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ON THE CYCLIC DNA CODES OVER THE FINITE RING

Y. Cengellenmis and A. Dertli

Abstract. In this paper, the cyclic DNA codes over the finite ring R = F2 +
uF2 + vF2 + wF2 + uvF2 + uwF2 + vwF2 + uvwF2, where u2 = 0, v2 = v, w2 =
w, uv = vu, uw = wu, vw = wv are designed. A map from R to R2

1, where R1 =
F2 + uF2 + vF2 + uvF2 with u2 = 0, v2 = v, uv = vu is given. The cyclic codes
of arbitrary length over R satisfy the reverse constraint and reverse complement
constraint are studied. A one to one correspondence between the elements of the
ring R and SD256 is established, where SD256 = {AAAA, ..., GGGG}. The binary
image of a cyclic DNA code over the finite ring R is determined.
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1. Introduction

First idea about computing DNA was given by Tom Head in 1987. In 1994, L.Adleman
introduced an experiment involving to use of DNA molecules to solve a hard com-
putational problem in test tube [2].

The cyclic DNA codes over the finite rings and finite fields play an important
role in DNA computing. A lot of authors designed cyclic DNA codes over many
finite rings in many papers [3,4,5,6,7,8,9]. Some DNA examples were obtained via
the family cyclic codes.

In this paper, the cyclic DNA codes arbitrary length n over the finite ring R =
F2 + uF2 + vF2 +wF2 + uvF2 + uwF2 + vwF2 + uvwF2, where u2 = 0, v2 = v, w2 =
w, uv = vu, uw = wu, vw = wv are studied.

This paper is organized as follows. In section 2, some knowledges about the
finite ring R = F2 + uF2 + vF2 + wF2 + uvF2 + uwF2 + vwF2 + uvwF2, where
u2 = 0, v2 = v, w2 = w, uv = vu, uw = wu, vw = wv are given. A map from R
to Rn

1 , where R1 = F2 + uF2 + vF2 + uvF2 with u2 = 0, v2 = v, uv = vu is given.
The structures of cyclic codes over the finite ring R are given. In section 3 and 4,
the cyclic codes of arbitrary length over R satisfy reverse and reverse complement
properties are studied. In section 5, the binary images of cyclic DNA codes over the
finite R are investigated.
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2. Preliminares

Let R be the commutative finite ring F2 +uF2 +vF2 +wF2 +uvF2 +uwF2 +vwF2 +
uvwF2 = {a1+a2u+a3v+a4uv+wa5+uwa6+vwa7+uvwa8|ai ∈ F2, i = 1, 2, ..., 8},
where u2 = 0, v2 = v, w2 = w, uv = vu, uw = wu, vw = wv with characteristic 2.

R = F2 + uF2 + vF2 +wF2 + uvF2 + uwF2 + vwF2 + uvwF2, u
2 = 0, v2 = v, w2 = w

= (F2 + uF2 + vF2 + uvF2) + w(F2 + uF2 + vF2 + uvF2), u
2 = 0, v2 = v, w2 = w

= R1 + wR1, w
2 = w

where R1 = F2 + uF2 + vF2 + uvF2 with u2 = 0, v2 = v, uv = vu.
In [9], Zhu and Chen introduced the finite ring R1 = F2 +uF2 +vF2 +uvF2 with

u2 = 0, v2 = v, uv = vu. They gave a lot of properties of it. It is well known that
the elements 0, 1, u, 1 + u of F2 + uF2 with u2 = 0 are in one to one correspondence
with the nucleotide DNA basis A,T,C,G respectively such that 0 7→ A, 1 7→ G, u 7→
T, 1 + u 7→ C. In [9], by using the DNA alphabet SD4 = {A, T,G,C}, they defined
a correspondence between the elements of the ring R1 and DNA double pairs as in
the following table, by means of Gray map from R1 to (F2 +uF2)

2 with u2 = 0. For
a ∈ R1,

Elements a DNA double pairs
0 AA
v AG
uv AT
v + uv AC
1 GG
1 + v GA
1 + uv GC
1 + v + uv GT
u TT
u+ v TC
u+ uvv TA
u+ v + uv TG
1 + u CC
1 + u+ v CT
1 + u+ uv CG
1 + u+ v + uv CA
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DNA has two strands that are governed by the rule called Watson Crick Com-
plement (WCC) , that is A pairs with T, G pairs with C.

In [9], they denoted the WCC in their paper A = T, T = A,G = C,C = G.
They used the same notation for the set SD16 = {AA, TT,GG,CC,AT,AG,AC,
TG, TC, TA,GC,GA,GT,CA,CT,CG} and extended the Watson Crick Comple-
ment to the elements of SD16 such that AA = TT, ...., TG = AC.

