On Calderón's conjecture

By Michael Lacey and Christoph Thiele*

1. Introduction

This paper is a successor of [4]. In that paper we considered bilinear operators of the form

$$
\begin{equation*}
H_{\alpha}\left(f_{1}, f_{2}\right)(x):=\text { p.v. } \int f_{1}(x-t) f_{2}(x+\alpha t) \frac{d t}{t}, \tag{1}
\end{equation*}
$$

which are originally defined for f_{1}, f_{2} in the Schwartz class $\mathcal{S}(\mathbb{R})$. The natural question is whether estimates of the form

$$
\begin{equation*}
\left\|H_{\alpha}\left(f_{1}, f_{2}\right)\right\|_{p} \leq C_{\alpha, p_{1}, p_{2}}\left\|f_{1}\right\|_{p_{1}}\left\|f_{2}\right\|_{p_{2}} \tag{2}
\end{equation*}
$$

with constants $C_{\alpha, p_{1}, p_{2}}$ depending only on α, p_{1}, p_{2} and $p:=\frac{p_{1} p_{2}}{p_{1}+p_{2}}$ hold. The first result of this type is proved in [4], and the purpose of the current paper is to extend the range of exponents p_{1} and p_{2} for which (2) is known. In particular, the case $p_{1}=2, p_{2}=\infty$ is solved to the affirmative. This was originally considered to be the most natural case and is known as Calderón's conjecture [3].

We prove the following theorem:
Theorem 1. Let $\alpha \in \mathbb{R} \backslash\{0,-1\}$ and

$$
\begin{align*}
& 1<p_{1}, p_{2} \leq \infty, \tag{3}\\
& \frac{2}{3}<p:=\frac{p_{1} p_{2}}{p_{1}+p_{2}}<\infty . \tag{4}
\end{align*}
$$

Then there is a constant $C_{\alpha, p_{1}, p_{2}}$ such that estimate (2) holds for all $f_{1}, f_{2} \in$ $\mathcal{S}(\mathbb{R})$.

If $\alpha=0,-1, \infty$, then we obtain the bilinear operators

$$
H\left(f_{1}\right) \cdot f_{2}, H\left(f_{1} \cdot f_{2}\right), f_{1} \cdot H\left(f_{2}\right),
$$

[^0]the last one by replacing t with t / α and taking a weak limit as α tends to infinity. Here H is the ordinary linear Hilbert transform, and • is pointwise multiplication. The L^{p}-bounds of these operators are easy to determine and quite different from those in the theorem. This suggests that the behaviour of the constant $C_{\alpha, p_{1}, p_{2}}$ is subtle near the exceptional values of α. It would be of interest to know that the constant is independent of α for some choices of p_{1} and p_{2}.

We do not know that the condition $\frac{2}{3}<p$ is necessary in the theorem. But it is necessary for our proof. An easy counterexample shows that the unconditionality in inequality (6) already requires $\frac{2}{3} \leq p$. The cases of $\left(p_{1}, p_{2}\right)$ being equal to $(1, \infty),(\infty, 1)$, or (∞, ∞) have to be excluded from the theorem, since the ordinary Hilbert transform is not bounded on L^{1} or L^{∞}.

We assume the reader as somewhat familiar with the results and techniques of [4]. The differences between the current paper and [4] manifest themselves in the overall organization and the extension of the counting function estimates to functions in L^{q} with $q<2$.

The authors would like to thank the referee for various corrections and suggestions towards improving this exposition.

2. Preliminary remarks on the exponents

Call a pair $\left(p_{1}, p_{2}\right)$ good, if for all $\alpha \in \mathbb{R} \backslash\{0,-1\}$ there is a constant $C_{\alpha, p_{1}, p_{2}}$ such that estimate (2) holds for all $f_{1}, f_{2} \in \mathcal{S}(\mathbb{R})$. In this section we discuss interpolation and duality arguments. These, together with the known results from [4], show that instead of Theorem 1 it suffices to prove:

Proposition 1. If $1<p_{1}, p_{2}<2$ and $\frac{2}{3}<\frac{p_{1} p_{2}}{p_{1}+p_{2}}$, then $\left(p_{1}, p_{2}\right)$ is good.
In [4] the following is proved:
Proposition 2. If $2<p_{1}, p_{2}<\infty$ and $1<\frac{p_{1} p_{2}}{p_{1}+p_{2}}<2$, then $\left(p_{1}, p_{2}\right)$ is good.
Strictly speaking, this proposition is proved in [4] only in the case $\alpha=1$, but this restriction is inessential. The necessary modifications to obtain the full result appear in the current paper in Section 3. Therefore we take Proposition 2 for granted.

The next lemma follows by complex interpolation as in [1]. The authors are grateful to E. Stein for pointing out this reference to them.

LEMMA 1. Let $1<p_{1}, p_{2}, q_{1}, q_{2} \leq \infty$ and assume that $\left(p_{1}, p_{2}\right)$ and $\left(q_{1}, q_{2}\right)$ are good. Then

$$
\left(\frac{\theta}{p_{1}}+\frac{1-\theta}{q_{1}}, \frac{\theta}{p_{2}}+\frac{1-\theta}{q_{2}}\right)
$$

is good for all $0<\theta<1$.

Next we need a duality lemma.
Lemma 2. Let $1<p_{1}, p_{2}<\infty$ such that $\frac{p_{1} p_{2}}{p_{1}+p_{2}} \geq 1$. If $\left(p_{1}, p_{2}\right)$ is good, then so are the pairs

$$
\left(p_{1},\left(\frac{p_{1} p_{2}}{p_{1}+p_{2}}\right)^{\prime}\right) \quad \text { and } \quad\left(\left(\frac{p_{1} p_{2}}{p_{1}+p_{2}}\right)^{\prime}, p_{2}\right) .
$$

Here p^{\prime} denotes as usual the dual exponent of p. To prove the lemma, fix $\alpha \in \mathbb{R} \backslash\{0,-1\}$ and $f_{1} \in \mathcal{S}(\mathbb{R})$ and consider the linear operator $H_{\alpha}\left(f_{1},-\right)$. The formal adjoint of this operator with respect to the natural bilinear pairing is

$$
\operatorname{sgn}(1+\alpha) H_{-\frac{\alpha}{1+\alpha}}\left(f_{1},-\right),
$$

as the following lines show:

$$
\begin{aligned}
\int(\text { p.v. } & \left.\int f_{1}(x-t) f_{2}(x+\alpha t) \frac{1}{t} d t\right) f_{3}(x) d x \\
= & \text { p.v. } \iint f_{1}(x-\alpha t-t) f_{2}(x) f_{3}(x-\alpha t) d x \frac{1}{t} d t \\
= & \operatorname{sgn}(1+\alpha) \int\left(\text { p.v. } \int f_{1}(x-t) f_{3}\left(x-\frac{\alpha}{1+\alpha} t\right) \frac{1}{t} d t\right) f_{2}(x) d x
\end{aligned}
$$

Similarly, we observe that for fixed f_{2} the formal adjoint of $H_{\alpha}\left(-, f_{2}\right)$ is $-H_{-1-\alpha}\left(-, f_{2}\right)$. This proves Lemma 2 by duality.

Now we are ready to prove estimate (2) in the remaining cases, i.e., for those pairs $\left(p_{1}, p_{2}\right)$ for which one of p_{1}, p_{2} is smaller or equal two, and the other one is greater or equal two. In this case the constraint on p is automatically satisfied. By symmetry it suffices to do this for $\left.\left.p_{1} \in\right] 1,2\right]$ and $p_{2} \in[2, \infty]$. First observe that the pairs $(3,3)$ and $(3 / 2,3 / 2)$ are good by the above propositions. Then the pairs $(2,2)$ and $(2, \infty)$ are good by interpolation and duality. Let P be the set of all $\left.\left.p_{1} \in\right] 1,2\right]$ such that the pair $\left(p_{1}, p_{2}\right)$ is good for all $p_{2} \in[2, \infty]$. The previous observations show that $2 \in P$. Define $p:=\inf P$ and assume $p>1$. Pick a small $\varepsilon>0$ and a $p_{1} \in P$ with $p_{1}<p+\varepsilon$. If ε is small enough, we can interpolate the good pairs $\left(p_{1}, \varepsilon^{-1}\right)$ and $(1+\varepsilon, 2-\varepsilon)$ to obtain a good pair of the form $\left(q_{\varepsilon}, q_{\varepsilon}{ }^{\prime}\right)$. Since $\lim _{\varepsilon \rightarrow 0} q_{\varepsilon}=\frac{3 p-2}{2 p-1}<p$ we have $q_{\varepsilon}<p$ provided ε is small enough. By duality we see that the pair (q, ∞) is good, and by Proposition 1 there is a $p_{2}<2$ such that $\left(q, p_{2}\right)$ is good. By interpolation $q \in P$ follows. This is a contradiction to $p=\inf P$; therefore the assumption $p>1$ is false and we have $\inf P=1$. Again by interpolation we observe $P=] 1,2]$, which finishes the prove of estimate (2) for the remaining exponents.

3. Time-frequency decomposition of H_{α}

In this section we write the bilinear operators H_{α} approximately as finite sums over rank one operators, each rank one operator being well localized in time and frequency. We mostly follow the corresponding section in [4], adopting the basic notation and definitions from there such as that of a phase plane representation.

In contrast to [4] we work out how the decomposition and the constants depend on α, and we add an additional assumption (iv) in Proposition 3 which is necessary to prove L^{p} - estimates for $p<2$. The reader should think of the functions $\theta_{\xi, \imath}$ in this assumption as being exponentials $\theta_{\xi, \imath}(x)=e^{i \eta_{\imath} x}$ for certain frequencies $\eta_{\imath}=\eta_{\imath}(\xi)$.

