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1. Introduction

A group satisfies the Tits alternative if each of its subgroups either contains
a free group of rank two or is virtually solvable. The Tits alternative derives
its name from the result of J. Tits [Tit] that finitely generated linear groups
satisfy this alternative. N. Ivanov [Iva] and J. McCarthy [McC] have shown
that mapping class groups of compact surfaces also satisfy this alternative. J.
Birman, A. Lubotzky, and J. McCarthy [BLM] and N. Ivanov [Iva] complement
the Tits alternative for surface mapping class groups by showing that solvable
subgroups of such are virtually finitely generated free abelian of bounded index.
The analog fails for linear groups since, for example, GL(3;Z) contains the
Heisenberg group.

The outer automorphism group Out(Fn) of a free group Fn of finite rank
n reflects the nature of both linear and mapping class groups. Indeed, it maps
onto GL(n;Z) and contains the mapping class group MCG(S) of a compact
surface S with fundamental group Fn. E. Formanek and C. Procesi [FP] have
shown that Out(Fn) is not linear if n > 3. It is unknown if mapping class
groups of compact surfaces are all linear. In a series of two papers we prove:

Theorem 1.0.1. The group Out(Fn) satisfies the Tits alternative.

In a third paper [BFH2], we prove the following complementary result.

Theorem 1.0.2. A solvable subgroup of Out(Fn) has a finitely generated
free abelian subgroup of index at most 35n2

.

The rank of an abelian subgroup of Out(Fn) is bounded by vcd(Out(Fn)) =
2n − 3 for n > 1 [CV]. With regard to the relationship between solvable and
abelian subgroups, Out(Fn) behaves like MCG(S). H. Bass and A. Lubotzky
[BL] showed that solvable subgroups of Out(Fn) are virtually polycyclic.

Theorem 1.0.1 is divided into two parts according to the growth rate of the
automorphisms being considered. An element O of Out(Fn) has polynomial
growth if for each conjugacy class [[γ]] of an element in Fn the word length
of Oi([[γ]]) with respect to some fixed finite generating set for Fn grows at
most polynomially in i. An element O of Out(Fn) has exponential growth if
for some conjugacy class this sequence grows at least exponentially in i. An
element of Out(Fn) has either polynomial or exponential growth (see for ex-
ample [BH1]). The set of outer automorphisms that has polynomial growth
is denoted PG(Fn); the set that have polynomial growth and unipotent im-
age in GL(n;Z) is denoted UPG(Fn). A subgroup of Out(Fn) is said to be
PG (respectively UPG) if all of its elements are contained in PG(Fn) (respec-
tively UPG(Fn)). Every PG subgroup contains a finite index UPG subgroup
(Corollary 5.7.6).
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Every UPG subgroup of MCG(S) is abelian. In fact, each UPG subgroup
of MCG(S) is contained in a group generated by Dehn twists in a set of pairwise
disjoint simple closed curves [Iva], [BLM]. The structure of UPG subgroups of
Out(Fn) is richer. In particular, they may contain free subgroups of rank 2;
see Remark 1.2 of [BFH1]. The second paper in this series [BFH1] is a study
of UPG subgroups of Out(Fn). It contains a proof of the following theorem.

Theorem 1.0.3. A UPG subgroup of Out(Fn) that does not contain a
free subgroup of rank 2 is solvable.

This, the first paper in this series, culminates in the following theorem.
Theorem 1.0.1 is an immediate consequence of it and Theorem 1.0.3.

Theorem 7.0.1. Suppose that H is a subgroup of Out(Fn) that does not
contain a free subgroup of rank 2. Then there is a finite index subgroup H0 of
H, a finitely generated free abelian group A, and a map

Φ : H0 → A

such that Ker(Φ) is UPG.

In [BFH4] (see also [BFH3]) which is independent of the current series,
there is a proof of the Tits alternative for a special class of subgroups of
Out(Fn).

Although our work focuses on the Tits alternative, our approach has al-
ways been toward developing a general understanding of subgroups of Out(Fn)
and their dynamics on certain spaces of trees and bi-infinite paths. In the re-
mainder of this section and in the introduction to [BFH1], we take up this
general viewpoint.

We establish our dynamical point of view by recalling an experiment de-
scribed by Thurston. Suppose that S is a compact surface equipped with a
complete hyperbolic metric and that φ is an element of the mapping class
group MCG(S). Each free homotopy class of closed curves in S is represented
by a unique closed geodesic. This determines a natural action of φ on the set
of closed geodesics in S and we denote the image of the geodesic σ under this
action by φ#(σ).

Choose a closed geodesic σ and positive integer k. Using a fine point,
draw φk#(σ) on S and step back so that you can no longer see individual drawn
lines but only the places where lines accumulate. If σ is periodic under the
action of φ, then you will not see anything. In all other cases, as k increases
the image will stabilize and you will see a nonempty closed set V (σ) of disjoint
simple geodesics. Most σ produce the same stabilized image and we denote
this by V (φ). The exceptional cases produce V (σ) that are subsets of V (φ).
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This experiment neatly captures the essential features of Thurston’s
normal form for elements of MCG(S) ([Thu]; see also [FLP]). For each
φ ∈ MCG(S), there is a canonical decomposition of S along a (possibly empty)
set of disjoint annuli Aj into subsurfaces Si of negative Euler characteristic.
The mapping class φ restricts to a mapping class on each Si that either has
finite order or is pseudo-Anosov. On each Aj , φ restricts to a (possibly trivial)
Dehn twist. If φ|Si is pseudo-Anosov, denote the associated attracting geodesic
lamination by Γ+