Similarly, if the Gray map Φ from R to R2
1 is defined as follows, we can define a

γ correspondence between the elements of the ring R and DNA quartet.

Φ : R −→ R2
1

r = c+ wd 7−→ Φ(r) = (c, c+ d)

where c, d ∈ R1, w
2 = w.

Elements r Gray images in(R2
1) DNA quartet γ(r)

0 (0, 0) AAAA
v (v, v) AGAG
uv (uv, uv) ATAT
v + uv (v + uv, v + uv) ACAC
1 (1, 1) GGGG
1 + v (1 + v, 1 + v) GAGA
1 + uv (1 + uv, 1 + uv) GCGC
1 + v + uv (1 + v + uv, 1 + u+ uv) GTGT
u (u, u) TTTT
u+ v (u+ v, u+ v) TCTC
u+ uv (u+ uv, u+ uv) TATA
u+ v + uv (u+ v + uv, u+ v + uv) TGTG
1 + u (1 + u, 1 + u) CCCC
1 + u+ v (1 + u+ v, 1 + u+ v) CTCT
1 + u+ uv (1 + u+ uv, 1 + u+ uv) CGCG
1 + u+ v + uv (1 + u+ v + uv, 1 + u+ v + uv) CACA
...

...
...

Naturally, we can extend the Watson Crick Complement to the elements of
SD256 = {AAAA, ..., GGGG} such that AAAA = TTTT, ..., GGGG = CCCC. For
any r ∈ R, we can define r as the complement r, where γ(r) = γ(r).

A code of length n over S is a subset of Sn, where S is a finite ring. C is
a linear iff C is an S-submodule of Sn. The elements of the code (linear code)
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is called codewords. The code C is said to be cyclic if (c0, ..., cn−1) ∈ C for all
(cn−1, c0, ..., , cn−2) ∈ C.

In [1], the structure of a cyclic code over F2 + uF2 with u2 = 0 was determined
as follows.

Theorem 1. Let B be a cyclic code over F2 + uF2 with u2 = 0. Then,

(1) If n is odd, then B = (g(x), ua(x)) = (g(x) + ua(x)) where g(x), a(x) are
binary polynomials with a(x)|g(x)|xn − 1(mod2),

(2) If n is not odd, then,

(2.1) B = (g(x) + ua(x)) where g(x)|xn− 1(mod2) , g(x) + ua(x)|xn− 1(mod2)
and g(x)|p(x)(xn − 1/g(x)) or

(2.2) B = (g(x) + up(x), ua(x)) where g(x), a(x) and p(x) are binary polyno-
mials with a(x)|g(x)|xn − 1(mod2) and a(x)|p(x)(xn − 1/g(x)) and deg p(x) <deg
a(x).

In [9], Zhu and Chen presented the linear code C over R1 as

C = vC1 ⊕ (1 + v)C2

where

C1 = {(x+ y) ∈ (F2 + uF2)
n|(x+ y)v + x(1 + v) ∈ C, for some x, y ∈ (F2 + uF2)

n}

and

C2 = {x ∈ (F2 + uF2)
n|(x+ y)v + x(1 + v) ∈ C, for some y ∈ (F2 + uF2)

n}

are linear codes over F2 + uF2, with u2 = 0.

They also shown that C is a linear code over F2 + uF2 with u2 = 0 such that
C = vC1⊕ (1+v)C2, then C is a cyclic code if and only if C1 and C2 are both cyclic
codes over F2 + uF2 with u2 = 0 in [9].

Let D be a linear code over R. So it can be similarly written as follows;

D = wD1 ⊕ (1 + w)D2
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where

D1 = {(x+ y) ∈ Rn
1 |(x+ y)w + x(1 + w) ∈ D, for some x, y ∈ Rn

1}

and
D2 = {x ∈ Rn

1 |(x+ y)w + x(1 + w) ∈ D, for some y ∈ Rn
1}

are linear codes over R1 = F2 + uF2 + vF2 + uvF2, with u2 = 0, v2 = v, uv = vu.

Theorem 2. Let D be a linear code of odd length n over R such that D = wD1 ⊕
(1 + w)D2. Then D is a cyclic code if and only if D1 = v(g1(x) + ua1(x)) ⊕ (1 +
v)(g2(x) + ua2(x)) and D2 = v(g3(x) + ua3(x)) ⊕ (1 + v)(g4(x) + ua4(x)), where
gi(x), ai(x) are binary polynomials with ai(x)|gi(x)|xn − 1(mod2) for i = 1, 2, 3, 4.