Proposition 3. Assume we are given exponents $1<p_{1}, p_{2}<2$ such that $\frac{p_{1} p_{2}}{p_{1}+p_{2}}>\frac{2}{3}$, and we are given a constant C_{m} for each integer $m \geq 0$. Then there is a constant C depending on these data such that the following holds:

Let S be a finite set, $\phi_{1}, \phi_{2}, \phi_{3}: S \rightarrow \mathcal{S}(\mathbb{R})$ be injective maps, and $I, \omega_{1}, \omega_{2}$, $\omega_{3}: S \mapsto \mathcal{J}$ be maps such that $I(S)$ is a grid, $\mathcal{J}_{\omega}:=\omega_{1}(S) \cup \omega_{2}(S) \cup \omega_{3}(S)$ is a grid, and the following properties (i)-(iv) hold for all $\imath \in\{1,2,3\}$:
(i) The map

$$
\rho_{\imath}: \phi_{\imath}(S) \rightarrow \mathcal{R}, \phi_{\imath}(s) \mapsto I(s) \times \omega_{\imath}(s)
$$

is a phase plane representation with constants C_{m}.
(ii) $\omega_{\imath}(s) \cap \omega_{\jmath}(s)=\emptyset$ for all $s \in S$ and $\jmath \in\{1,2,3\}$ with $\imath \neq \jmath$.
(iii) If $\omega_{\imath}(s) \subset J$ and $\omega_{\imath}(s) \neq J$ for some $s \in S, J \in \mathcal{J}_{\omega}$, then $\omega_{\jmath}(s) \subset J$ for all $\jmath \in\{1,2,3\}$.
(iv) To each $\xi \in \mathbb{R}$ there is associated a measurable function $\theta_{\xi, \imath}: \mathbb{R} \rightarrow$ $\{z \in \mathbb{C}:|z|=1\}$ such that for all $s \in S, \jmath \in\{1,2,3\}$ and $J \in I(S)$ the following holds: If $\xi \in \omega_{\jmath}(s),|J| \leq|I(s)|$, then

$$
\begin{equation*}
\inf _{\lambda \in \mathbb{C}}\left\|\phi_{\imath}(s)-\lambda \theta_{\xi, \imath}\right\|_{L^{\infty}(J)} \leq C_{0}|J||I(s)|^{-\frac{3}{2}}\left(1+\frac{|c(J)-c(I(s))|}{|I(s)|}\right)^{-2} \tag{5}
\end{equation*}
$$

For all $f_{1}, f_{2} \in \mathcal{S}(\mathbb{R})$ and all maps $\varepsilon: S \rightarrow[-1,1]$, we then have:

$$
\begin{equation*}
\left\|\sum_{s \in S} \varepsilon(s)|I(s)|^{-\frac{1}{2}}\left\langle f_{1}, \phi_{1}(s)\right\rangle\left\langle f_{2}, \phi_{2}(s)\right\rangle \phi_{3}(s)\right\|_{\frac{p_{1} p_{2}}{p_{1}+p_{2}}} \leq C\left\|f_{1}\right\|_{p_{1}}\left\|f_{2}\right\|_{p_{2}} \tag{6}
\end{equation*}
$$

In the rest of this section we prove Proposition 2 under the assumption that Proposition 3 above is true. Let $1<p_{1}, p_{2}<2$ with $\frac{2}{3}<p:=\frac{p_{1} p_{2}}{p_{1}+p_{2}}$ and $\alpha \in \mathbb{R} \backslash\{0,-1\}$.

Let L be the smallest integer larger than

$$
2^{10} \max \left\{|\alpha|, \frac{1}{|\alpha|}, \frac{1}{|1+\alpha|}\right\} .
$$

The dependence on α will enter into our estimate via a polynomial dependence on L.

Define $\varepsilon:=L^{-3}$. Pick a function $\psi \in \mathcal{S}(\mathbb{R})$ such that $\hat{\psi}$ is supported in $\left[L^{3}-1, L^{3}+1\right]$ and

$$
\sum_{k \in \mathbb{Z}} \hat{\psi}\left(2^{\varepsilon k} \xi\right)=1 \quad \text { for } \quad \text { all } \quad \xi>0
$$

Define

$$
\psi_{k}(x):=2^{-\frac{\varepsilon k}{2}} \psi\left(2^{-\varepsilon k} x\right)
$$

and

$$
\begin{equation*}
\tilde{H}_{\alpha}\left(f_{1}, f_{2}\right)(x):=\sum_{k \in \mathbb{Z}} 2^{-\frac{\varepsilon k}{2}} \int_{\mathbb{R}} f_{1}(x-t) f_{2}(x+\alpha t) \psi_{k}(t) d t \tag{7}
\end{equation*}
$$

It suffices to prove boundedness of \tilde{H}_{α}. Pick a $\varphi \in \mathcal{S}(\mathbb{R})$ such that $\hat{\varphi}$ is supported in $[-1,1]$ and

$$
\begin{equation*}
\sum_{n, l \in \mathbb{Z}}\left\langle f, \varphi_{k, n, \frac{l}{2}}\right\rangle \varphi_{k, n, \frac{l}{2}}=f \tag{8}
\end{equation*}
$$

for all Schwartz functions f, where

$$
\varphi_{\kappa, n, l}(x):=2^{-\frac{\varepsilon \kappa}{2}} \varphi\left(2^{-\varepsilon \kappa} x-n\right) e^{2 \pi i 2^{-\varepsilon \kappa} x l} .
$$

We apply this formula three times in (7) to obtain:

$$
{ }^{(9)} \tilde{H}_{\alpha}\left(f_{1}, f_{2}\right)(x)=\sum_{k, n_{1}, n_{2}, n_{3}, l_{1}, l_{2}, l_{3} \in \mathbb{Z}} C_{k, n_{1}, n_{2}, n_{3}, l_{1}, l_{2}, l_{3}} H_{k, n_{1}, n_{2}, n_{3}, l_{1}, l_{2}, l_{3}}\left(f_{1}, f_{2}\right)(x)
$$

with

$$
H_{k, n_{1}, n_{2}, n_{3}, l_{1}, l_{2}, l_{3}}\left(f_{1}, f_{2}\right)(x):=2^{-\frac{\varepsilon k}{2}}\left\langle f_{1}, \varphi_{k, n_{1}, \frac{l_{1}}{2}}\right\rangle\left\langle f_{2}, \varphi_{k, n_{2}, \frac{l_{2}}{2}}\right\rangle \varphi_{k, n_{3}, \frac{l_{3}}{2}}(x)
$$

and
$C_{k, n_{1}, n_{2}, n_{3}, l_{1}, l_{2}, l_{3}}:=\iint \varphi_{k, n_{1}, \frac{l_{1}}{2}}(x-t) \varphi_{k, n_{2}, \frac{l_{2}}{2}}(x+\alpha t) \varphi_{k, n_{3}, \frac{l_{3}}{2}}(x) \psi_{k}(t) d t d x$.
The proof of the following lemma is a straightforward calculation as in [4].
Lemma 3. There is a constant C depending on ϕ and ψ such that

$$
\begin{equation*}
\left|C_{k, n_{1}, n_{2}, n_{3}, l_{1}, l_{2}, l_{3}}\right| \leq C\left(1+\frac{1}{L} \operatorname{diam}\left\{n_{1}, n_{2}, n_{3}\right\}\right)^{-100} \tag{11}
\end{equation*}
$$

Moreover,

$$
C_{k, n_{1}, n_{2}, n_{3}, l_{1}, l_{2}, l_{3}}=0
$$

unless

$$
\begin{equation*}
l_{1} \in\left[\left(-\frac{\alpha}{1+\alpha} l_{3}+\frac{2}{1+\alpha} L^{3}\right)-L,\left(-\frac{\alpha}{1+\alpha} l_{3}+\frac{2}{1+\alpha} L^{3}\right)+L\right] \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
l_{2} \in\left[\left(-\frac{1}{1+\alpha} l_{3}-\frac{2}{1+\alpha} L^{3}\right)-L,\left(-\frac{1}{1+\alpha} l_{3}-\frac{2}{1+\alpha} L^{3}\right)+L\right] \tag{13}
\end{equation*}
$$

Now we can reduce Proposition 2 to the following lemma:
Lemma 4. There is a constant C depending on p_{1}, p_{2}, φ, and ψ such that the following holds:

Let $\nu>0$ be an integer and let S be a finite subset of \mathbb{Z}^{3} such that for $(k, n, l),\left(k^{\prime}, n^{\prime}, l^{\prime}\right) \in S$ the following three properties are satisfied:

$$
\begin{array}{ll}
\text { If } k \neq k^{\prime}, & \text { then }\left|k-k^{\prime}\right|>L^{10} \\
\text { if } n \neq n^{\prime}, & \text { then }\left|n-n^{\prime}\right|>L^{10} \nu \\
\text { if } l \neq l^{\prime}, & \text { then }\left|l-l^{\prime}\right|>L^{10} \tag{16}
\end{array}
$$

Let ν_{1}, ν_{2} be integers with $1+\max \left\{\left|\nu_{1}\right|,\left|\nu_{2}\right|\right\}=\nu$ and let $\lambda_{1}, \lambda_{2}: \mathbb{Z} \rightarrow \mathbb{Z}$ be functions such that $l_{1}:=\lambda_{1}\left(l_{3}\right)$ satisfies (12) and $l_{2}:=\lambda_{2}\left(l_{3}\right)$ satisfies (13) for all $l_{3} \in \mathbb{Z}$. Then we have for all $f_{1}, f_{2} \in \mathcal{S}(\mathbb{R})$ and all maps $\varepsilon: S \rightarrow[-1,1]$:

$$
\begin{equation*}
\left\|\sum_{(k, n, l) \in S} \varepsilon(k, n, l) H_{k, n+\nu_{1}, n+\nu_{2}, n, \lambda_{1}(l), \lambda_{2}(l), l}\left(f_{1}, f_{2}\right)\right\|_{p} \leq C L^{30} \nu^{10}\left\|f_{1}\right\|_{p_{1}}\left\|f_{2}\right\|_{p_{2}} \tag{17}
\end{equation*}
$$

Before proving the lemma we show how it implies boundedness of \tilde{H}_{α} and therefore proves Proposition 2. First observe that the lemma also holds without the finiteness condition on S. We can also remove conditions (14), (15), and (16) on S at the cost of some additional powers of L and ν, so that the conclusion of the lemma without these hypotheses is

$$
\begin{equation*}
\left\|\sum_{(k, n, l) \in S} \varepsilon(k, n, l) H_{k, n+\nu_{1}, n+\nu_{2}, n, \lambda_{1}(l), \lambda_{2}(l), l}\left(f_{1}, f_{2}\right)\right\|_{p} \leq C L^{100} \nu^{20}\left\|f_{1}\right\|_{p_{1}}\left\|f_{2}\right\|_{p_{2}} \tag{18}
\end{equation*}
$$

Here we have used the quasi triangle inequality for L^{p} which is uniform for $p>\frac{2}{3}$.