i ; if φ|Aj is a nontrivial Dehn twist, denote the core geodesic
of Aj by αj . Then V (φ) is the union of the Γ+

i ’s and αj ’s. Each V (σ) is a
union of Γ+

i ’s and αj ’s; more precisely, Γ+
i (respectively αj) is contained in

V (σ) if and only if Γ+
i (respectively αj) has nonempty transverse intersection

with σ.
Relative train track maps f : G → G were introduced in [BH1] as the

Out(Fn) analog of the Thurston normal form. An outer automorphism O is
represented by a homotopy equivalence f : G → G of a marked graph and a
filtration ∅ = G0 ⊂ G1 ⊂ · · · ⊂ GK = G by f -invariant subgraphs. Thus
we view O as being built up in stages. The marked graph G is broken up
into strata Hi (the difference between Gi and Gi−1) that are, in some ways,
analogous to the Si’s and Aj ’s that are part of the Thurston normal form for
φ ∈ MCG(S).

Associated to each stratum Hr is an integral transition matrix which
records the multiplicity of the ith edge of Hr in the image under f of the
jth edge of Hr. If the filtration is sufficiently refined, then these matrices are
either identically zero or irreducible (see subsection 2.5). We call strata of the
former type zero strata and strata of the latter type irreducible. To each irre-
ducible stratum we associate the Perron-Frobenius eigenvalue of its transition
matrix.

Irreducible strata are said to be non-exponentially-growing or exponent-
ially-growing according to whether their associated Perron-Frobenius eigenval-
ues are, respectively, equal to one or greater than one. Exponentially-growing
strata correspond to pseudo-Anosov components. There are three types of
non-exponentially-growing strata. If f acts periodically on the edges of Hi,
then Hi is analogous to a subsurface Si on which φ acts periodically. If the
lengths of the edges of Hi grow linearly under iteration by f , then Hi is analo-
gous to an annulus with nontrivial Dehn twisting. If the lengths of the edges of
Hi have a faster than linear growth rate, then Hi has no surface counterpart.
Zero strata play a lesser role in the theory.

The space B(G) (see §2) of bi-infinite unoriented paths (hereafter referred
to as lines) in a marked graph G is the Fn analog of the space G(S) of complete
geodesics in S. Periodic lines are called circuits and correspond to closed
geodesics. There is a natural action of O on B(G). Since one cannot directly
‘see’ lines in G, we pose the analogy for the experiment as follows. Given a
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circuit γ, what are the accumulation points in B(G) of the forward O-orbit of
γ? This is not a completely faithful translation. Geodesics that are contained
in Si \ Γ+

i occur as accumulation points for the forward φ#-orbit of certain σ

but are not contained in V (φ).
An exhaustive study of the action of O on B(G) is beyond the scope of

any single paper. Our goal is to build a general framework for the subject
with sufficient detail to prove Theorem 7.0.1. In some cases we develop an
idea beyond what is required for the Tits alternative and in some cases we do
not. Our decisions are based not only on the relative importance of the idea
but also on the number of pages required to do the extra work.

The key dynamical invariant introduced in this paper is the attracting
lamination associated to an exponentially growing stratum of a relative train
track map f : G → G. It is the analog of the unstable measured geodesic
lamination Γ+

i associated to a pseudo-Anosov component of a mapping class
element. We take a purely topological point of view and define these lamina-
tions to be closed sets in B(G); measures are not considered in this paper. To
remind the reader that we are not working in a more structured space (and in
fact are working in a non-Hausdorff space), we use the term weak attraction
when describing limits in B(G). Thus a line L1 is weakly attracted to a line
L2 under the action of O if for every neighborhood U of L2 in B(G), there is
a positive integer K so that Ok#(L1) ∈ U for all k > K.

The set L(O) of attracting laminations associated to the exponentially
growing strata of a relative train track map f : G → G representing O is
finite (Lemma 3.1.13) and is independent of the choice of f : G → G. After
passing to an iterate if necessary, we may assume that each element of L(O)
is O-invariant.

An attracting lamination Λ+ has preferred lines, called generic lines, that
are dense in Λ+ (Lemma 3.1.15). All generic lines have the same neighborhoods
in B(G) (Corollary 3.1.11) and so weakly attract the same lines. We refer to
this common set of weakly attracted lines as the basin of weak attraction for
Λ+. An element of L(O) is topmost if it is not contained in any other element
of L(O).

Of central importance to our study is the following question. Which cir-
cuits (and more generally which birecurrent lines (Definition 3.1.3)) are con-
tained in the basin of weak attraction for a topmost Λ+?

A first guess might be that a circuit γ is weakly attracted to Λ+ if and
only if it intersects the stratum Hr that determines Λ+. This fails in two ways.
First, strata are not invariant; the f -image of an edge in Hi, i > r, may contain
edges in Hr. Thus Λ+ may attract circuits that do not intersect Hr. For the
second, suppose that φ : S → S is a pseudo-Anosov homeomorphism of a
compact surface with one boundary component. If π1(S) is identified with Fn,
then the outer automorphism determined by φ is represented by a relative train



     

522 MLADEN BESTVINA, MARK FEIGHN, AND MICHAEL HANDEL

track map with a single stratum. This stratum is exponentially growing and
so determines an attracting lamination Γ+. The only circuit not attracted to
Γ+ is the one, say ρ, determined by ∂S. Since ρ crosses every edge in G twice,
one cannot expect to characterize completely the basin of weak attraction in
terms of a subgraph of G.