Theorem 3. Let D be a linear code of even length n over R such that D =
wD1 ⊕ (1 + w)D2. Then D is a cyclic code if and only if

D1 = v(g1(x) + up1(x))⊕ (1 + v)(g2(x) + up2(x))

(or D1 = v(g1(x) + up1(x), ua1(x))⊕ (1 + v)(g2(x) + up2(x), ua2(x))

and

D2 = v(g3(x) + up3(x))⊕ (1 + v)(g4(x) + up4(x))

(or D2 = v(g3(x) + up3(x), ua3(x))⊕ (1 + v)(g4(x) + up4(x), ua4(x))

where gi(x)|xn− 1(mod2) and gi(x) + upi(x)|xn− 1(mod2) and gi(x)|pi(x)(xn−
1/gi(x)) for i = 1, 2, 3, 4. (or gi(x), ai(x) and pi(x) are binary polynomials with
ai(x)|gi(x)|xn− 1(mod2) and ai(x)|pi(x)(xn− 1/gi(x)) and deg pi(x) <deg ai(x) for
i = 1, 2, 3, 4.)

3. Reversible codes over R

Let d = (d0, ..., dn−1) ∈ Rn be a vector. The reverse of d is defined as dr =
(dn−1, ..., d0). A linear code D of length n over R is said to be reversible if dr ∈ D,
for all d ∈ D.

Let f(x) = a0 +a1x+ ...+asx
s be a polynomial of s with as 6= 0. The reciprocal

of f(x) is defined as f∗(x) = xsf(1/x). The polynomial f(x) is called self reciprocal
polynomial if and only if f∗(x) = f(x).
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In [5] and [6], necessary and sufficient conditions for a cyclic code of either odd
or even length over F2+uF2 with u2 = 0 to be reversible were determined as follows,
respectively.

Lemma 4 (5). Let B = (g(x), ua(x)) = (g(x)+ua(x)) be a cyclic code of odd length
n over F2 + uF2 with u2 = 0. Then B is reversible if and only if g(x) and a(x) are
self-reciprocal.

Lemma 5 (6). Let B = (g(x)+ua(x)) be a cyclic code of even length n over F2+uF2

with u2 = 0. Then B is reversible if and only if
1. g(x) is self-reciprocal.
2. (a) xip∗(x) = p(x) or
(b) g(x) = xip∗(x) + p(x), where i=deg g(x)-deg p(x).

Lemma 6 (6). Let B = (g(x)+up(x), ua(x)) with a(x)|g(x)|xn−1(mod2), a(x)|p(x)
(xn−1/g(x)) and degp(x) ≤ dega(x) be a cyclic code of even length n over F2 +uF2

with u2 = 0. Then B is reversible if and only if
1. g(x) and a(x) are self-reciprocal.
2. a(x)|(xip∗(x) + p(x)), where i=deg g(x)-deg p(x).

Theorem 7. Let D = wD1⊕ (1+w)D2 be a cyclic code of odd length over R, where
D1 = v(g1(x) + ua1(x))⊕ (1 + v(g2(x) + ua2(x)) and D2 = v(g3(x) + ua3(x))⊕ (1 +
v)(g4(x) + ua4(x)), where gi(x), ai(x) are binary polynomials with ai(x)|gi(x)|xn −
1(mod2) for i = 1, 2, 3, 4. Then D is reversible code if and only if the polynomials
gi(x), ai(x) are self reciprocal for i = 1, 2, 3, 4.

Theorem 8. Let D = wD1 ⊕ (1 + w)D2 be a cyclic code of even length over R,
where D1 = v(g1(x)+up1(x))⊕(1+v)(g2(x)+up2(x)) and D2 = v(g3(x)+up3(x))⊕
(1 + v)(g4(x) + up4(x)), with gi(x)|xn − 1(mod2) and gi(x) + upi(x)|xn − 1(mod2)
and gi(x)|pi(x)(xn−1/gi(x)) for i = 1, 2, 3, 4 . Then D is reversible code if and only
if the polynomials gi(x) are self reciprocal for i = 1, 2, 3, 4 and xjp∗i (x) = pi(x) or
gi(x) = xjp∗i (x) + pi(x), where j=deg gi(x)-deg pi(x) for i = 1, 2, 3, 4.