Observe that (18) and (11) imply

$$
\begin{align*}
& \left\|\sum_{(k, n, l) \in S} C_{k, n+\nu_{1}, n+\nu_{2}, n, \lambda_{1}(l), \lambda_{2}(l), l} H_{k, n+\nu_{1}, n+\nu_{2}, n, \lambda_{1}(l), \lambda_{2}(l), l}\left(f_{1}, f_{2}\right)\right\|_{p} \tag{19}\\
& \quad \leq C L^{200} \nu^{-50}\left\|f_{1}\right\|_{p_{1}}\left\|f_{2}\right\|_{p_{2}} .
\end{align*}
$$

Conditions (12) and (13) give a bound on the number of values the functions λ_{1} and λ_{2} can take at a fixed l_{3} so that the coefficient $C_{k, n+\nu_{1}, n+\nu_{2}, n, \lambda_{1}(l), \lambda_{2}(l), l}$ does not vanish. Moreover there are of the order ν pairs ν_{1}, ν_{2} such that $1+\max \left\{\left|\nu_{1}\right|,\left|\nu_{2}\right|\right\}=\nu$. Hence,

$$
\begin{aligned}
& \left\|\sum_{(k, n, l) \in S, n_{1}, n_{2}, l_{1}, l_{2} \in \mathbb{Z}, 1+\max \left\{\left|n-n_{1}\right|,\left|n-n_{2}\right|\right\}=\nu} C_{k, n_{1}, n_{2}, n, l_{1}, l_{2}, l} H_{k, n_{1}, n_{2}, n, l_{1}, l_{2}, l}\left(f_{1}, f_{2}\right)\right\|_{p} \\
& \leq C L^{300} \nu^{-20}\left\|f_{1}\right\|_{p_{1}}\left\|f_{2}\right\|_{p_{2}} .
\end{aligned}
$$

Summing over all ν gives boundedness of \tilde{H}_{α}.
It remains to prove Lemma 4. Clearly we intend to do this by applying Proposition 3. Fix data $S, \nu, \nu_{1}, \nu_{2}, \lambda_{1}, \lambda_{2}$ as in Lemma 4. Define functions $\phi_{\imath}: S \mapsto \mathcal{S}(\mathbb{R})$ as follows:

$$
\begin{aligned}
& \phi_{1}(k, n, l):=L^{-10} \nu^{-2} \varphi_{k, n+\nu_{1}, \frac{\lambda_{1}(l)}{2}}, \\
& \phi_{2}(k, n, l):=L^{-10} \nu^{-2} \varphi_{k, n+\nu_{2}, \frac{\lambda_{2}(l)}{2}}, \\
& \phi_{3}(k, n, l):=L^{-10} \nu^{-2} \varphi_{k, n, \frac{l}{2}} .
\end{aligned}
$$

If E is a subset of \mathbb{R} and $x \neq 0$ a real number we use the notation $x \cdot E$ $:=\{x y \in \mathbb{R}: y \in E\}$. This is not to be confused with the previously defined $x I$ for positive x and intervals I. Pick three maps $\omega_{1}, \omega_{2}, \omega_{3}: S \rightarrow \mathcal{J}$ such that the following properties (20)-(25) are satisfied for all $s=(k, n, l) \in S$:

$$
\begin{gather*}
-\frac{1+\alpha}{\alpha} \cdot \operatorname{supp}\left(\widehat{\phi_{1}(s)}\right) \subset \omega_{1}(s), \tag{20}\\
-(1+\alpha) \cdot \operatorname{supp}\left(\widehat{\phi_{2}(s)}\right) \subset \omega_{2}(s), \tag{21}\\
\operatorname{supp}\left(\widehat{\phi_{3}(s)}\right) \subset \omega_{3}(s), \tag{22}\\
2^{-\varepsilon(k+1)} L \leq\left|\omega_{2}(s)\right| \leq 2^{-\varepsilon k} L \text { for } \imath=1,2,3, \tag{23}\\
\mathcal{J}_{\omega}:=\omega_{1}(S) \cup \omega_{2}(S) \cup \omega_{3}(S) \text { is a grid, } \tag{24}
\end{gather*}
$$

and, for all $u, \jmath \in\{1,2,3\}$,

$$
\begin{equation*}
\text { If } \omega_{\imath}(s) \subset J \text { and } \omega_{\imath}(s) \neq J \text { for some } J \in \mathcal{J}_{\omega}, \text { then } \omega_{\jmath}(s) \subset J \tag{25}
\end{equation*}
$$

The existence of such a triple of maps is proved as in [4].
Next pick a map $I: S \rightarrow \mathcal{J}$ which satisfies the following three properties (26)-(28) for all $s=(k, n, l) \in S$:

$$
\begin{gather*}
\left|c(I(s))-2^{\varepsilon k} n\right| \leq 2^{\varepsilon k} \nu \tag{26}\\
2^{4} 2^{\varepsilon k} \nu \leq|I(s)| \leq 2^{\varepsilon} 2^{4} 2^{\varepsilon k} \nu \tag{27}\\
I(S) \text { is a grid. } \tag{28}
\end{gather*}
$$

The existence of such a map is again proved as in [4].
Now Lemma 4 follows immediately from the fact that the data S, ϕ_{1}, ϕ_{2}, $\phi_{3}, I, \omega_{1}, \omega_{2}$, and ω_{3} satisfy the hypotheses of Proposition 3. The verification of these hypotheses is as in [4] except for hypothesis (iv).

We prove hypothesis (iv) for $\imath=1$, the other cases being similar. Define for $\xi \in \mathbb{R}$:

$$
\theta_{\xi, 1}(x):=e^{-2 \pi i \frac{\alpha}{\alpha+1} x \xi} .
$$

Pick $s=(k, n, l) \in S$. Obviously,

$$
\nu^{-2} \varphi_{k, n+\nu_{1}, 0}(x) \leq C|I(s)|^{-\frac{1}{2}}\left(1+\frac{|x-c(I(s))|}{|I(s)|}\right)^{-2}
$$

and

$$
\nu^{-2}\left(\varphi_{k, n+\nu_{1}, 0}\right)^{\prime}(x) \leq C|I(s)|^{-\frac{3}{2}}\left(1+\frac{|x-c(I(s))|}{|I(s)|}\right)^{-2}
$$

Now let $\xi \in \omega_{\jmath}(s)$. By choice of $\theta_{\xi, 1}$ we see that the function

$$
\varphi_{k, n+\nu_{1}, \frac{\lambda_{1}(l)}{2}} \theta_{\xi, 1}^{-1}
$$

arises from $\varphi_{k, n+\nu_{1}, 0}$ by modulating with a frequency which is contained in $L^{10}\left[-|I(s)|^{-1},|I(s)|^{-1}\right]$. Therefore,

$$
\left(\phi_{1}(s) \theta_{\xi, 1}^{-1}\right)^{\prime}(x) \leq C|I(s)|^{-\frac{3}{2}}\left(1+\frac{|x-c(I(s))|}{|I(s)|}\right)^{-2}
$$

Now let $J \in I(S)$ with $|J| \leq|I(s)|$. Then we have

$$
\begin{aligned}
\inf _{\lambda}\left\|\phi_{1}(s) \theta_{\xi, 1}^{-1}-\lambda\right\|_{L^{\infty}(J)} & \leq|J|\left\|\left(\phi_{1}(s) \theta_{\xi, 1}^{-1}\right)^{\prime}\right\|_{L^{\infty}(J)} \\
& \leq C|J||I(s)|^{-\frac{3}{2}}\left(1+\frac{|c(J)-c(I(s))|}{|I(s)|}\right)^{-2}
\end{aligned}
$$

This proves hypothesis (iv), and therefore finishes the reduction of Proposition 2 to Proposition 3.

4. Reduction to a symmetric statement

The following proposition is a variant of Proposition 3 which is symmetric in the indices 1,2 , and 3 .

Proposition 4. Let $1<p_{1}, p_{2}, p_{3}<2$ be exponents with

$$
1<{\frac{1}{p_{1}}}_{1}+\frac{1}{p_{2}}+\frac{1}{p_{3}}<2
$$

and let $C_{m}>0$ for $m \geq 0$. Then there are constants $C, \lambda_{0}>0$ such that the following holds: Let $S, \phi_{1}, \phi_{2}, \phi_{3}, I, \omega_{1}, \omega_{2}, \omega_{3}$ be as in Proposition 3, let f_{2}, $\imath=1,2,3$ be Schwartz functions with $\left\|f_{\imath}\right\|_{p_{\imath}}=1$, and define

$$
E:=\left\{x \in \mathbb{R}: \max _{\imath}\left(M_{p_{\imath}}\left(M f_{\imath}\right)(x)\right) \geq \lambda_{0}\right\} .
$$

Then we have

$$
\sum_{s \in S: I(s) \not \subset E}|I(s)|^{-\frac{1}{2}}\left|\left\langle f_{1}, \phi_{1}(s)\right\rangle\left\langle f_{2}, \phi_{2}(s)\right\rangle\left\langle f_{3}, \phi_{3}(s)\right\rangle\right| \leq C .
$$

We now prove that Proposition 3 follows from Proposition 4.
Let $1<p_{1}, p_{2}<2$ and assume

$$
p:=\frac{p_{1} p_{2}}{p_{1}+p_{2}}>\frac{2}{3}
$$

Let $S, \phi_{1}, \phi_{2}, \phi_{3}, I, \omega_{1}, \omega_{2}, \omega_{3}, \varepsilon$ be as in the proposition and define for each $S^{\prime} \subset S$

$$
H_{S^{\prime}}\left(f_{1}, f_{2}\right)=\sum_{s \in S^{\prime}} \varepsilon(s)|I|^{-\frac{1}{2}}\left\langle f_{1}, \phi_{1}(s)\right\rangle\left\langle f_{2}, \phi_{2}(s)\right\rangle \phi_{3}(s)
$$

By Marcinkiewicz interpolation ([2]), it suffices to prove a corresponding weak-type estimate instead of (6). By linearity and scaling invariance it suffices to prove that there is a constant C such that for $\left\|f_{1}\right\|_{p_{1}}=\left\|f_{2}\right\|_{p_{2}}=1$ we have

$$
\left|\left\{x \in \mathbb{R}:\left|H_{S}\left(f_{1}, f_{2}\right)(x)\right| \geq 2\right\}\right| \leq C
$$

Pick an exponent p_{3} such that the triple p_{1}, p_{2}, p_{3} satisfies the conditions of Proposition 4, and let λ_{0} be as in this proposition. Let f_{1} and f_{2} be Schwartz functions with $\left\|f_{1}\right\|_{p_{1}}=\left\|f_{2}\right\|_{p_{2}}=1$.