The key ingredient in analyzing the basin of attraction for a pseudo-
Anosov lamination Γ+ is intersection of geodesics: a circuit is attracted to
Γ+ if and only if it intersects the dual lamination Γ−. Unfortunately, inter-
section of geodesics has no analog in Out(Fn). Indeed, this is a frequently
encountered stumbling block in generalizing from MCG(S) to Out(Fn). We
overcome this by modifying and improving the relative train track methods of
[BH1] and by a detailed analysis of the action of f on paths in G. Most of this
analysis is contained in Section 5. A very detailed statement of our improved
relative train track maps is given in Theorem 5.1.5 and we refer the reader to
the introduction of Section 5 for an overview of its contents. We believe that
improved relative train tracks are important in their own right and will be
useful in solving other problems (see, for example, [Mac1], [Mac2] and [Bri]).

It is shown in subsection 3.2 that there is a pairing between elements of
L(O) and elements of L(O−1) that is analogous to the pairing between stable
and unstable pseudo-Anosov laminations. The paired laminations are denoted
Λ+ and Λ− with Λ+ ∈ L(O) and Λ− ∈ L(O−1).

Theorem 5.1.5 shows that any outer automorphism O can be realized
by an ‘improved relative train track map’ and an associated filtration. Each
exponentially-growing stratum Hr of an improved relative train track map has
a canonically associated (see Lemma 4.2.5) finite set Pr of paths in Gr. If Pr
is nonempty, then it contains a preferred element ρr. We assign a path ρ̂r to
each exponentially-growing stratum Hr as follows. If Pr 6= ∅, then ρ̂r = ρr. If
Pr = ∅, then choose a vertex in Hr and define ρ̂r to be the trivial path at that
vertex.

For any subgraph X of G and finite path ρ ⊂ G, define 〈X, ρ〉 to be the
groupoid of paths that can be decomposed into a concatenation of subpaths
that are either entirely contained in X or are equal to ρ or ρ̄. If ρ is a trivial
path, then a nontrivial path in G is contained in 〈X, ρ〉 if and only if it is
contained in X. The following theorem is one of the two main results in this
paper. Although the statement is completely analogous to a well-known result
about mapping classes, the proof is entirely different.

Theorem 6.0.1 (Weak Attraction Theorem). Suppose that Λ+ is a top-
most element of L(O), that f : G → G is an improved relative train track
map representing O and that Hr is the exponentially-growing stratum that de-
termines Λ+. Then there exists a subgraph Z such that Z ∩ Gr = Gr−1 and
such that every birecurrent path γ ⊂ G satisfies exactly one of the following.
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1. γ is a generic line for Λ−.

2. γ ∈ 〈Z, ρ̂r〉.
3. γ is weakly attracted to Λ+.

To study the iterated images of a bi-infinite path γ, we subdivide it into
‘non-interacting’ subpaths whose behavior under iteration is largely determined
by a single stratum. This splitting is the subject of subsection 4.1 and parts of
Section 5. Roughly speaking, one can view this as the analog of subdividing
a geodesic in S according to its intersections with the Si’s and Aj ’s that are
part of Thurston’s normal form.

There are three parts to our proof of Theorem 7.0.1. First, we use the
well known ‘ping-pong’ method of Tits (Proposition 1.1 of [Tit]) to establish a
criterion for a subgroup H of Out(Fn) to contain a free subgroup of rank two.

Corollary 3.4.3. Suppose that Λ+ ∈ L(O) and Λ− ∈ L(O−1) are paired
and O-invariant, that H is a subgroup of Out(Fn) containing O and that there
is an element ψ ∈ H such that generic lines of the four laminations ψ±1(Λ±)
are weakly attracted to Λ+ under the action of O and are weakly attracted to
Λ− under the action of O−1. Then H contains a free subgroup of rank two.

In Section 7, we combine this criterion with the weak attraction theorem
and a homology argument to prove the following.

Lemma 7.0.10. If H ⊂ Out(Fn) does not contain a free subgroup of rank
two, then there is a finite collection L of attracting laminations for elements
of H and a finite index subgroup H0 of H that stabilizes each element of L
and that satisfies the following property. If ψ ∈ H0 and if Λ+ ∈ L(ψ) and
Λ− ∈ L(ψ−1) are paired topmost laminations, then at least one of Λ+ and Λ−

is in L.

The last ingredient of the proof of Theorem 7.0.1 is contained in subsec-
tion 3.3. Denote the stabilizer in Out(Fn) of an attracting lamination Λ+ by
Stab(Λ+).

Corollary 3.3.1. There is a homomorphism PFΛ+ : Stab(Λ+) → Z

such that Ψ ∈ Ker(PFΛ+) if and only if Λ+ 6∈ L(Ψ) and Λ+ 6∈ L(Ψ−1).

The analogous result for the mapping class group is an immediate corollary
of the fact (exposé 12 of [FLP]) that the measured foliations associated to a
pseudo-Anosov homeomorphism are uniquely ergodic. Any mapping class that
topologically preserves the measured foliation must projectively fix its invariant
transverse measure and so multiplies this transverse measure by some scalar
factor. The assignment of the logarithm of this scalar factor to the mapping
class defines the analogous homomorphism.
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Because we are working in B and not a more structured space that takes
measures into account, we cannot measure the attraction factor directly. In-
stead of an invariant measure defined on the lamination itself, we use a length
function on paths in a marked graph. The length function depends on the
choice of marked graph but the factor by which an element of Stab(Λ+) ex-
pands this length does not.

