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Abstract. In the present paper, we obtain necessary and sufficient conditions
for Poisson distribution series belonging to the classes T S∗(A,B) and T C(A,B) with
negative coefficients. We also establish some new results for an integral operator
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1. Introduction

Let D = {z : |z| < 1} be the open unit disc and let A be the class of all functions
f that are analytic in D and normalized by f(0) = f ′(0)− 1 = 0. Denote by S the
subclass of A consisting of functions f , which are univalent in D. Thus, each f ∈ S
has the Maclaurin’s series expansion of the form

f(z) = z +
∞∑
n=2

anz
n, (z ∈ D). (1)

A domain D ⊂ C is called starlike with respect to the point z0 ∈ D if the closed
line segment joining a point z0 ∈ D to each point z ∈ D lies entirely in D, while
the domain D ⊂ C is called convex if the closed line segment between z1 and z2 lies
entirely in the domain, when z1, z2 ∈ D. Denote by S∗ a function f ∈ S is called
starlike with respect to the origin in the disc D if the domain f(D) is starlike with
respect to the origin. Denote by C a function f ∈ S is called convex in D if it maps
the disc D onto a convex domain.

Let Ω be the family of Schwarz functions w which are analytic in D and satisfy
the conditions w(0) = 0, |w(z)| < 1 for all z ∈ D. If f1 and f2 are analytic functions
in D, then we say that f1 is subordinate to f2, denoted by f1 ≺ f2, if there exists
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a Schwarz function w ∈ Ω such that f1(z) = f2(w(z)). We also note that if f2 is
univalent in D, then

f1 ≺ f2 ⇔ f1(0) = f2(0) and f1(D) ⊂ f2(D), (z ∈ D).

Also, denote by P the class of functions p which are analytic and have positive real
part in D with p(0) = 1. More details of these definitions can be found in [3].

By using the subordination, Janowski [5] introduced the class P(A,B). A given
analytic function p with p(0) = 1 is said to belong to the class P(A,B) if and only
if

p(z) ≺ 1 + Az

1 + Bz
, (−1 ≤ B < A ≤ 1)

for every z ∈ D.
Geometrically, a function p ∈ P(A,B) maps the unit disc D onto the domain

Ψ(A,B) defined by

Ψ(A,B) :=

{
w :

∣∣∣∣w − 1−AB

1−B2

∣∣∣∣ < A−B

1−B2

}
.

This domain represents an open circular disc centered on the real axis with diameter
end points D1 = 1−A

1−B and D2 = 1+A
1+B with 0 < D1 < 1 < D2.

For −1 ≤ B < A ≤ 1, let S∗(A,B) and C(A,B) be the subclasses of S consisting
of Janowski starlike and Janowski convex functions, respectively, defined analytically
by

S∗(A,B) :=

{
f ∈ S :

zf ′(z)

f(z)
≺ 1 + Az

1 + Bz
, z ∈ D

}
and

C(A,B) :=

{
f ∈ S : 1 +

zf ′′(z)

f ′(z)
≺ 1 + Az

1 + Bz
, z ∈ D

}
.

For A = 1 and B = −1, one easily get the classes S∗ and C, respectively. Compre-
hensive details of the Janowski starlikeness and Janowski convexity can be found in
[4, 5, 6].

Let T be the subclass of S consisting of functions with negative coefficients of
the form

f(z) = z −
∞∑
n=2

|an|zn, (z ∈ D). (2)

With the negative coefficients, the subclasses S∗(A,B) and C(A,B) are written as

T S∗(A,B) := T ∩ S∗(A,B) and T C(A,B) := T ∩ C(A,B).
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For more details of the Janowski starlikeness and Janowski convexity with negative
coefficients, one may refer to [2] and references given therein.

A variable x is said to have Poisson distribution if it takes the values 0, 1, 2, 3, ...
with probabilities e−m, me−m/1!, m2e−m/2!, ... respectively, where m is called the
parameter.