Define

$$
E_{0}:=\left\{x: \max \left\{M_{p_{1}}\left(M f_{1}\right)(x), M_{p_{2}}\left(M f_{2}\right)(x)\right\} \geq \lambda_{0}\right\}
$$

and

$$
\begin{aligned}
E_{\text {in }} & :=\left\{x \in R:\left|H_{\left\{s \in S: I(s) \subset E_{0}\right\}}\left(f_{1}, f_{2}\right)(x)\right| \geq 1\right\} \\
E_{\text {out }} & :=\left\{x \in R:\left|H_{\left\{s \in S: I(s) \not \subset E_{0}\right\}}\left(f_{1}, f_{2}\right)(x)\right| \geq 1\right\} .
\end{aligned}
$$

It suffices to bound the measures of $E_{\text {in }}$ and $E_{\text {out }}$ by constants. We first estimate that of $E_{\text {out }}$ using Proposition 4 . Let $\delta>0$ be a small number and let $\theta:[0, \infty) \rightarrow[0,1]$ be a smooth function which vanishes on the interval $[0,1-\delta]$ and is constant equal to 1 on $[1, \infty)$. Extend this function to the complex plane by defining in polar coordinates $\theta\left(r e^{i \phi}\right):=\theta(r) e^{-i \phi}$. Assume that δ is chosen sufficiently small to give

$$
\left|E_{\text {out }}\right|^{\frac{1}{p_{3}}} \leq\left\|\theta\left(H_{\left\{s \in S: I(s) \not \subset E_{0}\right\}}\left(f_{1}, f_{2}\right)\right)\right\|_{p_{3}} \leq 2\left|E_{\text {out }}\right|^{\frac{1}{p_{3}}} .
$$

Define

$$
f_{3}:=\frac{\theta\left(H_{\left\{s \in S: I(s) \not \subset E_{0}\right\}}\left(f_{1}, f_{2}\right)\right)}{\left\|\theta\left(H_{\left\{s \in S: I(s) \not \subset E_{0}\right\}}\left(f_{1}, f_{2}\right)\right)\right\|_{p_{3}}} .
$$

We can assume that $\left|E_{\text {out }}\right|>\lambda_{0}^{-p_{3}}$, because otherwise nothing is to prove. This assumption implies $\left\|M_{p_{3}}\left(M f_{3}\right)\right\|_{\infty}<\lambda_{0}$. By applying Proposition 4, we obtain:

$$
\left|E_{\text {out }}\right|^{1-\frac{1}{p_{3}}} \leq 2\left|\int H_{\left\{s \in S: I(s) \not \subset E_{0}\right\}}\left(f_{1}, f_{2}\right)(x) f_{3}(x) d x\right| \leq C .
$$

Therefore $\left|E_{\text {out }}\right|$ is bounded by a constant.
It remains to estimate the measure of the set E_{in}, which is an elementary calculation. We need the following lemma:

Lemma 5. Let J be an interval and define

$$
S_{J}:=\{s \in S: I(s)=J\} .
$$

Then for all $m>0$ there is a C_{m} such that for all $A>1$ and $f_{1}, f_{2} \in \mathcal{S}(\mathbb{R})$ we have:

$$
\left\|H_{S_{J}}\left(f_{1}, f_{2}\right)\right\|_{L^{1}\left((A J)^{c}\right)} \leq C_{m}|J| A^{-m}\left(\inf _{x \in J} M_{p_{1}} f_{1}(x)\right)\left(\inf _{x \in J} M_{p_{2}} f_{2}(x)\right) .
$$

We prove the lemma for $|J|=1$, which suffices by homogeneity. For $m \geq 0$ define the weight

$$
w_{m}(x):=(1+\operatorname{dist}(x, J))^{m} .
$$

Then for $1 \leq r<2$ we obtain the estimates

$$
\begin{equation*}
\left\|\sum_{s \in S_{J}} \alpha_{s} \phi_{\imath}(s)\right\|_{L^{r^{\prime}}\left(\omega_{m}\right)} \leq C_{m}\left\|\left(\alpha_{s}\right)_{s \in S_{J}}\right\|_{l^{r}\left(S_{J}\right)} \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\left(\left\langle f, \phi_{\imath}(s)\right\rangle\right)_{s \in S_{J}}\right\|_{l^{r^{\prime}}\left(S_{J}\right)} \leq C_{m}\|f\|_{L^{r}\left(\omega_{m}^{-1}\right)}, \tag{30}
\end{equation*}
$$

which follow easily by interpolation ([6]) from the trivial weighted estimate at $r=1$ and the nonweighted estimate at $r=2$.

Now define r by

$$
\frac{1}{r}=\frac{1}{p_{1}^{\prime}}+\frac{1}{p_{2}^{\prime}}
$$

in particular we have $1<r<2$. By writing $H_{S_{J}}\left(f_{1}, f_{2}\right)=\left(H_{S_{J}}\left(f_{1}, f_{2}\right) w_{m}^{\frac{1}{r^{\prime}}}\right) w_{m}^{-\frac{1}{r^{\prime}}}$ and applying Hölder we have for large m :

$$
\left\|H_{S_{J}}\left(f_{1}, f_{2}\right)\right\|_{L^{1}\left((A J)^{c}\right)} \leq C_{M} A^{-M}\left\|H_{S_{J}}\left(f_{1}, f_{2}\right)\right\|_{L^{r^{\prime}}\left(w_{m}\right)} .
$$

Here M depends on m and r and can be made arbitrarily large by picking m accordingly. By estimates (29) and (30) we can estimate the previously displayed expression further by

$$
\begin{aligned}
& \leq C_{M} A^{-M}\left\|\left(\left\langle f_{1}, \phi_{1}(s)\right\rangle\left\langle f_{2}, \phi_{2}(s)\right\rangle\right)_{s \in S_{J}}\right\|_{l^{r}\left(S_{J}\right)} \\
& \leq C_{M} A^{-M}\left\|\left(\left\langle f_{1}, \phi_{1}(s)\right\rangle\right)_{s \in S_{J}}\right\|_{l^{p_{1}}\left(S_{J}\right)}\left\|\left(\left\langle f_{2}, \phi_{2}(s)\right\rangle\right)_{s \in S_{J}}\right\|_{l^{p^{\prime}}\left(S_{J}\right)} \\
& \leq C_{M} A^{-M}\left\|f_{1}\right\|_{L^{p_{1}}\left(w_{10}^{-1}\right)}\left\|f_{2}\right\|_{L^{p_{2}}\left(w_{10}^{-1}\right)} \\
& \leq C_{M} A^{-M}\left(\inf _{x \in J} M_{p_{1}} f_{1}(x)\right)\left(\inf _{x \in J} M_{p_{2}} f_{2}(x)\right) .
\end{aligned}
$$

This finishes the proof of Lemma 5.
We return to the estimate of the set $E_{\text {in }}$. Define

$$
E^{\prime}:=E_{0} \cup \bigcup_{J \in I(S): J \subset E} 4 J .
$$

Since $\left|E^{\prime}\right| \leq 5\left|E_{0}\right| \leq C$, it suffices to prove

$$
\begin{equation*}
\left\|H_{\left\{s \in S: I(s) \subset E_{0}\right\}}\left(f_{1}, f_{2}\right)\right\|_{L^{1}\left(E^{\prime c}\right)} \leq C . \tag{31}
\end{equation*}
$$

Fix $k>1$ and define

$$
\mathcal{I}_{k}:=\left\{J \in I(S): J \subset E_{0}, 2^{k} J \subset E^{\prime}, 2^{k+1} J \not \subset E^{\prime}\right\} .
$$

Let $J \in \mathcal{I}_{k}$. Then for $\imath=1,2$ we have:

$$
\inf _{x \in J} M_{p_{2}} f_{\imath}(x) \leq 2^{k+1} \inf _{x \in 2^{k+1} J} M_{p_{2}} f_{2}(x) \leq 2^{k+1}
$$

since outside the set E^{\prime} the maximal function is bounded by 1 . Hence, by the previous lemma,

$$
\left\|H_{S_{J}}\left(f_{1}, f_{2}\right)\right\|_{L^{1}\left(\left(E^{\prime}\right)^{c}\right)} \leq C_{m}|J| 2^{-k m} .
$$

Since $I(S)$ is a grid, it is easy to see that the intervals in \mathcal{I}_{k} are pairwise disjoint; hence we have

$$
\left\|H_{\left\{s \in S, I(s) \in \mathcal{I}_{k}\right\}}\left(f_{1}, f_{2}\right)\right\|_{L^{1}\left(\left(E^{\prime}\right)^{c}\right)} \leq C_{m}\left|E_{0}\right| 2^{-k m} .
$$

By summing over all $k>1$ we prove (31). This finishes the estimate of the set $\left|E_{\text {in }}\right|$ and therefore the reduction of Proposition 3 to Proposition 4.

