ON THE CYCLIC DNA CODES OVER THE FINITE RING

Y. Cengellenmis and A. Dertli

Abstract. In this paper, the cyclic DNA codes over the finite ring $R=F_{2}+$ $u F_{2}+v F_{2}+w F_{2}+u v F_{2}+u w F_{2}+v w F_{2}+u v w F_{2}$, where $u^{2}=0, v^{2}=v, w^{2}=$ $w, u v=v u, u w=w u, v w=w v$ are designed. A map from R to R_{1}^{2}, where $R_{1}=$ $F_{2}+u F_{2}+v F_{2}+u v F_{2}$ with $u^{2}=0, v^{2}=v, u v=v u$ is given. The cyclic codes of arbitrary length over R satisfy the reverse constraint and reverse complement constraint are studied. A one to one correspondence between the elements of the ring R and $S_{D_{256}}$ is established, where $S_{D_{256}}=\{A A A A, \ldots, G G G G\}$. The binary image of a cyclic DNA code over the finite ring R is determined.

2010 Mathematics Subject Classification: 94B05, 94B15, 92D10.
Keywords: cyclic codes, dna codes.

1. Introduction

First idea about computing DNA was given by Tom Head in 1987. In 1994, L.Adleman introduced an experiment involving to use of DNA molecules to solve a hard computational problem in test tube [2].

The cyclic DNA codes over the finite rings and finite fields play an important role in DNA computing. A lot of authors designed cyclic DNA codes over many finite rings in many papers $[3,4,5,6,7,8,9]$. Some DNA examples were obtained via the family cyclic codes.

In this paper, the cyclic DNA codes arbitrary length n over the finite ring $R=$ $F_{2}+u F_{2}+v F_{2}+w F_{2}+u v F_{2}+u w F_{2}+v w F_{2}+u v w F_{2}$, where $u^{2}=0, v^{2}=v, w^{2}=$ $w, u v=v u, u w=w u, v w=w v$ are studied.

This paper is organized as follows. In section 2, some knowledges about the finite ring $R=F_{2}+u F_{2}+v F_{2}+w F_{2}+u v F_{2}+u w F_{2}+v w F_{2}+u v w F_{2}$, where $u^{2}=0, v^{2}=v, w^{2}=w, u v=v u, u w=w u, v w=w v$ are given. A map from R to R_{1}^{n}, where $R_{1}=F_{2}+u F_{2}+v F_{2}+u v F_{2}$ with $u^{2}=0, v^{2}=v, u v=v u$ is given. The structures of cyclic codes over the finite ring R are given. In section 3 and 4, the cyclic codes of arbitrary length over R satisfy reverse and reverse complement properties are studied. In section 5 , the binary images of cyclic DNA codes over the finite R are investigated.

2. Preliminares

Let R be the commutative finite ring $F_{2}+u F_{2}+v F_{2}+w F_{2}+u v F_{2}+u w F_{2}+v w F_{2}+$ $u v w F_{2}=\left\{a_{1}+a_{2} u+a_{3} v+a_{4} u v+w a_{5}+u w a_{6}+v w a_{7}+u v w a_{8} \mid a_{i} \in F_{2}, i=1,2, \ldots, 8\right\}$, where $u^{2}=0, v^{2}=v, w^{2}=w, u v=v u, u w=w u, v w=w v$ with characteristic 2 .

$$
\begin{gathered}
R=F_{2}+u F_{2}+v F_{2}+w F_{2}+u v F_{2}+u w F_{2}+v w F_{2}+u v w F_{2}, u^{2}=0, v^{2}=v, w^{2}=w \\
=\left(F_{2}+u F_{2}+v F_{2}+u v F_{2}\right)+w\left(F_{2}+u F_{2}+v F_{2}+u v F_{2}\right), u^{2}=0, v^{2}=v, w^{2}=w \\
=R_{1}+w R_{1}, w^{2}=w
\end{gathered}
$$