Theorem 9. Let D = wD1 ⊕ (1 + w)D2 be a cyclic code of even length over R,
where D1 = v(g1(x) + up1(x), ua1(x)) ⊕ (1 + v)(g2(x) + up2(x), ua2(x)) and D2 =
v(g3(x)+up3(x), ua3(x))⊕(1+v)(g4(x)+up4(x), ua4(x)) with gi(x), ai(x) , pi(x) are
binary polynomials with ai(x)|gi(x)|xn−1(mod2) and ai(x)|pi(x).(xn−1/gi(x)) and
deg pi(x) <deg ai(x) for i = 1, 2, 3, 4. Then D is reversible code if and only if the
polynomials gi(x) and ai(x) are self reciprocal for i = 1, 2, 3, 4 and ai(x)|xjp∗i (x) +
pi(x), where j=deg gi(x)-deg pi(x) for i = 1, 2, 3, 4.

Corollary 10. Let D = wD1⊕ (1+w)D2 be a cyclic code of arbitrary length n over
R. Then D is reversible if and only if D1 and D2 are reversible with D1 and D2 are
cyclic codes over R1.
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Proof. Let D1, D2 be reversible codes. For any b ∈ D, b = wb1 + (1 + w)b2, where
b1 ∈ D1, b2 ∈ D2. As D1, D2 are reversible codes, br1 ∈ D1,b

r
2 ∈ D2, so br =

wbr1 + (1 + w)br2 ∈ D. Hence D is reversible codes.
On the other hand, let D be a reversible code over R. So for any b = wb1 +

(1 + w)b2 ∈ D, where b1 ∈ D1, b2 ∈ D2, we get br = wbr1 + (1 + w)br2 ∈ D. Let
br = wbr1 + (1 +w)br2 = ws1 + (1 +w)s2 ,where s1 ∈ D1, s2 ∈ D2. Therefore D1 and
D2 are reversible codes over R1.

Example 1. Let x8−1 = (x+1)8 = g8 over F2. Let D1 = v(g1+up1)⊕(1+v)(g1+
up1) where g1 = g6, p1 = x5 + x and D2 = v(g2 + up2) ⊕ (1 + v)(g2 + up2) where
g2 = g4, p2 = x3+x . As (f) = D = wD1⊕(1+w)D2, we get f = wx6+uwx5+x4+
(u+uw)x3+wx2+ux+1 ∈ D and f r = wx+uwx2+x3+(u+uw)x4+wx5+ux6+x7.
As (wx+ (1 + w)x3)f = f r, we get that D is a reversible code over R.

4. Reversible complement codes over R

Let x = (x0, ..., xn−1) ∈ Rn be a vector. The reverse complement is defined as
xrc = (xn−1, ..., x0), where y represents complement of any element y of R.

A linear code C of length n over R is said to be reversible complement if xrc ∈ C,
for all x ∈ C.

In [5,6], the reverse and reverse complement constraint on cyclic codes of odd
and even length over F2 + uF2 with u2 = 0 was determined, respectively as follows.

Theorem 11 (5,6). Let B be a cyclic code of length n over F2 + uF2 with u2 = 0.
Then,
1.If n is odd, then B = (g(x) + ua(x)) = (g(x) + ua(x)) is reversible complement if
and only if (u, ..., u) ∈ B, g(x) and a(x) are self-reciprocal polynomials
2.If n is even, then
(i) B = (g(x) + ua(x)) is reversible complement if and only if
a) g(x) is self-reciprocal and (u, ..., u) ∈ B
b) xip∗(x) = p(x) and g(x) = xip∗(x) + p(x), where i=deg g(x)-deg p(x).
(ii) B = (g(x) + up(x), ua(x)) with a(x)|g(x)|xn − 1(mod2), a(x)|p(x)(xn − 1/g(x))
and degp(x) ≤ dega(x) is reversible complement if and only if
a) (u, ..., u) ∈ B, g(x) and a(x) are self-reciprocal,
b) a(x)|(xip∗(x) + p(x)), where i=deg g(x)-deg p(x).

Lemma 12. For any s ∈ R, we have s+ s = u.
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Theorem 13. Let D = wD1 ⊕ (1 + w)D2 be a cyclic code of arbitrary length n
over R. Then D is reversible complement over R iff D is reversible over R and
(u, u, ..., u) ∈ D.