5. The combinatorics on the set S

We prove Proposition 4. Let $1<p_{1}, p_{2}, p_{3}<2$ be exponents with

$$
1<\frac{1}{p}_{1}+\frac{1}{p_{2}}+\frac{1}{p_{3}}<2 .
$$

Let $\eta>0$ be the largest number such that $\frac{1}{\eta}$ is an integer and

$$
\eta \leq 2^{-100}\left(2-\sum_{\imath} \frac{1}{p_{\imath}}\right) \min _{j}\left(1-\frac{1}{p_{j}}\right) .
$$

Let $S, \phi_{1}, \phi_{2}, \phi_{3}, I, \omega_{1}, \omega_{2}$, and ω_{3} be as in Propositions 3 and 4 . Let f_{\imath}, $\imath=1,2,3$ be Schwartz functions with $\left\|f_{\imath}\right\|_{p_{\imath}}=1$. Without loss of generality we can assume that for all $s \in S$,

$$
\begin{equation*}
I(s) \not \subset\left\{x \in \mathbb{R}: \max _{\imath}\left(M_{p_{\imath}}\left(M f_{\imath}\right)(x)\right) \geq \lambda_{0}\right\}, \tag{32}
\end{equation*}
$$

where λ_{0} is a constant which we will specify later.
Define a partial order \ll on the set of rectangles by

$$
\begin{equation*}
J_{1} \times J_{2} \ll J_{1}^{\prime} \times J_{2}^{\prime}, \text { if } J_{1} \subset J_{1}^{\prime} \text { and } J_{2}^{\prime} \subset J_{2} \tag{33}
\end{equation*}
$$

A subset $T \subset S$ is called a tree of type \imath, if the set $\rho_{\imath}(T)$ has exactly one maximal element with respect to \ll. This maximal element is called the base of the tree T and is denoted by s_{T}. Define $J_{T}:=I\left(s_{T}\right)$.

Define $S_{-1}:=S$. Let $k \geq 0$ be an integer and assume by recursion that we have already defined S_{k-1}. Define

$$
S_{k}:=S_{k-1} \backslash \bigcup_{l, j=1}^{3}\left(\bigcup_{l=0}^{\infty} T_{k, l, j, l}\right)
$$

where the sets $T_{k, \imath, j, l}$ are defined as follows. Let $k \geq 0$ and $\imath, \jmath \in\{1,2,3\}$ be fixed. Let $l \geq 0$ be an integer and assume by recursion that we have already defined $T_{k, \imath, \jmath, \lambda}$ for all integers λ with $0 \leq \lambda<l$. If one of the sets $T_{k, l, j, \lambda}$ with $\lambda<l$ is empty, then define $T_{k, l, j, l}:=\emptyset$. Otherwise let \mathcal{F} denote the set of all trees T of type \imath which satisfy the following conditions (34)-(36):

$$
\begin{align*}
& \text { if } \imath=\jmath \text {, then }\left|\left\langle f_{\jmath}, \phi_{\jmath}(s)\right\rangle\right| \geq 2^{-\eta k} 2^{-\frac{k}{p_{j}}}|I(s)|^{\frac{1}{2}} \quad \text { for all } s \in T \text {, } \tag{35}\\
& \text { if } \imath \neq \jmath \text {, then }\left\|\left(\sum_{s \in T} \frac{\left|\left\langle f_{\jmath}, \phi_{\jmath}(s)\right\rangle\right|^{2}}{|I(s)|} 1_{I(s)}\right)^{\frac{1}{2}}\right\|_{1} \geq 2^{4} 2^{-\frac{k}{p_{j}^{\prime}}}\left|J_{T}\right| . \tag{36}
\end{align*}
$$

If \mathcal{F} is empty, then we define $T_{k, \imath, j, l}:=\emptyset$. Otherwise define $\mathcal{F}_{\max }$ to be the set of all $T_{\max } \in \mathcal{F}$ which satisfy:

$$
\begin{equation*}
\text { if } T \in \mathcal{F}, T_{\max } \subset T \text {, then } T=T_{\max } . \tag{37}
\end{equation*}
$$

Choose $T_{k, l, j, l} \in \mathcal{F}_{\text {max }}$ such that for all $T \in \mathcal{F}_{\max }$,

$$
\begin{array}{ll}
\text { if } \imath<\jmath, & \text { then } \omega_{\imath}\left(s_{T_{k, \imath, \jmath, l}}\right) \nless \omega_{\imath}\left(s_{T}\right), \\
\text { if } \imath>\jmath, & \text { then } \omega_{\imath}\left(s_{T}\right) \nless \omega\left(s_{T_{k, 2, \jmath, l}}\right) . \tag{39}
\end{array}
$$

Here $\left[a, b\left[\nless\left[a^{\prime}, b^{\prime}\left[\right.\right.\right.\right.$ means $b>a^{\prime}$. Observe that $T_{k, 2, j, l}$ actually satisfies (38) and (39) for all $T \in \mathcal{F}$. This finishes the definition of the sets $T_{k, l, j, l}$ and S_{k}.

Since S is finite, $T_{k, \imath, j, l}=\emptyset$ for sufficiently large l. In particular, each $s \in S_{k}$ satisfies

$$
\begin{equation*}
\left|\left\langle f_{\imath}, \phi_{\imath}(s)\right\rangle\right| \leq 2^{-\eta k} 2^{-\frac{k}{p_{\imath}^{\prime}}}|I(s)|^{\frac{1}{2}} \tag{40}
\end{equation*}
$$

for all \imath, since the set $\{s\}$ is a tree of type \imath which by construction of S_{k} does not satisfy (35) for $\jmath=\imath$. Similarly for $j \neq i$ each tree $T \subset S_{k}$ of type \imath satisfies

$$
\begin{equation*}
\left\|\left(\sum_{s \in T} \frac{\left|\left\langle f_{J}, \phi_{J}(s)\right\rangle\right|^{2}}{|I(s)|} 1_{I(s)}\right)^{\frac{1}{2}}\right\|_{1} \leq 2^{4} 2^{-\frac{k}{p_{j}^{\prime}}}\left|J_{T}\right| . \tag{41}
\end{equation*}
$$

Moreover, (40) implies that the intersection of all S_{k} contains only elements s with $\prod_{j}\left\langle f_{j}, \phi_{j}(s)\right\rangle=0$.

Let $k \leq \eta^{-2}$ and assume $T_{k, 2, j, l}$ is a tree. Observe that (35) and (36) together with Lemma 6 in Section 7 provide a lower bound on the maximal function $M_{p_{j}}\left(M f_{j}\right)(x)$ for $x \in J_{T_{k, 2, j, l}}$. This lower bound depends only on η, p_{\jmath} and the constants C_{m} of the phase plane representation. Therefore if we choose the constant λ_{0} in (32) small enough depending on η, p_{j}, and C_{m}, it then is clear that $T_{k, l, j, l}=\emptyset$ for $k \leq \eta^{-2}$.

Now we have

$$
\begin{aligned}
\sum_{s \in S}|I(s)|^{-\frac{1}{2}} \prod_{j}\left|\left\langle f_{j}, \phi_{j}(s)\right\rangle\right| \leq & \sum_{k>\eta^{-2}} \sum_{\imath, j} \sum_{l=0}^{\infty}\left(\sup _{s \in T_{k, l, j, l}}|I(s)|^{-\frac{1}{2}}\left|\left\langle f_{\imath}, \phi_{\imath}(s)\right\rangle\right|\right) \\
& \times \prod_{\kappa \neq \imath}\left(\sum_{s \in T_{k, 2, j, l}}\left|\left\langle f_{\kappa}, \phi_{\kappa}(s)\right\rangle\right|^{2}\right)^{\frac{1}{2}} .
\end{aligned}
$$

Using (40), (41) and Lemma 7 of Section 7 we can bound this by

$$
\leq C \sum_{k>\eta^{-2}} 2^{-\sum_{\jmath} \frac{k}{p_{j}^{\prime}}} \sum_{\imath, \jmath} \sum_{l=0}^{\infty}\left|J_{T_{k, 2, \jmath, l}}\right| .
$$

Now we apply the estimate

$$
\begin{equation*}
\sum_{l=0}^{\infty}\left|J_{T_{k, 2, j, l}}\right| \leq C 2^{10 \eta p_{\jmath}{ }^{\prime} k} 2^{k}, \tag{42}
\end{equation*}
$$

for each $k>\eta^{-2}, \imath \jmath$, which is proved in Sections 6 and 8. This bounds the previously displayed expression by

$$
\begin{equation*}
\leq C \sum_{k>\eta^{-2}} 2^{-\sum \frac{k}{p_{J^{\prime}}}} 2^{10 \eta p_{j}^{\prime} k} 2^{k} . \tag{43}
\end{equation*}
$$

This is less than a constant since

$$
\sum_{\jmath} \frac{1}{p_{j}^{\prime}} \geq 1+10 \eta \max _{\jmath} p_{j}^{\prime}
$$

by the choice of η. This finishes the proof of Proposition 4 up to the proof of estimate (42) and Lemmata 6 and 7.

6. Counting the trees for $\imath=\jmath$

We prove estimate (42) in the case $\imath=\jmath$. Thus fix $k>\eta^{-2}, \imath, \jmath$ with $\imath=\jmath$. Let \mathcal{F} denote the set of all trees $T_{k, 2, j, l}$. Observe that for $T, T^{\prime} \in \mathcal{F}, T \neq T^{\prime}$ we have, by (37), that $T \cup T^{\prime}$ is not a tree; therefore

$$
\rho_{\imath}\left(s_{T}\right) \cap \rho_{\imath}\left(s_{T^{\prime}}\right)=\emptyset .
$$

Define $b:=2^{-\eta k} 2^{-\frac{k}{p^{\prime}}}$. Then by (35) for all $T \in \mathcal{F}$

$$
\begin{equation*}
\left|\left\langle f_{\imath}, \phi_{\imath}\left(s_{T}\right)\right\rangle\right| \geq b\left|J_{T}\right|^{\frac{1}{2}} . \tag{44}
\end{equation*}
$$

Finally recall that for all $s \in S$:

$$
\begin{equation*}
I(s) \not \subset\left\{x: M_{p_{\imath}}\left(M f_{\imath}\right)(x) \geq \lambda_{0}\right\} . \tag{45}
\end{equation*}
$$

Our proof goes in the following four steps:
Step 1. Define the counting function

$$
\begin{equation*}
N_{\mathcal{F}}(x):=\sum_{T \in \mathcal{F}} 1_{J_{T}}(x) . \tag{46}
\end{equation*}
$$

We have to estimate the L^{1}-norm of the counting function. Since the counting function is integer-valued, it suffices to show a weak-type $1+\varepsilon$ estimate for small ε. More precisely it suffices to show for all integers $\lambda \geq 1$ and sufficiently small $\delta, \varepsilon>0, \delta=\delta\left(\eta, p_{\imath}\right), \varepsilon=\varepsilon\left(\eta, p_{\imath}\right)$:

$$
\left|\left\{x \in \mathbb{R}: N_{\mathcal{F}}(x) \geq \lambda\right\}\right| \leq b^{-p_{\imath}{ }^{\prime}-\delta} \lambda^{-1-\varepsilon} .
$$

Fix such a λ. As in [4] there is a subset $\mathcal{F}^{\prime} \subset \mathcal{F}$ such that, if we define $N_{\mathcal{F}^{\prime}}$ analogously to $N_{\mathcal{F}}$,

$$
\left\{x \in \mathbb{R}: N_{\mathcal{F}^{\prime}}(x) \geq \lambda\right\}=\left\{x \in \mathbb{R}: N_{\mathcal{F}}(x) \geq \lambda\right\}
$$

and $\left\|N_{\mathcal{F}^{\prime}}\right\|_{\infty} \leq \lambda$. This is due to the grid structure of $I(S)$.