The three parts to the proof of Theorem 7.0.1 are tied together at the end
of Section 7.

2. Preliminaries

2.1. Marked graphs and topological representatives. A marked graph is a
graph G along with a homotopy equivalence τ : Rn → G from the rose Rn
with n petals and vertex ∗. We assume that Fn is identified with π1(Rn, ∗)
and hence also with π1(G, τ(∗)). A homotopy equivalence f : G → G induces
an outer automorphism of π1(G, τ(∗)) and so an outer automorphism O of Fn.
The set of vertices of G is denoted V. If f(V) ⊂ V and if the restriction of f
to each edge of G is an immersion, then we say that f : G→ G is a topological
representative of O.

A filtration for a topological representative f : G → G is an increasing
sequence of (not necessarily connected) f -invariant subgraphs ∅ = G0 ⊂ G1

⊂ · · · ⊂ GK = G. The closure Hr of (Gr \ Gr−1) is a subcomplex called the
rth stratum.

Throughout this paper, G will be a marked graph, f : G → G will be
a topological representative, Gr will be a filtration element and Hr will be a
filtration stratum. The universal cover of G is a tree denoted by Γ.

2.2. Paths, circuits and lines. In this subsection we set notation for our
treatment of ‘geodesics’.

Let Γ be the universal cover of a marked graph G and let pr : Γ → G be
the covering projection. A map α̃ : J → Γ with domain a (possibly infinite)
interval J will be called a path in Γ if it is an embedding or if J is finite and
the image is a single point; in the latter case we say that α̃ is a trivial path.

We will not distinguish between paths in Γ that differ only by an orientation-
preserving change of parametrization. Thus we are interested in the oriented
image of α̃ and not α̃ itself. If the domain of α̃ is finite, then the image of
α̃ has a natural decomposition as a concatenation Ẽ′1Ẽ2 · · · Ẽk−1Ẽ

′
k where Ẽi,

1 < i < k, is a directed edge of Γ, Ẽ′1 is the terminal segment of a directed edge
Ẽ1 and Ẽ′k is the initial segment of a directed edge Ẽk. If the endpoints of the
image of α̃ are vertices, then Ẽ′1 = Ẽ1 and Ẽ′k = Ẽk. The sequence Ẽ′1Ẽ2 · · · Ẽ′k
is called the edge path associated to α̃. This notation extends naturally to the
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case that the domain is a ray or the entire line. In the former case, an edge
path has the half-infinite form Ẽ′1Ẽ2 · · · or · · · Ẽ−2Ẽ

′
−1 and in the latter case

has the bi-infinite form · · · Ẽ−1Ẽ0Ẽ1Ẽ2 · · ·.
If J is finite, then every map α̃ : J → Γ is homotopic rel endpoints to

a unique (possibly trivial) path [α̃]; we say that [α̃] is obtained from α̃ by
tightening. If f̃ : Γ→ Γ is a lift of f : G→ G , we denote [f̃(α̃)] by f̃#(α̃).

A path in G is the composition of the projection map pr with a path in Γ.
Thus a map α : J → G with domain a (possibly infinite) interval will be called
a path if it is an immersion or if J is finite and the image is a single point;
paths of the latter type are said to be trivial. If J is finite, then every map
α : J → G is homotopic rel endpoints to a unique (possibly trivial) path [α];
we say that [α] is obtained from α by tightening. For any lift α̃ : J → Γ of α,
[α] = pr[α̃]. We denote [f(α)] by f#(α).

We do not distinguish between paths in G that differ by an orientation-
preserving change of parametrization. The edge path associated to α is the
projected image of the edge path associated to a lift α̃. Thus the edge path
associated to a path with finite domain has the form E′1E2 · · ·Ek−1E

′
k where

Ei, 1 < i < k, is an edge of G, E′1 is the terminal segment of an edge E1 and
E′k is the initial segment of an edge Ek.

We reserve the word circuit for an immersion α : S1 → G. Any homotopi-
cally nontrivial map σ : S1 → G is homotopic to a unique circuit [σ]. As was
the case with paths, we do not distinguish between circuits that differ only by
an orientation-preserving change in parametrization and we identify a circuit
α with a cyclically ordered edge path E1E2 . . . Ek.

Throughout this paper we will identify paths and circuits with their asso-
ciated edge paths.

For any path α in G define ᾱ to be α with its orientation reversed. To make
this precise choose an orientation-reversing homeomorphism inv as follows. If
J is either finite or bi-infinite, then inv : J → J ; if J = (−∞, b] , then
inv : [b,∞) → (−∞, b]; if J = [a,∞)] then inv : (−∞, a] → [a,∞). Define
ᾱ = α ◦ inv. We sometimes refer to ᾱ as the inverse of α. The inverse of a
path in Γ is defined similarly.

There are times when we want to ignore a path’s orientation. In these
cases we will refer to α or α̃ as an unoriented path. We reserve the word
line for an unoriented bi-infinite path. If α̃ contains α̃0 or its inverse as a
subpath, then we say that α̃0 is an unoriented subpath of α̃. If α̃ is a line,
then we sometimes simply write that α̃0 is a subpath of α̃ since the lack of
orientation is implicit in the fact that α̃ is unoriented. Similar notation is used
for unoriented subpaths in G.