where $R_{1}=F_{2}+u F_{2}+v F_{2}+u v F_{2}$ with $u^{2}=0, v^{2}=v, u v=v u$.
In [9], Zhu and Chen introduced the finite ring $R_{1}=F_{2}+u F_{2}+v F_{2}+u v F_{2}$ with $u^{2}=0, v^{2}=v, u v=v u$. They gave a lot of properties of it. It is well known that the elements $0,1, u, 1+u$ of $F_{2}+u F_{2}$ with $u^{2}=0$ are in one to one correspondence with the nucleotide DNA basis A,T,C,G respectively such that $0 \mapsto A, 1 \mapsto G, u \mapsto$ $T, 1+u \mapsto C$. In [9], by using the DNA alphabet $S_{D_{4}}=\{A, T, G, C\}$, they defined a correspondence between the elements of the ring R_{1} and DNA double pairs as in the following table, by means of Gray map from R_{1} to $\left(F_{2}+u F_{2}\right)^{2}$ with $u^{2}=0$. For $a \in R_{1}$,

Elements a	DNA double pairs
0	AA
v	AG
$u v$	AT
$v+u v$	AC
1	GG
$1+v$	GA
$1+u v$	GC
$1+v+u v$	GT
u	TT
$u+v$	TC
$u+u v v$	TA
$u+v+u v$	TG
$1+u$	CC
$1+u+v$	CT
$1+u+u v$	CG
$1+u+v+u v$	CA

DNA has two strands that are governed by the rule called Watson Crick Complement (WCC), that is A pairs with T , G pairs with C .

In [9], they denoted the WCC in their paper $\bar{A}=T, \bar{T}=A, \bar{G}=C, \bar{C}=G$. They used the same notation for the set $S_{D_{16}}=\{A A, T T, G G, C C, A T, A G, A C$, $T G, T C, T A, G C, G A, G T, C A, C T, C G\}$ and extended the Watson Crick Complement to the elements of $S_{D_{16}}$ such that $\overline{A A}=T T, \ldots, \overline{T G}=A C$.

Similarly, if the Gray map Φ from R to R_{1}^{2} is defined as follows, we can define a γ correspondence between the elements of the ring R and DNA quartet.

$$
\begin{array}{rll}
\Phi & : & R \longrightarrow R_{1}^{2} \\
r=c+w d & \longmapsto & \Phi(r)=(c, c+d)
\end{array}
$$

where $c, d \in R_{1}, w^{2}=w$.

Elements r	Gray images in $\left(R_{1}^{2}\right)$	DNA quartet $\gamma(r)$
0	$(0,0)$	$A A A A$
v	(v, v)	$A G A G$
$u v$	$(u v, u v)$	$A T A T$
$v+u v$	$(v+u v, v+u v)$	$A C A C$
1	$(1,1)$	$G G G G$
$1+v$	$(1+v, 1+v)$	$G A G A$
$1+u v$	$(1+u v, 1+u v)$	$G C G C$
$1+v+u v$	$(1+v+u v, 1+u+u v)$	$G T G T$
u	(u, u)	$T T T T$
$u+v$	$(u+v, u+v)$	$T C T C$
$u+u v$	$(u+u v, u+u v)$	$T A T A$
$u+v+u v$	$(u+v+u v, u+v+u v)$	$T G T G$
$1+u$	$(1+u, 1+u)$	$C C C C$
$1+u+v$	$(1+u+v, 1+u+v)$	$C T C T$
$1+u+u v$	$(1+u+u v, 1+u+u v)$	$C G C G$
$1+u+v+u v$	$(1+u+v+u v, 1+u+v+u v)$	$C A C A$
\vdots	\vdots	\vdots

Naturally, we can extend the Watson Crick Complement to the elements of $S_{D_{256}}=\{A A A A, \ldots, G G G G\}$ such that $\overline{A A A A}=T T T T, \ldots, \overline{G G G G}=C C C C$. For any $r \in R$, we can define \bar{r} as the complement r, where $\gamma(\bar{r})=\overline{\gamma(r)}$.

A code of length n over S is a subset of S^{n}, where S is a finite ring. C is a linear iff C is an S-submodule of S^{n}. The elements of the code (linear code)
is called codewords. The code C is said to be cyclic if $\left(c_{0}, \ldots, c_{n-1}\right) \in C$ for all $\left(c_{n-1}, c_{0}, \ldots, c_{n-2}\right) \in C$.