Step 2 . Let $A>1$ be a number whose value will be specified later. We can write

$$
\begin{equation*}
\mathcal{F}^{\prime}=\left(\bigcup_{m=1}^{A^{10}} \mathcal{F}_{m}\right) \cup \mathcal{F}^{\prime \prime} \tag{47}
\end{equation*}
$$

such that if $T, T^{\prime} \in \mathcal{F}_{m}$ for some m and $T \neq T^{\prime}$, then

$$
\left(A J_{T} \times \omega\left(s_{T}\right)\right) \cap\left(A J_{T^{\prime}} \times \omega\left(s_{T^{\prime}}\right)\right)=\emptyset,
$$

and

$$
\begin{equation*}
\sum_{T \in \mathcal{F}^{\prime \prime}}\left|J_{T}\right| \leq C e^{-A} \sum_{T \in \mathcal{F}_{1}}\left|J_{T}\right| . \tag{48}
\end{equation*}
$$

For a proof of this fact see the proof of the separation lemma in [4].
Step 3. Let $1 \leq m \leq A^{10}$. The following lines hold for all sufficiently small $\delta, \varepsilon>0$. The arguments may require δ, ε to change from line to line. For a tempered distribution $f, x \in \mathbb{R}$, and $T \in \mathcal{F}_{m}$ define

$$
B f(x)(T):=\frac{\left\langle f, \phi_{\imath}\left(s_{T}\right)\right\rangle}{\left|J_{T}\right|^{\frac{1}{2}}} 1_{J_{T}}(x) .
$$

Let $L^{2}\left(\mathbb{R}, l^{2}(\mathcal{F})\right)$ be the Banach space of square-integrable functions on \mathbb{R} with values in $l^{2}(\mathcal{F})$, and analogously for other exponents. Then we have the following estimate by Lemma 4.3 in [4]

$$
\|B f\|_{L^{2}\left(\mathbb{R}, l^{2}\left(\mathcal{F}_{m}\right)\right)}=\left(\sum_{T \in \mathcal{F}_{m}}\left|\left\langle f_{i}, \phi_{\imath}\left(s_{T}\right)\right\rangle\right|^{2}\right)^{\frac{1}{2}} \leq C\left(1+A^{-\frac{1}{\varepsilon}} \lambda\right)\|f\|_{2} .
$$

We also trivially have

$$
\begin{aligned}
\|B f\|_{L^{1+\delta}\left(\mathbb{R}, l^{\infty}\left(\mathcal{F}_{m}\right)\right)} & =\left(\int\left(\sup _{T \in \mathcal{F}_{m}: x \in J_{T}} \frac{\left|<f_{\imath}, \phi_{\imath}\left(s_{T}\right)>\right|}{\left|J_{T}\right|^{\frac{1}{2}}}\right)^{1+\delta} d x\right)^{\frac{1}{1+\delta}} \\
& \leq C\|M f\|_{1+\delta} \leq C\|f\|_{1+\delta} .
\end{aligned}
$$

By interpolation we have for $1<p<2$:

$$
\|B f\|_{L^{p}\left(\mathbb{R}, l p^{\prime}+\delta\left(\mathcal{F}_{m}\right)\right)} \leq C\left(1+A^{-\frac{1}{\varepsilon}} \lambda\right)\|f\|_{p} .
$$

Let $J \in I(S)$, and let $\mathcal{F}_{m, J}$ be the set of $T \in \mathcal{F}_{m}$ such that $J_{T} \subset J$. By a localization argument, as in [4], we see that

$$
\|B f\|_{L^{p}\left(\mathbb{R}, l^{p^{\prime}+\delta}\left(\mathcal{F}_{m, J}\right)\right)} \leq C \lambda^{\varepsilon}\left(1+A^{-\frac{1}{\varepsilon}} \lambda\right)|J|^{\frac{1}{p}} \inf _{x \in J} M_{p}(M f)(x)
$$

In the following, g^{\sharp} denotes the sharp maximal function of g with respect to the given grid, as in [4]. We define $N_{\mathcal{F}_{m, J}}$ in analogy to (46) to be the counting function of the trees $T \in \mathcal{F}_{m}$ for which $I_{T} \subset J$. We apply the previous estimate for f_{\imath} and use (44) to obtain

$$
\begin{aligned}
\left(N_{\mathcal{F}_{m}}^{\frac{p}{p^{\prime}+\delta}}\right)^{\sharp}(x) & \leq \sup _{J: x \in J}\left(\frac{1}{|J|} \int_{J} N_{\mathcal{F}_{m, J}}(x)^{\frac{p}{p^{p}+\delta}} d x\right) \\
& \leq b^{-p} \sup _{J: x \in J} \frac{1}{|J|}\left\|\left(\sum_{T \in \mathcal{F}_{m, J}} \frac{\left|\left\langle f_{\imath}, \phi_{\imath}\left(s_{T}\right)\right\rangle\right|^{p^{\prime}+\delta}}{\left|J_{T}\right|^{\frac{p^{\prime}+\delta}{2}}} 1_{\left.J_{T}\right)}\right)^{\frac{1}{p^{\prime}+\delta}}\right\|_{p}^{p} \\
& \leq b^{-p} C\left(\lambda^{\varepsilon}\left(1+A^{-\frac{1}{\varepsilon}} \lambda\right) M_{p}\left(M f_{\imath}\right)(x)\right)^{p} .
\end{aligned}
$$

Using (45) we can sharpen this argument in the case $p=p_{\imath}$ to

$$
\left(N_{\mathcal{F}_{m}}^{\frac{p_{2}}{p_{2}+\delta}}\right)^{\sharp}(x) \leq C b^{-p_{\imath}}\left(\lambda^{\varepsilon}\left(1+A^{-\frac{1}{\varepsilon}} \lambda\right) \min \left\{M_{p_{\imath}}\left(M f_{\imath}\right)(x), \lambda_{0}\right\}\right)^{p_{\imath}} .
$$

Taking the $\frac{p_{\imath}{ }^{\prime}+2 \delta}{p_{\imath}}$ - norm on both sides and raising to the $\frac{p_{\imath}{ }^{\prime}+\delta}{p_{\imath}}$-th power gives

$$
\begin{equation*}
\left\|N_{\mathcal{F}_{m}}\right\|_{\frac{p_{p}{ }^{\prime}+2 \delta}{p_{2}+\delta}} \leq C b^{-p_{\imath}{ }^{\prime}-\delta}\left(\lambda^{\varepsilon}\left(1+A^{-\frac{1}{\varepsilon}} \lambda\right)\right)^{p_{\imath}{ }^{\prime}+\delta} . \tag{49}
\end{equation*}
$$

Step 4. We split the counting function $N_{\mathcal{F}^{\prime}}$ according to (47) and use the weak-type estimate following from (49) on the first part and estimate (48) together with (49) and the fact that the counting function is integer-valued on the second part. This gives

$$
\begin{aligned}
\left\{x \in \mathbb{R}: N_{\mathcal{F}^{\prime}}(x) \geq A^{10} \lambda\right\} \leq & C A^{10} \lambda^{-\frac{p_{\imath}{ }^{\prime}+2 \delta}{p_{\imath}+\delta}} b^{-p_{\imath}{ }^{\prime}-2 \delta}\left(\lambda^{\varepsilon}\left(1+A^{-\frac{1}{\varepsilon}} \lambda\right)\right)^{p_{\imath}{ }^{\prime}+2 \delta} \\
& +e^{-A} C b^{-p_{\imath}{ }^{\prime}-2 \delta}\left(\lambda^{\varepsilon}\left(1+A^{-\frac{1}{\varepsilon}} \lambda\right)\right)^{p_{\imath}{ }^{\prime}+2 \delta}
\end{aligned}
$$

Choosing A of the order λ^{ε} and $\varepsilon \ll \delta$ gives

$$
\left\{x \in \mathbb{R}: N_{\mathcal{F}^{\prime}}(x) \geq \lambda\right\} \leq C \lambda^{-1-\varepsilon} b^{-p_{\imath}^{\prime}-\delta} .
$$

According to Step 1 this finishes the proof of estimate (42) in the case $\imath=\jmath$.

7. Estimates on a single tree

This section collects some standard facts from Calderón-Zygmund theory, adapted to the setup of trees.