The space of lines in Γ is denoted B̃(Γ) and is equipped with what amounts
to the compact-open topology. Namely, for any finite path α̃0 ⊂ Γ (with
endpoints at vertices if desired), define N(α̃0) ⊂ B̃(Γ) to be the set of lines in



    

526 MLADEN BESTVINA, MARK FEIGHN, AND MICHAEL HANDEL

Γ that contain α̃0 as a subpath. The sets N(α̃0) define a basis for the topology
on B(Γ).

The space of lines in G is denoted B(G). There is a natural projection
map from B̃(Γ) to B(G) and we equip B(G) with the quotient topology. A basis
for the topology is constructed by considering finite paths α0 (with endpoints
at vertices if desired) and defining N(α0) ⊂ B(G) to be the set of lines in G

that contain α0 as a subpath.
In the analogy with the mapping class group, B(G) corresponds to the

space of complete geodesics in a closed surface S equipped with a particular
hyperbolic metric; B̃(Γ) corresponds to the space of complete geodesics in the
universal cover S̃.

Nielsen’s approach to the mapping class group (see [HT] for example)
begins with the fact that each mapping class φ determines a homeomorphism
φ# on the space of complete geodesics in S. This can be briefly described as
follows. The universal cover S̃ is compactified by a ‘circle at infinity’ S∞ in
such a way that complete geodesics in S̃ correspond to distinct pairs of points
in S∞. One proves that if h̃ : S̃ → S̃ is any lift of a homeomorphism h : S → S

representing φ, then h̃ extends to a homeomorphism of S∞. Since h̃ induces an
equivariant homeomorphism on pairs of points in S∞, it induces an equivariant
homeomorphism h̃# on the space of geodesics in S∞ and a homeomorphism
h# on the space of complete geodesics in S. One then checks that h# depends
only on φ and not on the choices of h and h̃.

There are analogous results for Out(Fn). The circle at infinity is replaced
by the Cantor set ∂Fn of ends of Fn. We assume from now on that the basepoint
in G has been lifted to a basepoint in Γ. The marking on G then determines
a homeomorphism between the space of ends of Γ and ∂Fn (see, for example,
[Flo]. We use this identification and treat ∂Fn as the space of ends of Γ.

Definition 2.2.1. Define B̃ = (∂Fn×∂Fn \∆)/Z2, where ∆ is the diagonal
and where Z2 acts on ∂Fn × ∂Fn by interchanging the factors. For any un-
ordered pair of distinct elements (c1, c2) ∈ ∂Fn × ∂Fn and for any Γ, there is
a unique line σ̃ ⊂ Γ connecting the ends c1 and c2. This process is reversible
and defines a homeomorphism between B̃ and B̃(Γ). We will often use this
homeomorphism implicitly to identify B̃ and B̃(Γ).

The diagonal action of Fn on ∂Fn × ∂Fn defines an action of Fn on B̃.
Define B to be the quotient space of this action. The action of Fn on Γ by
covering translations defines an action of Fn on B̃(Γ). The homeomorphism
between B̃ and B̃(Γ) is Fn-equivariant and so projects to a homeomorphism
between B and B(G). We will often use this homeomorphism implicitly to
identify B and B(G). If γ ∈ B(G) corresponds to β ∈ B then we say that γ
realizes β in G. In the analogy with the mapping class group, B corresponds to
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an abstract space of complete geodesics in S that is independent of the choice
of hyperbolic metric.

Definition 2.2.2. Assume that the space of ends of Γ and the space of
ends of Γ′ have been identified with ∂Fn. If h̃ : Γ→ Γ′ is a lift of a homotopy
equivalence h : G→ G′ then (page 208 of [Flo]) h̃ determines a homeomorphism
h̃ : ∂Fn → ∂Fn. There are induced homeomorphisms h̃# : B̃(Γ) → B̃(Γ′) and
h# : B(G)→ B(G′). If α̃ is a line in Γ with endpoints P,Q ∈ ∂Fn, then h̃#(α̃)
is the line in Γ′ with endpoints h̃(P ), h̃(Q).

Circuits correspond to periodic bi-infinite paths in G. We sometimes use
this correspondence to think of the circuits as a subset of B. Since every finite
path α0 ⊂ Rn extends to a circuit, the circuits form a dense set in B. One may
also identify the circuits with the set of conjugacy classes [[a]] in Fn. (This
is analogous to the fact that every free homotopy class of closed curves in a
hyperbolic surface contains a unique geodesic.) An outer automorphism O
determines an action O# on conjugacy classes in Fn and hence on the set of
circuits.

Our various definitions are tied together by the following lemma.

Lemma 2.2.3. Suppose that h : G → G′ is a homotopy equivalence of
marked graphs and that O is the outer automorphism determined by h. Then

1. The action induced by h# : B(G) → B(G′) on circuits is given by α 7→
[h(α)].

2. The action induced by h# : B → B on conjugacy classes in Fn is given
by [[a]] 7→ O#([[a]]).

3. h# : B → B is determined by the action of O on circuits.

Proof. Let α̃ ⊂ Γ be a lift of a circuit α ⊂ G and let h̃ : Γ → Γ′ be a lift
of h : G → G′. A homotopy between h(α) and α′ = [h(α)] lifts to a bounded
homotopy between h̃(α̃) and a lift α̃′ of α′. This implies that h̃(α̃) and α̃′

have the same endpoints in ∂Fn and hence that h̃#(α̃) = α̃′. Part 1 follows
immediately.