In [1], the structure of a cyclic code over $F_{2}+u F_{2}$ with $u^{2}=0$ was determined as follows.

Theorem 1. Let B be a cyclic code over $F_{2}+u F_{2}$ with $u^{2}=0$. Then,
(1) If n is odd, then $B=(g(x), u a(x))=(g(x)+u a(x))$ where $g(x), a(x)$ are binary polynomials with $a(x)|g(x)| x^{n}-1(\bmod 2)$,
(2) If n is not odd, then,
(2.1) $B=(g(x)+u a(x))$ where $g(x)\left|x^{n}-1(\bmod 2), g(x)+u a(x)\right| x^{n}-1(\bmod 2)$ and $g(x) \mid p(x)\left(x^{n}-1 / g(x)\right)$ or
(2.2) $B=(g(x)+u p(x), u a(x))$ where $g(x), a(x)$ and $p(x)$ are binary polynomials with $a(x)|g(x)| x^{n}-1(\bmod 2)$ and $a(x) \mid p(x)\left(x^{n}-1 / g(x)\right)$ and $\operatorname{deg} p(x)<\operatorname{deg}$ $a(x)$.

In [9], Zhu and Chen presented the linear code C over R_{1} as

$$
C=v C_{1} \oplus(1+v) C_{2}
$$

where
$C_{1}=\left\{(x+y) \in\left(F_{2}+u F_{2}\right)^{n} \mid(x+y) v+x(1+v) \in C\right.$, for some $\left.x, y \in\left(F_{2}+u F_{2}\right)^{n}\right\}$ and

$$
C_{2}=\left\{x \in\left(F_{2}+u F_{2}\right)^{n} \mid(x+y) v+x(1+v) \in C, \text { for some } y \in\left(F_{2}+u F_{2}\right)^{n}\right\}
$$

are linear codes over $F_{2}+u F_{2}$, with $u^{2}=0$.
They also shown that C is a linear code over $F_{2}+u F_{2}$ with $u^{2}=0$ such that $C=v C_{1} \oplus(1+v) C_{2}$, then C is a cyclic code if and only if C_{1} and C_{2} are both cyclic codes over $F_{2}+u F_{2}$ with $u^{2}=0$ in [9].

Let D be a linear code over R. So it can be similarly written as follows;

$$
D=w D_{1} \oplus(1+w) D_{2}
$$

where

$$
D_{1}=\left\{(x+y) \in R_{1}^{n} \mid(x+y) w+x(1+w) \in D, \text { for some } x, y \in R_{1}^{n}\right\}
$$

and

$$
D_{2}=\left\{x \in R_{1}^{n} \mid(x+y) w+x(1+w) \in D, \text { for some } y \in R_{1}^{n}\right\}
$$

are linear codes over $R_{1}=F_{2}+u F_{2}+v F_{2}+u v F_{2}$, with $u^{2}=0, v^{2}=v, u v=v u$.

Theorem 2. Let D be a linear code of odd length n over R such that $D=w D_{1} \oplus$ $(1+w) D_{2}$. Then D is a cyclic code if and only if $D_{1}=v\left(g_{1}(x)+u a_{1}(x)\right) \oplus(1+$ $v)\left(g_{2}(x)+u a_{2}(x)\right)$ and $D_{2}=v\left(g_{3}(x)+u a_{3}(x)\right) \oplus(1+v)\left(g_{4}(x)+u a_{4}(x)\right)$, where $g_{i}(x), a_{i}(x)$ are binary polynomials with $a_{i}(x)\left|g_{i}(x)\right| x^{n}-1(\bmod 2)$ for $i=1,2,3,4$.