Thus

P (x = k) =
mke−m

k!
, (k ≥ 0). (3)

The power series whose coefficients are probabilities of the Poisson distribution is
given by Porwal [7] as below:

K(m, z) = z +
∞∑
n=2

mn−1

(n− 1)!
e−mzn (4)

and

F (m, z) = 2z −K(m, z) = z −
∞∑
n=2

mn−1

(n− 1)!
e−mzn. (5)

We note that by ratio test, the radius of convergence of the above series is infinity.
In this paper, we obtain necessary and sufficient conditions for the function

F (m, z) belonging to the classes T S∗(A,B) and T C(A,B). Finally, we give necessary
and sufficient conditions for an integral operator G(m, z) belonging to the classes
T S∗(A,B) and T C(A,B), respectively.

2. Main Results

In this section, we prove necessary and sufficient conditions for the function F (m, z)
belonging to the classes T S∗(A,B) and T C(A,B). For our main theorems, we need
the following lemma.

Lemma 1. [2] Let −1 ≤ B < A ≤ 1. A function f defined by (2) is in the class
T S∗(A,B) if and only if

∞∑
n=2

[
(n− 1)(1−B) + (A−B)

]
|an| ≤ A−B, (6)

and a function f defined by (2) is in the class T C(A,B) if and only if

∞∑
n=2

n
[
(n− 1)(1−B) + (A−B)

]
|an| ≤ A−B. (7)
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In the following theorem, we get necessary and sufficient condition for the func-
tion F (m, z) belonging to the class T S∗(A,B).

Theorem 2. If m > 0, then F (m, z) is in the class T S∗(A,B) if and only if

(1−B)mem ≤ A−B. (8)

Proof. Since

F (m, z) = z −
∞∑
n=2

mn−1

(n− 1)!
e−mzn,

taking into account inequality in (6), we must show that

∞∑
n=2

[
(n− 1)(1−B) + (A−B)

] mn−1

(n− 1)!
e−m ≤ A−B. (9)

In view of Poisson distribution series, from the left hand side of (9) we get

∞∑
n=2

[
(n− 1)(1−B) + (A−B)

] mn−1

(n− 1)!
e−m

= e−m
[
(1−B)

∞∑
n=2

mn−1

(n− 2)!
+ (A−B)

∞∑
n=2

mn−1

(n− 1)!

]

= e−m
[
(1−B)

∞∑
n=0

mn+1

n!
+ (A−B)

∞∑
n=1

mn

n!

]

= e−m
[
(1−B)m

∞∑
n=0

mn

n!
+ (A−B)

∞∑
n=1

mn

n!

]
= e−m

[
(1−B)mem + (A−B)(em − 1)

]
= (1−B)m + (A−B)(1− e−m). (10)

Since the last expression given in (10) is bounded by A − B, then (8) is obtained.
Thus the proof is completed.

The next theorem gives necessary and sufficient condition for the function F (m, z)
belonging to the class T C(A,B).

Theorem 3. If m > 0, then F (m, z) is in the class T C(A,B) if and only if

em
[
(1−B)m2 + (2− 3B + A)m

]
≤ A−B. (11)
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Proof. Since

F (m, z) = z −
∞∑
n=2

mn−1

(n− 1)!
e−mzn,

according to Lemma 1 inequality (7), we must show that

∞∑
n=2

n
[
(n− 1)(1−B) + (A−B)

] mn−1

(n− 1)!
e−m ≤ A−B. (12)

Applying Poisson distribution series, the left side of (12) gives

∞∑
n=2

[
(1−B)(n− 1)(n− 2) + (2− 3B + A)(n− 1) + (A−B)

] mn−1

(n− 1)!
e−m

= e−m
[
(1−B)

∞∑
n=3

mn−1

(n− 3)!
+ (2− 3B + A)

∞∑
n=2

mn−1

(n− 2)!
+ (A−B)

∞∑
n=2

mn−1

(n− 1)!

]

= e−m
[
(1−B)

∞∑
n=0

mn+2

n!
+ (2− 3B + A)

∞∑
n=0

mn+1

n!
+ (A−B)

∞∑
n=1

mn

n!

