 1-w
{ 70 s ()} = p(2)
where p(z) € P. Then equating the coefficients we have
a p1 + 2bo
2(1+w)
0 — P2, 200 +3w)bp by  wlw-1)p]
314 2w)  3(1+w)2(1+2w) (I14+2w) 6(14w)?(1+2w)
2w(w — 1)b3
T 3(14w)2(1 + 2w)
a = 1 <p3 2(1 + 5w)b2p2 3(1 + 5&1)()3])1 B 12w(w — 1)()2()3
4(1+ 3w) I4+w(l+2w) (I4+w(l+2w) (14+w)(l+2w)
2w(w —1)(1 = 5w)b3p1  2w(w—Dpips  w(w —1)(1 — 5w)bep?
I4+wB1+2w)  (IT4w)(l+2w) (14 w)3(1 + 2w)
wlw—1)(4w? + 3w +5)p}  dw(w — 1)(4w? + 3w + 5)b3
+ 4by)
6(1+w)3(1 + 2w) 3(1+ w)3(1 + 2w)
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Since g(z) € C,

g'(2)
o0
where ¢(z) € P and let c¢(z) = 1+ > cp2". Then by = &, b3 = Z + % and
n=1
by =55+ 92 + %. Thus we have,
a PLt
2 2(1 + w)
B 1 ww-—1)p?  (1+43w)pier 1 (1+ 3w)c?
B = it T 2wy Aoz 2@t (e )
1 [ 2w(w — Dp1pe  w(dw?® —w? + 2w — 5)p}
ag = —
LT i1 130T w1+ 2w) 6(1 + w)3(1 + 2w)
1+5 5w? — 6w + 1)p7
( w) {e1(p2 — (b 2w )pl) + @(cz
(14 w)(1+2w) 2(1 +w)?(1 4+ 5w) 2
(17w? + 6w + 1)c? 1 3(1 4 5w)cren w(17w? 4 6w + 1)} )

Arwri+ow ) T3 T a0+ T 20+ w0+ 2)

By the inequality (6) the first inequality follows. Since the coefficients of p? is
positive when w < 1,the first inequality of |ag| follows from Lemma 2.
Now when w > 1, consider

B 1 pp? (14 3w)prer 1 (14 3w)c?
5= S 2T Trw? T2l arae )

where p = fl(j;)l,j Now using Lemma 3, the second inequality for |as| follows.
In deriving the inequality for a4, note that the coefficients of p? is positive and p?

and p;pe are negative, when w > 1.

1 1+ 5w up?
= — l(p3—2 3 _
ay [(p3 — 2Bp1p2 + apy) + A+w)(+ 2w)01(1?2 5 )
(17w? + 6w + 1)c2

4(1 4 3w)
(1 + 5w)p1 (C )
20+ w)(1+2w)" > (1 +w)2(1 + 5w)
1 3(1 + 5w)cren (17w? + 6w + 1)c§’)]

3O o 20) T 20 W) £ 2w)

_ w(w-1) _ w(dw?—w?+2w—>5) _ w(bw?—6w+1)
whereﬁ—m, A= eArw)3(1r2w) andu—m.

Here o« — 8 < 0and 26(8—1) < a < g, forall w > 1.
= |p3 — 2Bpip2 + p}| < 2, for all w > 1. Upon using Lemma 2, 3 and 4 third
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inequality follows. To estimate |a4|, corresponding to w € [.2,1], we first express
po and ps in terms of p; using Lemma 1. Then normalize p; so that p; = p and
0 < p < 2. After a simple calculation and using Lemma 3 we arrive at

ag] < (34 17w + 43w? + Tw? + 2w)p? (14 5w)ply|(4 — p?)
= TR w)3 (1 + 2w) (1 + 3w) 8(1+ w)(1 + 2w)(1 + 3w)
(4—pH(1 - y*) (2w +37w3 + 313w? + 131w + 21) _p4-— p?)|y|?
8(1 + 3w) 6(1+ w)3(1 + 2w)(1 + 3w) 16(1 + 3w)
Let

B4 1Tw 430 + T+ 2w (AL YD) pld - D)yl
¢, lyl) = 48(1 + w)3(1 + 20)(1 + 3w) 8(1+3w)  16(1+ 3w)

(1 +5w)ply|(4 —p*)
8(1+ w)(1+2w)(1+ 3w)

_l’_

The maximum and a saddle point of ¢(p, |y|) are p = |y| =0 and p = 2,

ly| = % respectively. When p = |y| = 0 we led to the second inequality

for |ay|. It is remaining to prove the inequality in 0 < w < .2. The coefficients of p?
and p? are negative when 0 < w < .2. By using the same procedure used above, we
arrive at,

(2w + Tw3 + 43w? + 17w + 3) 4 (14 5w)ply|(4 — p?)