Lemma 6. Fix k, \imath, \jmath, l such that $T:=T_{k, \imath, \jmath, l}$ is a tree, assume $\imath \neq \jmath$, and let $1<p \leq 2$. We then have

$$
\begin{equation*}
\left\|\left(\sum_{s \in T} \frac{\left|\left\langle f, \phi_{\jmath}(s)\right\rangle\right|^{2}}{|I(s)|} 1_{I(s)}\right)^{\frac{1}{2}}\right\|_{p} \leq C\|f\|_{p} . \tag{50}
\end{equation*}
$$

For each interval $J \in I(S)$ define $T_{J}:=\{s \in T: I(s) \subset J\}$. Then we obtain

$$
\begin{equation*}
\left\|\left(\sum_{s \in T_{J}} \frac{\left|\left\langle f, \phi_{J}(s)\right\rangle\right|^{2}}{|I(s)|} 1_{I(s)}\right)^{\frac{1}{2}}\right\|_{p} \leq C|J|^{\frac{1}{p}} \inf _{x \in J} M_{p}(M f)(x) \tag{51}
\end{equation*}
$$

For each $s \in T$, let h_{s} be a measurable function supported in $I(s)$ with $\left\|h_{I}(x)\right\|_{\infty}$ $=|I(s)|^{-\frac{1}{2}},\|h\|_{2}=1$, and $\left\langle h_{s}, h_{s^{\prime}}\right\rangle=0$ for $s \neq s^{\prime}$. Then for all maps $\varepsilon: T \rightarrow\{-1,1\}$, we have

$$
\begin{equation*}
\left\|\sum_{s \in T} \varepsilon(s)\left\langle f, \phi_{J}(s)\right\rangle h_{s}\right\|_{p} \leq C\|f\|_{p} \tag{52}
\end{equation*}
$$

First we prove estimate (52). The estimate is true in the case $p=2$, as is proved in [4]. By interpolation it suffices to prove the weak-type estimate

$$
\begin{equation*}
\left|\left\{x \in \mathbb{R}: \sum_{s \in T} \varepsilon(s)\left\langle f, \phi_{\jmath}(s)\right\rangle h_{s}(x) \geq C \lambda\right\}\right| \leq C^{\prime} \frac{\|f\|_{1}}{\lambda} . \tag{53}
\end{equation*}
$$

Let $f \in L^{1}(\mathbb{R})$. We write f as the sum of a good function g and a bad function b as follows. Let $\left\{I_{n}\right\}_{n}$ be the set of maximal intervals of the grid $I(S)$ for which

$$
\int_{I_{n}}|f(x)| d x \geq \lambda\left|I_{n}\right| .
$$

Let $\xi \in \omega_{\imath}\left(s_{T}\right)$, and pick a function $\theta_{\xi, \imath}$ as in hypothesis (iv) of Proposition 3. For each of the intervals I_{n}, define

$$
b_{n}(x):=1_{I_{n}}(x)\left(f(x)-\lambda_{n} \theta_{\xi, 2}(x)\right),
$$

where λ_{n} is chosen such that b_{n} is orthogonal to $\theta_{\xi, v}$. Obviously λ_{n} is bounded by $C\|f(x)\|_{L^{1}\left(I_{n}\right)}$. Define $b:=\sum_{n} b_{n}$ and $g:=f-b$. It suffices to prove estimate (53) for the good and bad function separately. The estimate for the good function follows immediately from estimate (52) for $p=2$. For the bad function we proceed as follows. Since the set

$$
E:=\bigcup_{n} 2 I_{n}
$$

is bounded in measure by $C \lambda^{-1}$, it suffices to prove the strong-type estimate

$$
\begin{equation*}
\left\|\sum_{n}\left(\sum_{s \in T} \varepsilon(s)\left\langle b_{n}, \phi_{\jmath}(s)\right\rangle h_{s}\right)\right\|_{L^{1}\left(E^{c}\right)} \leq C\|f\|_{1} . \tag{54}
\end{equation*}
$$

We estimate each summand separately. Obviously, we have

$$
\left\|\sum_{s \in T} \varepsilon(s)\left\langle b_{n}, \phi_{\jmath}(s)\right\rangle h_{s}\right\|_{L^{1}\left(E^{c}\right)} \leq \sum_{s \in T: I(s) \not \subset 2 I_{n}}|I(s)|^{\frac{1}{2}}\left|\left\langle b_{n}, \phi_{\jmath}(s)\right\rangle\right| .
$$

For each integer k let T_{k} be the set of those $s \in T$, for which $|I(s)| \leq 2^{k}\left|I_{n}\right|<$ $2|I(s)|$ and $I(s) \not \subset 2 I_{n}$. For $k<2$ we use the estimate

$$
\begin{align*}
& \sum_{s \in T_{k}}|I(s)|^{\frac{1}{2}}\left|\left\langle b_{n}, \phi_{\jmath}(s)\right\rangle\right| \tag{55}\\
& \quad \leq C\left\|b_{n}\right\|_{1} \sum_{s \in T_{k}}\left(1+\frac{\left|c(I(s))-c\left(I_{n}\right)\right|}{|I(s)|}\right)^{-2} \\
& \quad \leq C\left\|b_{n}\right\|_{1} \int_{\left(2 I_{n}\right)^{c}} \sum_{s \in T_{k}} \frac{1}{2^{k}\left|I_{n}\right|}\left(1+\frac{x-c\left(I_{n}\right) \mid}{2^{k}\left|I_{n}\right|}\right)^{-2} 1_{I(s)}(x) d x \\
& \quad \leq C\left\|b_{n}\right\|_{1} 2^{k}
\end{align*}
$$

For the last inequality we have seen that the intervals $I(s)$ with $s \in T_{k}$ are pairwise disjoint.

For $k>2$ we use the orthogonality of b_{n} and $\theta_{\xi, \imath}$ as well as hypothesis (iv) of Proposition 3 to obtain

$$
\begin{align*}
\sum_{s \in T_{k}}|I(s)|^{\frac{1}{2}}\left|\left\langle b_{n}, \phi_{\jmath}(s)\right\rangle\right| & \leq \sum_{s \in T_{k}}|I(s)|^{\frac{1}{2}}\left\|b_{n}\right\|_{1} \inf _{\lambda}\left\|\phi_{\jmath}(s)-\lambda \theta_{\xi, \imath}\right\|_{L^{\infty}\left(I_{n}\right)} \tag{56}\\
& \leq C\left\|b_{n}\right\|_{1} \sum_{s \in T_{k}}\left(1+\frac{\left|c(I(s))-c\left(I_{n}\right)\right|}{|I(s)|}\right)^{-2} \frac{\left|I_{n}\right|}{|I(s)|} \\
& \leq C\left\|b_{n}\right\|_{1} 2^{-k}
\end{align*}
$$

The last inequality follows by a similar argument as in the case $k \leq 2$. Summing (55) and (56) over k and n gives (54) and finishes the proof of (52).

We prove estimate (50). Observe that (52) is not void, since functions h_{s} clearly exist. Therefore we can average (52) over all choices of ε to obtain:

$$
\begin{aligned}
2^{-|T|} \sum_{\varepsilon}\left\|\sum_{s \in T} \varepsilon(s)\left\langle f, \phi_{\jmath}(s)\right\rangle h_{s}\right\|_{p}^{p} & =\int_{\mathbb{R}} 2^{-n} \sum_{\varepsilon}\left(\sum_{s \in T} \varepsilon(s)\left\langle f, \phi_{\jmath}(s)\right\rangle h_{s}(x)\right)^{p} d x \\
& \leq C\|f\|_{p}^{p}
\end{aligned}
$$

Now Khinchine's inequality gives

$$
\int_{\mathbb{R}}\left(2^{-n} \sum_{\varepsilon}\left(\sum_{s \in T} \varepsilon(s)\left\langle f, \phi_{\jmath}(s)\right\rangle h_{s}(x)\right)^{2}\right)^{\frac{p}{2}} d x \leq C\|f\|_{p}^{p}
$$

which immediately implies estimate (50).
To prove (51) fix a J and write $f=f 1_{2 J}+f 1_{(2 J)^{c}}$. It suffices to prove the estimate separately for both summands. For the first summand we simply
apply (50). For the second summand we write

$$
\begin{aligned}
\left(\sum_{s \in T_{J}} \frac{\left\lvert\,\left\langle f 1_{\left.(2 J)^{c}, \phi_{J}(s)\right\rangle\left.\right|^{2}}^{|I(s)|} 1_{I(s)}(x)\right)^{\frac{1}{2}}\right.}{}\right. & \leq C \sum_{s \in T_{J}: x \in I(s)} M f(x)|I(s)||J|^{-1} \\
& \leq C M f(x) 1_{J}(x) .
\end{aligned}
$$

The last inequality follows by summing a geometric series. This proves the estimate for the second summand and finishes the proof of Lemma 6.

Lemma 7. Fix $k \geq \eta^{-2}, \imath, \jmath, l$ such that $T:=T_{k, \imath, j, l}$ is a tree and assume $\imath \neq \jmath$. Then we have

$$
\begin{equation*}
\left(\sum_{s \in T}\left|\left\langle f_{J}, \phi_{J}(s)\right\rangle\right|^{2}\right)^{\frac{1}{2}} \leq C\left\|\left(\sum_{s \in T} \frac{\left|\left\langle f_{J}, \phi_{J}(s)\right\rangle\right|^{2}}{|I(s)|} 1_{I(s)}\right)^{\frac{1}{2}}\right\|_{1}\left|J_{T}\right|^{-\frac{1}{2}} . \tag{57}
\end{equation*}
$$

Proof. For each $J \in I(S)$,

$$
\begin{equation*}
\frac{1}{|J|} \int_{J}\left(\left(\sum_{s \in T: I(s) \subset J} \frac{\left|\left\langle f_{J}, \phi_{J}(s)\right\rangle\right|^{2}}{|I(s)|} 1_{I(s)}(x)\right)^{\frac{1}{2}}\right) d x \leq C 2^{-\frac{k}{p_{j}}} \tag{58}
\end{equation*}
$$

since the set $\{s \in T: I(s) \subset J\}$ is a union of trees $\left\{T_{n}\right\}_{n}$ which satisfy (41) for $k-1$ and

$$
\sum_{n}\left|J_{T_{n}}\right| \leq\left|J_{T}\right| .
$$

Define for $x \in \mathbb{R}$ and $s \in T$:

$$
F(x)(s):=\sum_{s \in T} \frac{\left|\left\langle f_{\jmath}, \phi_{\jmath}(s)\right\rangle\right|^{2}}{|I(s)|} 1_{I(s)}(x) .
$$

Since F is supported on J_{T}, we have

$$
\|F\|_{L^{2}\left(\mathbb{R}, l^{2}(T)\right)} \leq\left|J_{T}\right|^{\frac{1}{2}}\|F\|_{\operatorname{BMO}\left(\mathbb{R}, l^{2}(T)\right)} .
$$

Here BMO is understood with respect to the grid $I(S)$ as in [4]. We prove Lemma 7 by estimating this BMO-norm with (58) and (36).