]

= e−m
[
(1−B)m2

∞∑
n=0

mn

n!
+ (2− 3B + A)m

∞∑
n=0

mn

n!
+ (A−B)

∞∑
n=1

mn

n!

]
= e−m

[
(1−B)m2em + (2− 3B + A)mem + (A−B)(em − 1)

]
= (1−B)m2 + (2− 3B + A)m + (A−B)(1− e−m). (13)

The last expression in (13) is bounded by A − B, therefore (11) is satisfied. This
completes the proof of Theorem 3.

3. Integral Operator

Operators play an important role in geometric function theory. The first mathe-
matician who introduced an integral operator on a class of univalent functions was
J. W. Alexander. In 1915, Alexander in [1] defined the operator I : A → A given as

I(f)(z) =

∫ z

0

f(t)

t
dt,

which is called the Alexander integral operator. Porwal in [7] showed the connection
between the Alexander integral operator and the function F (m, z) with the following
new operator:

G(m, z) =

∫ z

0

F (m, t)

t
dt.
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In view of this operator, the power series of G(m, z) can be shown by

G(m, z) = z −
∞∑
n=2

e−mmn−1

(n− 1)!

zn

n
= z −

∞∑
n=2

e−mmn−1

n!
zn. (14)

We now give necessary and sufficient conditions for the integral operator G(m, z)
belonging to the classes T S∗(A,B) and T C(A,B), respectively.

Theorem 4. If m > 0, then G(m, z) is in the class T C(A,B) if and only if

(1−B)mem ≤ A−B. (15)

Proof. Since

G(m, z) = z −
∞∑
n=2

e−mmn−1

n!
zn,

by Lemma 1 inequality (7), we must show that

∞∑
n=2

n
[
(n− 1)(1−B) + (A−B)

]mn−1

n!
e−m ≤ A−B.

Thus calculations give

∞∑
n=2

n
[
(n− 1)(1−B) + (A−B)

]mn−1

n!
e−m

=
∞∑
n=2

[
(n− 1)(1−B) + (A−B)

] mn−1

(n− 1)!
e−m

= e−m
[
(1−B)

∞∑
n=2

mn−1

(n− 2)!
+ (A−B)

∞∑
n=2

mn−1

(n− 1)!

]

= e−m
[
(1−B)m

∞∑
n=0

mn

n!
+ (A−B)

∞∑
n=1

mn

n!

]
= e−m

[
(1−B)mem + (A−B)(em − 1)

]
= (1−B)m + (A−B)(1− e−m). (16)

Here, (16) is bounded by A−B if and only if (15) holds.

Theorem 5. If m > 0, then G(m, z) is in the class T S∗(A,B) if and only if[
(1−B)− 1−A

m

]
(1− e−m) + (1−A)e−m ≤ A−B. (17)
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Proof. Since

G(m, z) = z −
∞∑
n=2

e−mmn−1

n!
zn,

by inequality in (6), we must show that

∞∑
n=2

[
(n− 1)(1−B) + (A−B)

]mn−1

n!
e−m ≤ A−B.

In view of Poisson distribution series, we get

∞∑
n=2

[
(n− 1)(1−B) + (A−B)

]mn−1

n!
e−m

=
∞∑
n=2

[
n(1−B)− (1−A)

]mn−1

n!
e−m

=
∞∑
n=2

[
(1−B)− 1−A

n

]
mn−1

(n− 1)!
e−m

= e−m
[
(1−B)

∞∑
n=2

mn−1

(n− 1)!
− (1−A)

∞∑
n=2

mn−1

n!

]

= e−m
[
(1−B)

∞∑
n=1

mn

n!
− 1−A

m

∞∑
n=2

mn

n!

]
= e−m

[
(1−B)(em − 1)− 1−A

m
(em − 1−m)

]
=
[
(1−B)(1− e−m)− 1−A

m
(1− e−m −me−m)

]
,

which is bounded by A−B if and only if (17) holds.
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