<
MO TR+ 0B+ 20)1+3w) L T8I+ w)(1 + 2w)(1 + 3w)
+(4 =) (1= yl*) | 4w’ + 1340° + 5540% + 274w + 42 p(4 — p?)y[?
8(1 + 3w) 12(1 + w)3(1 + 2w)(1 + 3w) 16(1 + 3w)
Let
2wt + Tw3 + 43w? + 17w + 3 4 —pH)(1 — |y|? 4 —p?)|y|?
oo, ly) = ( )p3+( o)A —yl)  p(—pI)yl

48(1 + w)3(1 + 2w) (1 + 3w) 8(1 + 3w) 16(1 + 3w)

(1 +5w)ply|(4 — p*)
8(1+ w)(1+2w)(1+ 3w)

_l’_

Differentiating ¢(p, |y|) with respect to p and |y| we get the maximum point at
p = |y| = 0 and the only saddle point is p = 2 and |y| = %
at third inequality when p = |y| = 0. Now by considering the boundary points in
[0,2] x [0,1], again we obtain the third inequality.
The first inequality is sharp for the function p(z) = 32 with respect to the convex
and the second inequality is sharp for the function p(z) = ijﬁ
z
1-2z°

We arrive

function g(z) = 1%

with respect to the convex function g(z) =
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Remark 1. At this junction we remark that when f(z) = g(z) and w = 1, Q%
reduces to the well known class of convex functions and our result reduces to

lan| < 1.
When w =0, Q¥ reduces to C* and our result reduces to
’an’ <n,

the well known coefficient conjecture for class of close-to-convex functions. When
w=1, QY reduces to the well known class of quasi-convex functions and our result

reduces to
lan| < 1.

4. THE COEFFICIENTS OF log{@}

For f(z) € S, the logarthmic coefficients are derived from

;log(fiz)) = Z(Snz”. (9)
n=1

These coefficients are very important in the study of Univalent(Schlict) functions.

For f(z) € Q¥, in the following theorem, we obtain similar results and these results
are sharp for |d;].

Theorem 6. Let f € Q¥ for w > 0 and the coefficients of log@ is given by (9).
Then
< 1
- (14w
(2w? + 10w + 3)
T 414 w)?2(1 + 2w)
{ wi48w3+14w? +8w+1 Vifw<

|61]

|62

2(1+w)3(1+2w) (143w)
2(w* 48w +19w? +Tw+1) fw >
3(1tw)s(1+2w)(148w) W W=

|03] <

(S

Proof. Differentiating both sides of (9) and equating the coefficients we get,

1
(51 = iag

1 a2
by = 5[03—52]

1 3
03 = §[a4—a2a3+%]
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The inequality for d; is trivial from Theorem 5. Now we have,

D2 4w? + 2w + 3 9 1+ 6w 9
0y = - 3 p1+ 3 (&)
6(1+2w) 48(1+w)?(1+ 2w) 48(1 4 w)?(1 + 2w)
co 1+ 6w

+ p1c1

1201+ 20)  24(1 + w)?(1 + 20)

The coefficients of p% is negative for all w > 0. Consider

5 1 [ Poo, C 14+6w o 1+ 6w l
= ——[p— = = c c
2 6(1+2w) 2 21T o TR w2 T 41 4 w2
_ 4w?42w43 ; : : :
where p = IR By using Lemma (3) we obtain the second inequality.
1 2(1 + 3w?)p1p2 (4wt + 503 + 4w? — 2w +1) 4
03 = (p3 - 3 1)
8(1 + 3w) 301+ w)(1 + 20) 6(1+ w)3(1 + 2w)
n (14 9w)cy ( (9w3 + 4w? + 14w + 1) 2) 3
241+ w) (1 +20)(1+30) 27 T 21+ w21+ 90) YT 24(1 + 3w)
n (14 9w)cico n w(bw —1)c}
48(1 + w)(1 4 2w)(1 +3w)  48(1 + w)3(1 + 2w)(1 + 3w)
14 9w)p1 3w(l — dw

481+ w) (1 + 20)(1 + 30) 2~ (L +w)2(1 + 9w)

The coefficients of pips and p? are always negative. The coefficient of p} is always
positive. When w > % the coefficients of c? and ¢} are positive. We have

N S 3 c3 (14 9w)cien
% = S g P Tt Pl S S S T A )1+ 2w) (1 £ 3w
N w(bw —1)c3 n (14 9w) e1lpy — I 2
48(1 + w)3(1 + 2w0) (1 + 3w)  24(1 + w)(1 + 2w)(1 + 3w) 12 7 211
(1 4+ 9w)p1c2 w(bw — 1)cip
48(1 + w) (1 + 2w) (1 + 3w)  16(1 + w)3(1 + 2w)(1 + 3w)