Part 2 follows immediately from part 1 and the definitions. Part 3 follows
from part 2 and the denseness of circuits in B.

2.3. The bounded cancellation lemma. In this section we state the bounded
cancellation lemma of [Coo] in the forms used in this paper. A generalization
of the bounded cancellation lemma is given in [BFH4].

Lemma 2.3.1. For any homotopy equivalence h : G → G′ of marked
graphs there is a constant C with the following properties.
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1. If ρ = αβ is a path in G, then h#(ρ) is obtained from h#(α) and h#(β)
by concatenating and by cancelling c ≤ C edges from the terminal end of
h#(α) with c edges from the initial end of h#(β).

2. If h̃ : Γ→ Γ′ is a lift to the universal covers, α̃ is a line in Γ and x̃ ∈ α̃,
then h̃(x̃) can be connected to h̃#(α̃) by a path with c ≤ C edges.

3. Suppose that h̃ : Γ→ Γ′ is a lift to the universal covers and that α̃ ⊂ Γ is
a finite path. Define β̃ ⊂ Γ′ by removing C initial and C terminal edges
from h̃#(α̃). Then h̃#(N(α̃)) ⊂ N(β̃). (In other words, if γ̃ ∈ B̃(Γ)
contains α̃ as a subpath, then h#(γ̃) ∈ B̃(Γ′) contains β̃ as a subpath.)

2.4. Folding. We now recall the folding construction of Stallings [Sta].
Suppose that f : G → G is a topological representative of O. If f is not an
immersion, then there is a pair of distinct oriented edges E1 and E2 with the
same initial endpoint and there are nontrivial initial segments E∗1 ⊂ E1 and
E∗2 ⊂ E2 such that f(E∗1) = f(E∗2) is a path with endpoints at vertices. There
exists a surjective folding map p : G → G1 defined by identifying E∗1 with E∗2
in such a way that f factors as f = gp for some map g : G1 → G.

Since f is a homotopy equivalence and f#(Ē∗1E
∗
2) is trivial, Ē∗1E

∗
2 is not

a closed path. Let T be a triangle fibered by lines parallel to its base. At-
tach T to G so that the non-base sides are identified with E∗1 and E∗2 and so
that the endpoints of each fiber are identified by p1. The resulting space X
deformation retracts to G. Collapsing the fibers of T to points defines a ho-
motopy equivalence of X to G1. Moreover, the inclusion of G into X followed
by the collapsing of the fibers agrees with p. Thus p : G→ G1 is a homotopy
equivalence.

We will apply this construction in two ways. In the first, we produce
a new topological representative of O as follows. Define f1 : G1 → G1 by
‘tightening’ pg : G1 → G1; i.e. by defining f1(e) = (pg)#(e) for each edge e
of G1. If each f1(e) is nontrivial, we are done. If not, the set of edges with
trivial f1-image form a tree and we collapse each component of the tree to a
point. After repeating this tighten and collapse procedure finitely many times,
we arrive at the desired topological representation.

For the second application, the folding operation is repeated with g :
G1 → G replacing f : G → G and so on to conclude that f = θpk . . . p1

where G0 = G, pi : Gi−1 → Gi is a folding map and where θ : Gk → G is
an immersion. The immersion θ extends to a covering θ̂ : Ĝ → G . Since θ
is a homotopy equivalence, θ̂ must be degree one and G ⊂ Ĝ is a homotopy
equivalence. In other words θ is an embedding and is a homeomorphism if G
has no valence-one vertices [Sta].

We also need a slight generalization of folding. Suppose that E2 = µ1µ2 is
a decomposition into subpaths and that σ ⊂ G is a path satisfying the following
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properties : σ and E2 have a common initial endpoint; σ does not intersect
the interior of E2; and f(µ1) = f#(σ) is a path with endpoints at vertices.
Define G′ to be the graph obtained from G by identifying µ1 with σ and let
p : G → G′ be the quotient map. We may think of G \ E2 as a subcomplex
of both G and G′. Thus G is obtained from G \ E2 by adding E2 and G′ is
obtained from G\E2 by adding an edge E′2 with terminal endpoint equal to the
terminal endpoint of E2 and initial endpoint equal to the terminal endpoint of
σ. With this notation, p|(G \ E2) is the identity, p(µ1) = σ and p(µ2) = E′2.
Define g : G′ → G by g|(G \ E2) = f |(G \ E2) and by g(E′2) = f(µ2). Then
gp|(G \ E2) = f |(G \ E2) and (gp)#(E2) = f(E2). In particular, gp ' f rel V
(= the vertex set of G). We refer to p : G→ G′ as a generalized fold.

2.5. Relative train track maps. We study an outer automorphism by ana-
lyzing the dynamical properties of its topological representatives. To facilitate
this analysis we restrict our attention to topological representatives with spe-
cial properties. In this subsection we recall some basic definitions and results
from [BH1]. In Section 5 we extend these ideas to meet our current needs.

A turn in G is an unordered pair of oriented edges of G originating at a
common vertex. A turn is nondegenerate if it is defined by distinct oriented
edges, and is degenerate otherwise. A turn (E1, E2) is contained in the filtration
element Gr (respectively the stratum Hr) if both E1 and E2 are contained in
Gr (respectively Hr). If E′1E2 · · ·Ek−1E

′
k is the edge path associated to a

path α, then we say that α contains the turns (Ei, Ēi+1) for 0 ≤ i ≤ k − 1.
This is consistent with our identification of a path with its associated edge
path. Similarly, we say that α crosses or contains each edge that occurs in its
associated edge path and we say that α is contained in a subgraph K, written
α ⊂ K, if each edge in its edge path is contained in K.