Theorem 3. Let D be a linear code of even length n over R such that $D=$ $w D_{1} \oplus(1+w) D_{2}$. Then D is a cyclic code if and only if

$$
D_{1}=v\left(g_{1}(x)+u p_{1}(x)\right) \oplus(1+v)\left(g_{2}(x)+u p_{2}(x)\right)
$$

$\left(\right.$ or $D_{1}=v\left(g_{1}(x)+u p_{1}(x), u a_{1}(x)\right) \oplus(1+v)\left(g_{2}(x)+u p_{2}(x), u a_{2}(x)\right)$
and

$$
D_{2}=v\left(g_{3}(x)+u p_{3}(x)\right) \oplus(1+v)\left(g_{4}(x)+u p_{4}(x)\right)
$$

$\left(\right.$ or $D_{2}=v\left(g_{3}(x)+u p_{3}(x), u a_{3}(x)\right) \oplus(1+v)\left(g_{4}(x)+u p_{4}(x), u a_{4}(x)\right)$
where $g_{i}(x) \mid x^{n}-1(\bmod 2)$ and $g_{i}(x)+u p_{i}(x) \mid x^{n}-1(\bmod 2)$ and $g_{i}(x) \mid p_{i}(x)\left(x^{n}-\right.$ $\left.1 / g_{i}(x)\right)$ for $i=1,2,3,4$. (or $g_{i}(x), a_{i}(x)$ and $p_{i}(x)$ are binary polynomials with $a_{i}(x)\left|g_{i}(x)\right| x^{n}-1(\bmod 2)$ and $a_{i}(x) \mid p_{i}(x)\left(x^{n}-1 / g_{i}(x)\right)$ and deg $p_{i}(x)<\operatorname{deg} a_{i}(x)$ for $i=1,2,3,4$.)

3. Reversible codes over R

Let $d=\left(d_{0}, \ldots, d_{n-1}\right) \in R^{n}$ be a vector. The reverse of d is defined as $d^{r}=$ $\left(d_{n-1}, \ldots, d_{0}\right)$. A linear code D of length n over R is said to be reversible if $d^{r} \in D$, for all $d \in D$.

Let $f(x)=a_{0}+a_{1} x+\ldots+a_{s} x^{s}$ be a polynomial of s with $a_{s} \neq 0$. The reciprocal of $f(x)$ is defined as $f^{*}(x)=x^{s} f(1 / x)$. The polynomial $f(x)$ is called self reciprocal polynomial if and only if $f^{*}(x)=f(x)$.

In [5] and [6], necessary and sufficient conditions for a cyclic code of either odd or even length over $F_{2}+u F_{2}$ with $u^{2}=0$ to be reversible were determined as follows, respectively.

Lemma 4 (5). Let $B=(g(x), u a(x))=(g(x)+u a(x))$ be a cyclic code of odd length n over $F_{2}+u F_{2}$ with $u^{2}=0$. Then B is reversible if and only if $g(x)$ and $a(x)$ are self-reciprocal.

Lemma 5 (6). Let $B=(g(x)+u a(x))$ be a cyclic code of even length n over $F_{2}+u F_{2}$ with $u^{2}=0$. Then B is reversible if and only if

1. $g(x)$ is self-reciprocal.
2. (a) $x^{i} p^{*}(x)=p(x)$ or
(b) $g(x)=x^{i} p^{*}(x)+p(x)$, where $i=\operatorname{deg} g(x)-\operatorname{deg} p(x)$.

Lemma 6 (6). Let $B=(g(x)+u p(x), u a(x))$ with $a(x)|g(x)| x^{n}-1(\bmod 2), a(x) \mid p(x)$ $\left(x^{n}-1 / g(x)\right)$ and $\operatorname{degp}(x) \leq \operatorname{dega}(x)$ be a cyclic code of even length n over $F_{2}+u F_{2}$ with $u^{2}=0$. Then B is reversible if and only if

1. $g(x)$ and $a(x)$ are self-reciprocal.
2. $a(x) \mid\left(x^{i} p^{*}(x)+p(x)\right)$, where $i=\operatorname{deg} g(x)-\operatorname{deg} p(x)$.