+

_ 143w? _ 4wt Hbwl+4w? —2w+1 _ 9wl 4w+ 14w+1
where 8 = 550520y @ = T st (itze) . A K= e

Note that 0 < <1 and (26 —1) < a < 3, when w > é and now applying Lemma
3 and 4 we arrive at the second inequality for [d3]. When w < %, the coefficients of
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¢} and ¢? are negative. So let

1 (1+9w) I
= — [p3—2 3 _ =
% ST+ 3) P8~ 202 - ani] 4 e S T ae P2 5P
(14 9w) A (14 9w)cien
R T T T T L e e L =Y st o s Y ey
w(bw —1)c} 3

TR+ )P0+ 20)(1 + 30) | 24(1 4 30)

_ 143w? _ 4wt 5wl 4w —2w+1 _ 9wl 4w+ 14w+1
where 5 = g 050 a0 @ = T atap (192 0 M T (1w 2(1400)

/\:%. Here 0 < g <1land (26 —1) <a <, when w <%andnowwe

use the same normalization procedure used in finding a4 to obtain the inequality,

and

w? + 6w+ 1 (w* +8w3 + 19w? + Tw + 1) 4
03] < + c
21+ w) (1 + 20)(1 + 3w) | 48(1 + w)3(1 + 2w)(1 + 3w)
(4w’ + 6w +1)(4—P)clyl  (A—c)elyl | 4—c)(A -1yl
96(1 +w)(1 + 20)(1 +3w)  96(1 + 3w) 48(1 + 3w)

= eyl

Differentiating ¢(c,|y|) with respect to ¢ and |y|, using elementary calculus it is
easily seen that the maximum point is ¢ = 0 = |y| and the saddle point is ¢ = 2 and
ly| = fgzgijim. We obtain maximum for the first inequality of |d3| at the end
points of [0,2] x [0, 1].

The first inequality is sharp for the function p(z) =

function g(z) = 1%.

142
11—z

with respect to the convex

5. THE COEFFICIENTS OF INVERSE FUNCTION

Q“ C S, inverse function f~! exists and defined in some disk |w| < ro(f). Let
fFHw) = w+ Agw? + Azw® + ...,

then f(f~'(w)) = w. Then equating the coefficients we have,

Ay = —a
Az = 2a§ —as
A4 = —5&% + 5@2@3 — Qa4
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Theorem 7. Let f(z) € Q¥ for w >0 and f~1(w) be the inverse of f(z). Then

2

A <

|4z (14 w)

Ay 3w? + 30w + 19
3 >~

3(1+w)?(1 + 2w)

(554+197w+171w?+39w3+2w?)

3(1+w)? (1+2w) (1+3w) 0w <swyandw Sw <wp
(107+391w+367w?+59w3 +4w?)
[Ad] - < 6(1+w)3(1+20) (1+3w) yWo S w <wi
(50+181w+163w? +46w>+4w?) wo < w
3(1+w)3 (1+2w) (1+3w) » W2 =

where wy = 0.5855, wy =1 and wy = 1.769.
Proof. By Theorem 5 the inequality for |As| is trivial . We have

A = D2 (3 + 5w + w?)

9 (24 3w)
3(1+2w) " 6(1+w)2(1+20)"t " 31+ w)2(1 + 2w)
o (2 + 3w)c?
6(1+w)  6(1+w)?(l+2w)

M[—{(Pz - %P%) + %(02 - %C%)} + mclm]

where p = % and \ = 2((12:3‘;). Using Lemma 4, we have

2(w? 4 8w + 5)
and
mazx{2,22\ — 1|} = 2.

Now using lemma 3 we obtain the inequality for |As|.

1 (7T+ 15w)cq ]
A = ———— [pa—2 3 _ K2
4 4(1 + 3w) [p3 Blp1p2 + alpl] + 12(1 + W)(l + 2&))(1 + 3w) [p2 2p1]
7+ 15w)p; A
I S 3 ( A
1201 1 3w (@ ~ 2P Tl + o e A ) 2 T 2
_ _3w?412w+5 _ 15460w+72w24-29w3 +4w? _ 25+92w+88w?+15w3
where 1 = s A a0, 1 = 6w g2e) M= (7T