Proof. Since d is reversible complement, for any d = (d0, ...dn−1) ∈ d, drc = (dn−1, ..., d0) ∈
D. Since D is a linear code, so (0, 0, ..., 0) ∈ D. Since D is reversible complement,
so (0, 0, ...0) ∈ C . By using Lemma 12, we get

dr = (dn−1, ....., d0) = (dn−1, ..., d0) + (u, u, u, ..., u) ∈ D

Hence for any d ∈ D, we have dr ∈ D.
On the other hand, letD be reversible code overR. So, for any d = (d0, ..., dn−1) ∈

D, then dr = (dn−1, ...., d0) ∈ D. For any d ∈ D,

drc = (dn−1, ..., d0) = (dn−1, ....d0) + (u, ..., u) ∈ D

So, D is reversible complement code over R.

Example 2. Let x8 − 1 = (x + 1)8 over F2. Let D = 〈h(x)〉, where h(x) =
w(p(x) +uq(x)) + (1 +w)(p(x) +uq(x)), p(x) = x6 +x4 +x2 + 1 and q(x) = x5 +x.
The code D is a cyclic DNA code of length 32 and minimum Hamming distance 4.
This code has 256 codewords. These codewords are given as follows;

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

GGGGTTTTGGGGAAAAGGGGTTTTGGGGAAAA

TTTTAAAATTTTAAAATTTTAAAATTTTAAAA

CCCCTTTTCCCCAAAACCCCTTTTCCCCAAAA

AAAAGGGGTTTTGGGGAAAAGGGGTTTTGGGG

AAAATTTTAAAATTTTAAAATTTTAAAATTTT

· · ·
...

· · ·
AAAACCCCTTTTCCCCAAAACCCCTTTTCCCC

AGAGATATAGAGAAAAAGAGATATAGAGAAAA

GAGATATAGAGAAAAAGAGATATAGAGAAAAA

AAAAGCGCTTTTGCGCAAAAGCGCTTTTGCGC

AAGGAATTAAGGAAAAAAGGAATTAAGGAAAA
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5. Binary images of cyclic DNA codes over R

Thanks to a Grap map from R to F 8
2 , we can convert the properties of DNA codes

to the binary codes.
We define the Gray map as follows

Ŏ : R −→ F 8
2

a 7−→ Ŏ(a) = (a2, a1 + a2, a2 + a4, a1 + a2 + a3 + a4, a2 + a6,

a1 + a5 + a2 + a6, a2 + a4 + a6 + a8,

a1 + a2 + a3 + a4 + a5 + a6 + a7 + a8)

where a = a1 + ua2 + va3 + uva4 + wa5 + uwa6 + vwa7 + uvwa8 with ai ∈ F2 for
i = 1, ..., 8.

The Hamming weight of codeword c = (c0, ..., cn−1) denoted by wH(c) is the
number of non zero entires in c. The Hamming distance dH(c1, c2) between two
codewords c1 and c2 is the Hamming weight of the codewords c1 − c2.

The Gray weight is defined over the ring R as wG(a) = wH(Ŏ(a)) and the Gray
distance dG is given by dG(c1, c2) = wG(c1 − c2).

It is noted that the image of a linear code over R is a binary linear code.
DNA Quartet Binary images
AAAA (0, 0, 0, 0, 0, 0, 0, 0)
AGAG (0, 0, 0, 1, 0, 0, 0, 1)
ATAT (0, 0, 1, 1, 0, 0, 1, 1)
...... .....

Theorem 14. The Gray map Ŏ is a distance preserving map from(Rn,Gray dis-
tance) to (F 8n

2 , Hamming distance). It is also linear.

Proof. For c1, c2 ∈ Rn, we have Ŏ(c1 − c2) = Ŏ(c1) − Ŏ(c2). So, dG(c1, c2) =
wG(c1 − c2) = wH(Ŏ(c1 − c2)) = wH(Ŏ(c1) − Ŏ(c2)) = dH(Ŏ(c1), Ŏ(c2)). So, the
Gray map Ŏ is distance preserving map.

For any c1, c2 ∈ Rn, k1, k2 ∈ F2,we have Ŏ(k1c1 + k2c2) = k1Ŏ(c1) + k2Ŏ(c2).
Thus, Ŏ is linear.

Proposition 1. Let σ be the cyclic shift of Rn and υ be the 8-quasi-cyclic shift of
F 8n
2 . Let Ŏ be the Gray map from Rn to F 8n

2 . Then Ŏσ = υŎ.

Proof. For any c = (c0, c1, ..., cn−1) ∈ Rn, it is easily seen that Ŏσ(c) = υŎ(c). So
we have expected result.
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Theorem 15. If C is a cyclic DNA code of length n over R then Ŏ(C) is binary
quasi-cyclic DNA code of length 8n with index 8.

6. Conclusion

The cyclic DNA codes over the ring R are introduced and some properties of them
are investigated. Morever the binary images of them are determined.
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