Theorem 7. Let $D=w D_{1} \oplus(1+w) D_{2}$ be a cyclic code of odd length over R, where $D_{1}=v\left(g_{1}(x)+u a_{1}(x)\right) \oplus\left(1+v\left(g_{2}(x)+u a_{2}(x)\right)\right.$ and $D_{2}=v\left(g_{3}(x)+u a_{3}(x)\right) \oplus(1+$ $v)\left(g_{4}(x)+u a_{4}(x)\right)$, where $g_{i}(x), a_{i}(x)$ are binary polynomials with $a_{i}(x)\left|g_{i}(x)\right| x^{n}-$ $1(\bmod 2)$ for $i=1,2,3,4$. Then D is reversible code if and only if the polynomials $g_{i}(x), a_{i}(x)$ are self reciprocal for $i=1,2,3,4$.

Theorem 8. Let $D=w D_{1} \oplus(1+w) D_{2}$ be a cyclic code of even length over R, where $D_{1}=v\left(g_{1}(x)+u p_{1}(x)\right) \oplus(1+v)\left(g_{2}(x)+u p_{2}(x)\right)$ and $D_{2}=v\left(g_{3}(x)+u p_{3}(x)\right) \oplus$ $(1+v)\left(g_{4}(x)+u p_{4}(x)\right)$, with $g_{i}(x) \mid x^{n}-1(\bmod 2)$ and $g_{i}(x)+u p_{i}(x) \mid x^{n}-1(\bmod 2)$ and $g_{i}(x) \mid p_{i}(x)\left(x^{n}-1 / g_{i}(x)\right)$ for $i=1,2,3,4$. Then D is reversible code if and only if the polynomials $g_{i}(x)$ are self reciprocal for $i=1,2,3,4$ and $x^{j} p_{i}^{*}(x)=p_{i}(x)$ or $g_{i}(x)=x^{j} p_{i}^{*}(x)+p_{i}(x)$, where $j=\operatorname{deg} g_{i}(x)-\operatorname{deg} p_{i}(x)$ for $i=1,2,3,4$.
Theorem 9. Let $D=w D_{1} \oplus(1+w) D_{2}$ be a cyclic code of even length over R, where $D_{1}=v\left(g_{1}(x)+u p_{1}(x), u a_{1}(x)\right) \oplus(1+v)\left(g_{2}(x)+u p_{2}(x), u a_{2}(x)\right)$ and $D_{2}=$ $v\left(g_{3}(x)+u p_{3}(x), u a_{3}(x)\right) \oplus(1+v)\left(g_{4}(x)+u p_{4}(x), u a_{4}(x)\right)$ with $g_{i}(x), a_{i}(x), p_{i}(x)$ are binary polynomials with $a_{i}(x)\left|g_{i}(x)\right| x^{n}-1(\bmod 2)$ and $a_{i}(x) \mid p_{i}(x) \cdot\left(x^{n}-1 / g_{i}(x)\right)$ and $\operatorname{deg} p_{i}(x)<\operatorname{deg} a_{i}(x)$ for $i=1,2,3,4$. Then D is reversible code if and only if the polynomials $g_{i}(x)$ and $a_{i}(x)$ are self reciprocal for $i=1,2,3,4$ and $a_{i}(x) \mid x^{j} p_{i}^{*}(x)+$ $p_{i}(x)$, where $j=\operatorname{deg} g_{i}(x)$-deg $p_{i}(x)$ for $i=1,2,3,4$.
Corollary 10. Let $D=w D_{1} \oplus(1+w) D_{2}$ be a cyclic code of arbitrary length n over R. Then D is reversible if and only if D_{1} and D_{2} are reversible with D_{1} and D_{2} are cyclic codes over R_{1}.

Proof. Let D_{1}, D_{2} be reversible codes. For any $b \in D, b=w b_{1}+(1+w) b_{2}$, where $b_{1} \in D_{1}, b_{2} \in D_{2}$. As D_{1}, D_{2} are reversible codes, $b_{1}^{r} \in D_{1}, b_{2}^{r} \in D_{2}$, so $b^{r}=$ $w b_{1}^{r}+(1+w) b_{2}^{r} \in D$. Hence D is reversible codes.

On the other hand, let D be a reversible code over R. So for any $b=w b_{1}+$ $(1+w) b_{2} \in D$, where $b_{1} \in D_{1}, b_{2} \in D_{2}$, we get $b^{r}=w b_{1}^{r}+(1+w) b_{2}^{r} \in D$. Let $b^{r}=w b_{1}^{r}+(1+w) b_{2}^{r}=w s_{1}+(1+w) s_{2}$, where $s_{1} \in D_{1}, s_{2} \in D_{2}$. Therefore D_{1} and D_{2} are reversible codes over R_{1}.