(14w)?(7+15w)
2(6+21w! +7w? 7+15 54+16w46w2+17w?
A= (§+w)2(7+15w))’ P2 = 4(1+:1_)(1‘j-2w) and ap = 3(1::)3“()112@0 :
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Here we see that 0 < 81 < 1 and (1(281 — 1) < ag < [y for w > wy where
wy = 1.769..., is the only positive root of 5 + 16w + 8w? — 7w? — 2w*. Whenever
w < wo, we have a; — B > 0. There we use Lemma 4 with oy = 81. Also 0 < B3 <1
and [(2(282 — 1) < ag < B for wy < w < w; where wy = 0.5855 and wy = 1 are the
positive roots of 3 + 3w — 25w? 4 19w3. Similarly whenever w ¢ [0.5855, 1], we have
a9 — B2 > 0. There we use Lemma 4 with as = 85. Using these along with Lemma
2, we arrive at the required inequalities for ‘A4‘. The inequality for |As| is sharp for

the function p(z) = 1= with respect to the convex function g(z) = 1=.

1—z

6. THE SECOND HANKEL DETERMINANT

In [10], Pommerenke defined qth Hankel determinant for a function f(z). Here
we find the second Hankel determinant Ho(2) = |agas — a3| for f(z) € Q¥, when
0<w< 1.

Theorem 8. f(z) € Q¥ for0 <w <1

i ifw=0
39044090w+14835w2 +23065w5 +15425w* 4-2655w° +456w° .
36(1+w)* (1420)2 (1+3) ,if 0 <w <0.0799
4894-3427w+8553w2 411683w> +14486w* +12114w> +4848w5 .
18(1+w)* (1+2w)2(1+3w) ,if 0.0799 <w <1
(10)

[Ha(2)] <

Proof. When w = 0, Q“ = K, the corresponding inequality was proved by Duren in
[1]. Now consider w # 0. Then we have,

Hy(2)=A+B
where,

A - D1 s + w(12w? + 26w + 5w? — 28w — 15)p}
8(14 w)(1+ 2w) 18(1 4+ w)3(1 + 2w)
~ 2w(w = 1)pip2 | (1 + 15w + 18w?) 2l
(I+w)(1+2w)" " 72(1+w)?(1+2w)2(1 +3w)
 (18w* + 393w? + 436w* + 161w + 16) 2 | c1 i
2(1 + 15w + 18w2) PUT 81+ w) (1 + 3w) 7

(36w + 36w? + 15w + T)p1pa w(12w? — 114w + 60w? + 46w — 4) 4

_ 9(1+w)(1 _|_2w)2 9(1+w)3(1 +2w)2 pl]
C2 w(w — 1) D2 w(w _ 1)
R e (e el e e
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and

(17w? + 6w + 1)c?
(14 w)?(1 + 5w)

2 1 5 2
B = — 2 5+ (2+ w)pi [co +
36(1+2w)% ' 16(1 + w)?(1 + 2w)(1 + 3w)

]

D1 (180w + 252w? + 111w + 11)ceo
+ [63 + 3
241 4+ w)(1 + 3w) 6(1 4 w)(1+ 2w)
(102w* — 39w3 — 147w? — 69w — 7)c3 1

- 6(1 + w)3(1 + 2w)? I i)

(18w? + 15w + 1)cres (102wt — 21w? — 84w? — 33w — 4)c§’]
6(1 + w)(1+ 2w) 6(1 + w)3(1 + 2w) ‘

The coefficient of pf in A is negative for all 0 < w < 1, where 1 is the root of the
equation 12w*+26w3 +5w? —28w—15 and the coefficient of c1p? in A is negative when
w < 0.0799, where 0.0799 is the root of the equation 12w* — 114w? 4+ 60w? + 46w — 4.
Other coefficients are positive both in A and B for all the values of w € (0, 1].

Now consider 0 < w < 0.0799. Use Lemma 1 to express p2 and ps in terms of p; in
A. Then normalize p; so that p; = p and 0 < p < 2. After subsequent simplification
using Lemma 2 and 3, we get

12960 + 2878w® + 1819w + 1069w + 661w? + 481w + 96 4
= 9(1 + w) (1 + 2w)2(1 + 3w) P
B+ 1w)4 - Pyl (11w +5)p(4 — p*)(1 — |y|?)
16(1 4+ w)(1 + 2w)(1 + 3w) 8(1 4+ w)(1+ 2w)
(27 + 189w + 75w? — 62w? — 648w*) (4 — p?)|y|p1
72(1 + w)?(1 + 2w)?(1 + 3w)
78 + 740w + 2227w? + 2386w? + 699w?* — 168w°
9(1 + w3)(1 4 2w)?(1 + 3w) '

|Ha(2)]

Using elementary calculus we arrive at the second inequality. Now to prove the
third inequality in 0.0799 < w < 1. Using similar arguments we arrive at the third
inequality.
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