8. Counting the trees for $\imath \neq \jmath$

We prove estimate (42) in the case $\imath \neq \jmath$. Thus fix $k \geq \eta^{-2}, \imath$, with $\imath \neq \jmath$. Let \mathcal{F} denote the set of all trees $T_{k, \imath, j, l}$.

As in [4] we define for $T \in \mathcal{F}$:

$$
\begin{aligned}
T^{\min } & :=\left\{s \in T: \rho_{\imath}(s) \text { is minimal in } \rho_{\imath}(T)\right\}, \\
T^{\mathrm{fat}} & :=\left\{s \in T: 2^{5} 2^{\eta k}|I(s)| \geq\left|J_{T}\right|\right\}, \\
T^{\partial} & :=\left\{s \in T: I(s) \cap\left(1-2^{-4}\right) J_{T}=\emptyset\right\}, \\
T^{\partial \max } & :=\left\{s \in T^{\partial}: \rho_{\imath}(s) \text { is maximal in } \rho_{\imath}\left(T^{\partial}\right)\right\}, \\
T^{\mathrm{nice}} & :=T \backslash\left(T^{\min } \cup T^{\mathrm{fat}} \cup T^{\partial}\right) .
\end{aligned}
$$

Define $b:=2^{-\frac{k}{p_{j}^{\prime}}}$. By similar arguments as in [4] we have the estimate

$$
\begin{equation*}
\text { if } \imath \neq \jmath \text {, then }\left\|\left(\sum_{s \in T^{\text {nice }}} \frac{\left|\left\langle f_{\jmath}, \phi_{\jmath}(s)\right\rangle\right|^{2}}{|I(s)|} 1_{I(s)}\right)^{\frac{1}{2}}\right\|_{1} \geq b\left|J_{T}\right| \text {. } \tag{59}
\end{equation*}
$$

Define the counting function

$$
N_{\mathcal{F}}(x):=\sum_{T \in \mathcal{F}} 1_{J_{T}}(x) .
$$

As in Section 6 it suffices to show

$$
\begin{equation*}
\left|\left\{x \in \mathbb{R}: N_{\mathcal{F}^{\prime}}(x) \geq \lambda\right\}\right| \leq b^{-p_{j}^{\prime}-\delta} \lambda^{-1-\varepsilon} \tag{60}
\end{equation*}
$$

for all integers $\lambda \geq 1$ and small $\varepsilon, \delta>0$. In addition, we can assume that $\left\|N_{\mathcal{F}}\right\|_{\infty} \leq \lambda$.

Let $y \in \mathbb{R}, T \in \mathcal{F}, x \in J_{T}$, and $s \in T$. For $f \in \mathcal{S}(\mathbb{R})$ define

$$
S f(y)(T)(x)(s):=\frac{\left\langle f, \phi_{\jmath}(s)\right\rangle}{|I(s)|^{\frac{1}{2}}} 1_{I(s)}(x) 1_{J_{T}}(y) .
$$

Consider J_{T} as a measure space with Lebesgue measure normalized to 1 . Then the operator is bounded from L^{2} to $L^{2}\left(\mathbb{R}, l^{2}\left(\mathcal{F},\left(L^{2}\left(J_{T}, l^{2}(T)\right)\right)\right)\right)$, as we see below. We have used a sloppy notation for the second Banach space: The range space $L^{2}\left(J_{T}, l^{2}(T)\right)$ depends on the variable $T \in \mathcal{F}$. To make this space independent of T, we take the direct sum of these Banach spaces as T varies over \mathcal{F}, and we let $S f(y)(T)$ be nonzero only on the component corresponding to T. This is how we interpret the above notation. To see the claimed estimate we calculate:

$$
\begin{aligned}
\int \sum_{T \in \mathcal{F}} \frac{1}{\left|J_{T}\right|} \int \sum_{s \in T} \frac{\left|\left\langle f, \phi_{\jmath}(s)\right\rangle\right|^{2}}{|I(s)|} 1_{I(s)}(x) 1_{J_{T}}(y) d x d y & =\sum_{s \in \cup_{T \in \mathcal{F} T}}\left|\left\langle f, \phi_{\jmath}(s)\right\rangle\right|^{2} \\
& \leq C\left(1+\lambda A^{-\frac{1}{\varepsilon}}\right)\|f\|_{2}^{2},
\end{aligned}
$$

the last inequality being taken from [4]. The operator is also bounded from $L^{1+2 \delta}$ into

$$
L^{1+2 \delta}\left(\mathbb{R}, l^{\infty}\left(\mathcal{F}, L^{1+\delta}\left(J_{T}, l^{2}(T)\right)\right)\right)
$$

since by Lemma 6 :

$$
\begin{aligned}
& \int\left(\sup _{T \in \mathcal{F}}\left(\frac{1}{\left|J_{T}\right|} \int\left(\sum_{s \in T}\left(\frac{\left|\left\langle f, \phi_{\jmath}(s)\right\rangle\right|}{|I(s)|^{\frac{1}{2}}} 1_{I(s)}(x) 1_{J_{T}}(y)\right)^{2}\right)^{\frac{1+\delta}{2}} d x\right)^{\frac{1}{1+\delta}}\right)^{1+2 \delta} d y \\
& \quad \leq \int\left(\sup _{T \in \mathcal{F}: y \in J_{T}} \frac{1}{\left|J_{T}\right|} \|\left(\sum _ { s \in T } \left(\frac{\left.\left.\left.\left|\left\langle f, \phi_{\jmath}(s)\right\rangle\right|^{|I(s)|^{\frac{1}{2}}} 1_{I(s)}\right)^{2}\right)^{\frac{1}{2}} \|_{1+\delta}^{1+\delta}\right)^{\frac{1+2 \delta}{1+\delta}} d y}{} \quad \begin{array}{l}
\quad \leq C\left(M_{1+\delta}(M f)(y)\right)^{1+2 \delta} d y \\
\quad \leq C\|f\|_{1+2 \delta}^{1+2 \delta}
\end{array} .\right.\right.\right.
\end{aligned}
$$

By complex interpolation and the fact that $L^{q}\left(J_{T}\right) \subset L^{1}\left(J_{T}\right)$ for $q \geq 1$ we obtain that S maps L^{p} into $L^{p}\left(\mathbb{R}, l^{p^{\prime}+\delta}\left(\mathcal{F}, L^{1}\left(J_{T}, l^{2}(T)\right)\right)\right)$ with norm less than $C\left(1+\lambda A^{-\frac{1}{\varepsilon}}\right)$.

Let $J \in I(S)$ and define \mathcal{F}_{J} to be the set of $T \in \mathcal{F}$ such that $J_{T} \subset J$. Then we can localize as before to get

$$
\|S f\|_{L^{p}\left(\mathbb{R}, l^{p^{\prime}+\delta}\left(\mathcal{F}_{J}, L^{1}\left(J_{T}, l^{2}(T)\right)\right)\right)} \leq C \lambda^{\varepsilon}\left(1+\lambda A^{-\frac{1}{\varepsilon}}\right)|J|^{\frac{1}{p}} \inf _{x \in J} M^{p}(M f)(x) .
$$

Using the estimate (59) on nice trees gives, for $f=f_{j}$ and $p=p_{p}$,

$$
\begin{aligned}
\left(N_{\mathcal{F}}^{\frac{p_{J}}{p_{J}+\varepsilon}}\right)^{\sharp}(x) & \leq \sup _{J: x \in J}\left(\frac{1}{|J|} \int_{J} N_{\mathcal{F}_{J}}(x)^{\frac{p_{J}}{p_{J}^{\prime}+\varepsilon}} d x\right) \\
& \leq b^{-p_{J}} \sup _{J: x \in J}\left(\frac{1}{|J|}\left\|S f_{J}\right\|_{L^{p_{J}}\left(\mathbb{R}, l^{p_{j}{ }^{\prime}+\delta}\left(\mathcal{F}_{J}, L^{1}\left(J_{T}, l^{2}(T)\right)\right)\right)}^{p_{j}}\right) \\
& \leq b^{-p_{J}} C \lambda^{\varepsilon}\left(1+A^{-\frac{1}{\varepsilon}} \lambda\right)^{p_{J}}\left(M_{p_{J}}\left(M f_{J}\right)(x)\right)^{p_{J}} .
\end{aligned}
$$

Again we can sharpen this argument to obtain

$$
\left(N_{\mathcal{F}}^{\frac{p_{J}}{p_{J}+\delta}}\right)^{\sharp}(x) \leq C b^{-p_{J}} \lambda^{\varepsilon}\left(1+A^{-\frac{1}{\varepsilon}} \lambda\right)^{p_{J}} \max \left\{M_{p_{J}}\left(M f_{j}\right)(x)^{p_{J}}, \lambda_{0}\right\} .
$$

Taking the $\frac{p_{j}{ }^{\prime}+\delta}{p_{j}}$-norm on both sides proves estimate (60) and therefore also (42).

References

[1] A. P. Calderón and A. Zygmund, A note on the interpolation of linear operators, Studia Math. 12 (1951), 194-204.
[2] S. Janson, On interpolation of multi-linear operators in: Cwikel, Peetre, Sagher, and Wallin (Eds.), Function Spaces and Applications, (Proc., Lund 1986) LNM 1302, SpringerVerlag, New York, 1988.
[3] P. Jones, Bilinear singular integrals and maximal functions, in: Havin and Nikolski (Eds.), Linear and Complex Analysis Problem Book 3, Part I, LNM 1573, SpringerVerlag, New York, 1994.
[4] M. Lacey and C. Thiele, L^{p} estimates on the bilinear Hilbert transform for $2<p<\infty$, Annals of Math. 146 (1997), 693-724.
[5] E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Series 43, Princeton Univ. Press, Princeton, 1993.
[6] E. Stein and G. Weiss, Interpolation of operators with change of measures, Trans. Amer. Math. Soc. 87 (1958), 159-172.
(Received May 20, 1997)

[^0]: * The first author acknowledges support from the NSF. Both authors have been supported by NATO travel grants and the Volkswagen Stiftung (RiP program in Oberwolfach).