Example 1. Let $x^{8}-1=(x+1)^{8}=g^{8}$ over F_{2}. Let $D_{1}=v\left(g_{1}+u p_{1}\right) \oplus(1+v)\left(g_{1}+\right.$ $u p_{1}$) where $g_{1}=g^{6}, p_{1}=x^{5}+x$ and $D_{2}=v\left(g_{2}+u p_{2}\right) \oplus(1+v)\left(g_{2}+u p_{2}\right)$ where $g_{2}=g^{4}, p_{2}=x^{3}+x . A s(f)=D=w D_{1} \oplus(1+w) D_{2}$, we get $f=w x^{6}+u w x^{5}+x^{4}+$ $(u+u w) x^{3}+w x^{2}+u x+1 \in D$ and $f^{r}=w x+u w x^{2}+x^{3}+(u+u w) x^{4}+w x^{5}+u x^{6}+x^{7}$. As $\left(w x+(1+w) x^{3}\right) f=f^{r}$, we get that D is a reversible code over R.

4. Reversible complement codes over R

Let $x=\left(x_{0}, \ldots, x_{n-1}\right) \in R^{n}$ be a vector. The reverse complement is defined as $x^{r c}=\left(\overline{x_{n-1}}, \ldots, \overline{x_{0}}\right)$, where \bar{y} represents complement of any element y of R.

A linear code C of length n over R is said to be reversible complement if $x^{r c} \in C$, for all $x \in C$.

In [5,6], the reverse and reverse complement constraint on cyclic codes of odd and even length over $F_{2}+u F_{2}$ with $u^{2}=0$ was determined, respectively as follows.

Theorem 11 (5,6). Let B be a cyclic code of length n over $F_{2}+u F_{2}$ with $u^{2}=0$. Then,
1.If n is odd, then $B=(g(x)+u a(x))=(g(x)+u a(x))$ is reversible complement if and only if $(u, \ldots, u) \in B, g(x)$ and $a(x)$ are self-reciprocal polynomials
2.If n is even, then
(i) $B=(g(x)+u a(x))$ is reversible complement if and only if
a) $g(x)$ is self-reciprocal and $(u, \ldots, u) \in B$
b) $x^{i} p^{*}(x)=p(x)$ and $g(x)=x^{i} p^{*}(x)+p(x)$, where $i=\operatorname{deg} g(x)-\operatorname{deg} p(x)$.
(ii) $B=(g(x)+u p(x), u a(x))$ with $a(x)|g(x)| x^{n}-1(\bmod 2), a(x) \mid p(x)\left(x^{n}-1 / g(x)\right)$
and $\operatorname{degp}(x) \leq \operatorname{dega}(x)$ is reversible complement if and only if
a) $(u, \ldots, u) \in B, g(x)$ and $a(x)$ are self-reciprocal,
b) $a(x) \mid\left(x^{i} p^{*}(x)+p(x)\right)$, where $i=\operatorname{deg} g(x)-\operatorname{deg} p(x)$.

Lemma 12. For any $s \in R$, we have $s+\bar{s}=u$.

Theorem 13. Let $D=w D_{1} \oplus(1+w) D_{2}$ be a cyclic code of arbitrary length n over R. Then D is reversible complement over R iff D is reversible over R and $(u, u, \ldots, u) \in D$.