If f : G → G is a topological representative and E is an edge of G, then
we define Tf(E) to be the first edge in (the edge path associated to) f(E);
for each turn (Ei, Ej), define Tf((Ei, Ej)) = (Tf(Ei), T f(Ej)). An important
observation is that if α is a path and if the Tf -image of each turn in α is
nondegenerate, then f(α) is a path.

Since Tf sends edges to edges and turns to turns, it makes sense to iterate
Tf . We say that a turn is illegal with respect to f : G→ G if its image under
some iterate of Tf is degenerate; a turn is legal if it is not illegal. We say that
a path α ⊂ G is legal if it contains only legal turns and that it is r-legal if it is
contained in Gr and all of its illegal turns are contained in Gr−1.

To each stratum Hr, we associate a square matrix Mr called the transition
submatrix for Hr; the ijth entry of Mr is the number of times that the f -image
of the jth edge crosses the ith edge in either direction. A nonnegative matrix
M is irreducible if for each i and j there exists n > 0 so that the ijth entry of
Mn is positive. By enlarging the filtration if necessary, we may assume that
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each Mr is either the zero matrix or is irreducible. This gives us three kinds
of strata. If Mr is the zero matrix, then Hr is a zero stratum . (These arise in
the ‘core subdivision’ operation of [BH1].) If Mr is irreducible, then it has an
associated Perron-Frobenius eigenvalue λr ≥ 1 [Sen]. If λr > 1, then we say
that Hr is an exponentially-growing stratum; if λr = 1, then we say that Hr is
a non-exponentially-growing stratum.

A topological representative f : G→ G of O is a relative train track map
with respect to the filtration φ = G0 ⊂ G1 · · · ⊂ Gm = G if G has no valence
one vertices, if each nonzero Mr is irreducible and if each exponentially-growing
stratum satisfies the following conditions.

1. If E is an edge in Hr, then Tf(E) is an edge in Hr.

2. If β ⊂ Gr−1 is a nontrivial path with endpoints in Gr−1∩Hr, then f#(β)
is nontrivial.

3. If σ ⊂ Hr is a legal path, then f(σ) ⊂ Gr is an r-legal path.

Complete details about relative train track maps can be found in [BH1].

The most important consequence of being a relative train track map is
Lemma 5.8 of [BH1]. We repeat it here for the reader’s convenience. A key
point is that no cancellation of edges in Hr occurs when the image fk(σ) of an
r-legal path σ ⊂ Gr is tightened to fk#(σ).

Lemma 2.5.1. Suppose that f : G → G is a relative train track map,
that Hr is an exponentially-growing stratum and that σ = a1b1a2 . . . bl is a
decomposition of an r-legal path into subpaths where each ai ⊂ Hr and each
bj ⊂ Gr−1. (Allow the possibility that a1 or bl is trivial, but assume that the
other subpaths are nontrivial.) Then f#(σ) = f(a1)f#(b1)f(a2) . . . f#(bl) and
f#(σ)is r-legal.

2.6. Free factor systems. Many of the arguments in this paper proceed by
induction up through a filtration. In this subsection we consider filtrations from
a group theoretic point of view and we show how to choose relative train track
maps in which the steps between filtration elements are as small as possible.

We begin with the main geometric example.

Example 2.6.1. Suppose that G is a marked graph and that K is a sub-
graph whose non-contractible components are labeled C1, . . . , Cl. Choose ver-
tices vi ∈ Ci and a maximal tree T ⊂ G such that each T ∩Ci is a maximal tree
in Ci. The tree T determines inclusions π1(Ci, vi) → π1(G, v). Let F i ⊂ Fn
be the free factor of Fn determined by π1(Ci, vi) under the identification of
π1(G, v) with Fn. Then F 1 ∗ F 2 ∗ · · · ∗ F l is a free factor of Fn. Without a
specific choice of T , the Ci’s only determine the Fi’s up to conjugacy.
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We reserve the notation F i for free factors of Fn. We use superscripts
for the index so as to distinguish the index from the rank. The conjugacy
class of F i is denoted [[F i]]. If F 1 ∗ F 2 · · · ∗ F k is a free factor and each
F i is nontrivial (and so has positive rank), then we say that the collection
F = {[[F 1]], . . . , [[F k]]} is a nontrivial free factor system. We refer to ∅ as the
trivial free factor system.

Returning to Example 2.6.1, we write F(K) for the free factor system
{[[π1(C1)]], . . . , [[π1(Cl)]]} and say that F(K) is realized by K.

We define the complexity of the free factor system F = {[[F 1]], . . . , [[F k]]},
written cx(F), to be 0 if F is trivial and to be the non-increasing sequence
of positive integers that is obtained by rearranging the elements of
{rank(F 1), . . . ,rank(F k)} if F is nontrivial. For any fixed Fn, there are only
finitely many such complexities and we order them lexicographically. Thus
5, 3, 3, 1 > 4, 4, 4, 4, 4, 4 > 4 > 0; {[[Fn]]} has the highest complexity and ∅ has
the smallest.

The intersection of free factors is a free factor. More generally, we have
the following result (Subgroup Theorem 3.14 of [SW]).