Proof. Since d is reversible complement, for any $d=\left(d_{0}, \ldots d_{n-1}\right) \in d, d^{r c}=\left(\bar{d}_{n-1}, \ldots, \bar{d}_{0}\right) \in$ D. Since D is a linear code, so $(0,0, \ldots, 0) \in D$. Since D is reversible complement, so $(\overline{0}, \overline{0}, \ldots \overline{0}) \in C$. By using Lemma 12 , we get

$$
d^{r}=\left(d_{n-1}, \ldots ., d_{0}\right)=\left(\bar{d}_{n-1}, \ldots, \bar{d}_{0}\right)+(u, u, u, \ldots, u) \in D
$$

Hence for any $d \in D$, we have $d^{r} \in D$.
On the other hand, let D be reversible code over R. So, for any $d=\left(d_{0}, \ldots, d_{n-1}\right) \in$ D, then $d^{r}=\left(d_{n-1}, \ldots, d_{0}\right) \in D$. For any $d \in D$,

$$
d^{r c}=\left(\bar{d}_{n-1}, \ldots, \bar{d}_{0}\right)=\left(d_{n-1}, \ldots . d_{0}\right)+(u, \ldots, u) \in D
$$

So, D is reversible complement code over R.
Example 2. Let $x^{8}-1=(x+1)^{8}$ over F_{2}. Let $D=\langle h(x)\rangle$, where $h(x)=$ $w(p(x)+u q(x))+(1+w)(p(x)+u q(x)), p(x)=x^{6}+x^{4}+x^{2}+1$ and $q(x)=x^{5}+x$. The code D is a cyclic DNA code of length 32 and minimum Hamming distance 4. This code has 256 codewords. These codewords are given as follows;
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
GGGGTTTTGGGGAAAAGGGGTTTTGGGGAAAA
TTTTAAAATTTTAAAATTTT AAAATTTTAAAA
CCCCTTTTCCCCAAAACCCCTTTTCCCCAAAA
AAAAGGGGTTTTGGGGAAAAGGGGTTTTGGGG
AAAATTTTAAAATTTTAAAATTTT AAAATTTT
\ldots
\vdots
\ldots
AAAACCCCTTTTCCCCAAAACCCCTTTTCCCC
AGAGATATAGAGAAAAAGAGATATAGAGAAAA
GAGATATAGAGAAAAAGAGATATAGAGAAAAA
AAAAGCGCTTTTGCGCAAAAGCGCTTTTGCGC
AAGGAATTAAGGAAAAAAGGAATTAAGGAAAA

5. Binary images of cyclic DNA codes over R

Thanks to a Grap map from R to F_{2}^{8}, we can convert the properties of DNA codes to the binary codes.

We define the Gray map as follows

$$
\begin{array}{rll}
\breve{O} \quad & R \longrightarrow F_{2}^{8} \\
a \longmapsto & \breve{O}(a)=\left(a_{2}, a_{1}+a_{2}, a_{2}+a_{4}, a_{1}+a_{2}+a_{3}+a_{4}, a_{2}+a_{6},\right. \\
& a_{1}+a_{5}+a_{2}+a_{6}, a_{2}+a_{4}+a_{6}+a_{8}, \\
& \left.a_{1}+a_{2}+a_{3}+a_{4}+a_{5}+a_{6}+a_{7}+a_{8}\right)
\end{array}
$$

where $a=a_{1}+u a_{2}+v a_{3}+u v a_{4}+w a_{5}+u w a_{6}+v w a_{7}+u v w a_{8}$ with $a_{i} \in F_{2}$ for $i=1, \ldots, 8$.

The Hamming weight of codeword $c=\left(c_{0}, \ldots, c_{n-1}\right)$ denoted by $w_{H}(c)$ is the number of non zero entires in c. The Hamming distance $d_{H}\left(c_{1}, c_{2}\right)$ between two codewords c_{1} and c_{2} is the Hamming weight of the codewords $c_{1}-c_{2}$.

The Gray weight is defined over the ring R as $w_{G}(a)=w_{H}(\breve{O}(a))$ and the Gray distance d_{G} is given by $d_{G}\left(c_{1}, c_{2}\right)=w_{G}\left(c_{1}-c_{2}\right)$.

It is noted that the image of a linear code over R is a binary linear code.

DNA Quartet	Binary images
AAAA	$(0,0,0,0,0,0,0,0)$
AGAG	$(0,0,0,1,0,0,0,1)$
ATAT	$(0,0,1,1,0,0,1,1)$
$\ldots \ldots$.	$\ldots .$.

Theorem 14. The Gray map O is a distance preserving map from $\left(R^{n}\right.$, Gray distance) to ($F_{2}^{8 n}$, Hamming distance). It is also linear.
Proof. For $c_{1}, c_{2} \in R^{n}$, we have $\breve{O}\left(c_{1}-c_{2}\right)=\breve{O}\left(c_{1}\right)-\breve{O}\left(c_{2}\right)$. So, $d_{G}\left(c_{1}, c_{2}\right)=$ $w_{G}\left(c_{1}-c_{2}\right)=w_{H}\left(\breve{O}\left(c_{1}-c_{2}\right)\right)=w_{H}\left(\breve{O}\left(c_{1}\right)-\breve{O}\left(c_{2}\right)\right)=d_{H}\left(\breve{O}\left(c_{1}\right), \breve{O}\left(c_{2}\right)\right)$. So, the Gray map \breve{O} is distance preserving map.

For any $c_{1}, c_{2} \in R^{n}, k_{1}, k_{2} \in F_{2}$, we have $\breve{O}\left(k_{1} c_{1}+k_{2} c_{2}\right)=k_{1} \breve{O}\left(c_{1}\right)+k_{2} \breve{O}\left(c_{2}\right)$. Thus, \breve{O} is linear.

Proposition 1. Let σ be the cyclic shift of R^{n} and v be the 8-quasi-cyclic shift of $F_{2}^{8 n}$. Let \breve{O} be the Gray map from R^{n} to $F_{2}^{8 n}$. Then $\breve{O} \sigma=v \breve{O}$.
Proof. For any $c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in R^{n}$, it is easily seen that $\breve{O} \sigma(c)=v \breve{O}(c)$. So we have expected result.
Y. Cengellenmis and A. Dertli - On the cyclic DNA codes ...

Theorem 15. If C is a cyclic $D N A$ code of length n over R then $\breve{O}(C)$ is binary quasi-cyclic DNA code of length $8 n$ with index 8.

6. CONCLUSION

The cyclic DNA codes over the ring R are introduced and some properties of them are investigated. Morever the binary images of them are determined.

References

[1] Abualrub T., Siap I., Cyclic codes over the rings $Z_{2}+u Z_{2}$ and $Z_{2}+u Z_{2}+u^{2} Z_{2}$, Des. Codes. Cryp., 42 (2007), 273-287.
[2] Adleman L., Molecular computation of the solutions to combinatorial problems, Science, 266 (1994), 1021-1024.
[3] Bennenni N., Guenda K., and Mesnager S., DNA cyclic codes over rings, Advances in Mathematics of Communications 11 (2017).
[4] Dertli A. , Cengellenmis Y., On cyclic DNA codes over the rings $Z_{4}+w Z_{4}$ and $Z_{4}+w Z_{4}+v Z_{4}+w v Z_{4}$, arXiv preprint arXiv:1605.02968 (2016).
[5] Guenda K.,Aaron Gulliver, T., Construction of cyclic codes over $F_{2}+u F_{2}$ for DNA computing, AAECC, 24 (2013), 445-459.
[6] Liang J., Wang L., On cyclic DNA codes over $F_{2}+u F_{2}$, J.Appl Math Comput., DOI 10.1007/s12190-015-0892-8.
[7] Limbachiya D. , Rao B., and Gupta Manish K. ,The Art of DNA Strings: Sixteen Years of DNA Coding Theory, arXiv preprint arXiv:1607.00266 (2016).
[8] Pattanayak S., Singh A.K., Construction of cyclic DNA codes over the Ring $Z_{4}[u] /<u^{2}-1>$ Based on the deletion distance, arXiv preprint arXiv:1603.04055 (2016).
[9] Zhu S., Chen X., Cyclic DNA codes over $F_{2}+u F_{2}+v F_{2}+u v F_{2}$ and their applications, J. Appl.Math Comput, DOI 10.1007/s12190-016-1046-3.

Yasemin Cengellenmis
Department of Mathematics, Faculty of Science, University of Trakya,
Edirne, Turkey
email: ycengellenmis@gmail.com

Abdullah Dertli
Department of Mathematics, Faculty of Art and Science, University of Ondokuz Mayıs, Samsun, Turkey
email: abdullah.dertli@gmail.com