Lemma 2.6.2. Suppose that Fn = F 1∗F 2 · · ·∗F k, that H is a subgroup of
Fn and that H(1), . . . , H(l) are the nontrivial subgroups of the form of H∩(F j)c

for c ∈ Fn. Then H(1) ∗ · · · ∗H(l) is a free factor of H.

For any free factor systems F1 and F2, define F1 ∧ F2 to be the set
of nontrivial elements of {[[F i ∩ (F j)c]] : [[Fi]] ∈ F1; [[Fj ]] ∈ F2; c ∈ Fn}.
Lemma 2.6.2 implies that F1 ∧ F2 is a (possibly empty) free factor system.

Lemma 2.6.3. If F1 ∧ F2 6= F1, then cx(F1 ∧ F2) < cx(F1).

Proof. Each nontrivial F i∩(F j)c is a free factor of F i and so either equals
F i or has strictly smaller rank than F i. Thus the set of ranks that occur for
elements of F1 ∧ F2 is obtained from the set of ranks that occur for elements
of F1 by (perhaps more than once) replacing a positive integer with a finite
collection of strictly smaller integers.

An outer automorphism O induces an action on the set of conjugacy
classes of free factors. If F i is a free factor and [[F i]] is fixed by O, then we say
that [[F i]] is O-invariant. Sometimes, we will abuse notation and say that F i

is O-invariant when we really mean that its conjugacy class is. We say that F
is O-invariant if each [[F i]] ∈ F is O-invariant. If [[F i]] is O-invariant, then
there is an automorphism Φ representing O such that Φ(F i) = F i. Since Φ
is well-defined up to composition with an inner automorphism determined by
an element of F i, Φ determines an outer automorphism of F i that we refer
to as the restriction of O to F i. Note that if F(K) is realized by K and if
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f : G → G is a topological representative of O that setwise fixes each non-
contractible component Ci of K, then F(K) is O-invariant.

We say that β ∈ B is carried by [[F i]] if it is in the closure of the circuits in
B determined by conjugacy classes in Fn of elements of F i. It is an immediate
consequence of the definitions that if G is a marked graph and K is a connected
subgraph such that [[π1(K)]] = [[F i]], then β is carried by [[F i]] if and only if
the realization of β in G is contained in K. A subset B ⊂ B is carried by the
free factor system F if each element of B is carried by an element of F .

Lemma 2.6.4. If β ∈ B is carried by both [[F 1]] and [[F 2]] then β is
carried by [[F 1 ∩ (F 2)c]] for some c ∈ Fn.

Proof. For i = 1, 2, choose a marked graph Gi with one vertex vi and
a subgraph Ki so that the marking identifies π1(Ki, vi) with F i. Choose a
homotopy equivalence h : G1 → G2 that induces (via the the markings on G1

and G2) the identity on Fn. Let β1 ⊂ K1 ⊂ G1 and β2 = h#(β1) ⊂ K2 ⊂ G2

be bi-infinite paths that realize β. Part 2 of Lemma 2.3.1 implies that for
each subpath σk of β1, h#(σk) = ckτkdk where τk ⊂ β2 ⊂ K2 and ck and dk
have uniformly bounded length. We may choose the σk’s to be an increasing
collection whose union covers β1 and so that ck = c and dk = d are independent
of k. The union of the τk’s covers β2. Let wk = σkσ̄1 and note that h#(wk) =
[cτkτ̄1c̄] contains all but a uniformly bounded amount of τk as a subpath. The
lemma now follows from the fact that the element of Fn determined by both
wk and h#(wk) is contained in F 1 ∩ (F 2)c.

Corollary 2.6.5. For any subset B ⊂ B there is a unique free factor
system F(B) of minimal complexity that carries every element of B. If B has
a single element, then F(B) has a single element.

Proof. Since [[Fn]] carries every element of B, there is at least one free fac-
tor system F1 of minimal complexity that carries every element of B. Suppose
that F2 also carries every element of B and that cx(F1) = cx(F2). Lemma 2.6.4
implies that F1 ∧F2 carries every element of B. Minimality and Lemma 2.6.3
therefore imply that F1 = F2. This proves that F(B) is well-defined.

Every element of B is carried by some element of F(B). If B has only one
element but F(B) has more than one element, then we can reduce cx(F(B))
by reducing the number of elements in F(B). This proves the second part of
the corollary.

We write [[F 1]] @ [[F 2]] if F 1 is conjugate to a free factor of F 2 and write
F1 @ F2 if for each [[F i]] ∈ F1 there exists (a necessarily unique) [[F j ]] ∈ F2

such that [[F i]] @ [[F j ]]. The reader will easily check that if K1 ⊂ K2 are
subgraphs of G, then F(K1) @ F(K2).
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In many of our induction arguments, it is important that the step between
one filtration element and the next be as small as possible. This, and the fact
that we sometimes replace f : G → G by an iterate, motivates the following
definition and lemma.

Definition 2.6.6. A topological representative f : G → G and filtration
∅ = G0 ⊂ G1 ⊂ · · · ⊂ GK = G are reduced if each stratum Hr has the
following property : If a free factor system F ′ is invariant under the action of
an iterate of O and satisfies F(Gr−1) @ F ′ @ F(Gr), then either F ′ = F(Gr−1)
or F ′ = F(Gr).

Lemma 2.6.7. For any O-invariant free factor system F , there exists a
relative train track map f : G → G representing O and filtration ∅ = G0 ⊂
G1 ⊂ · · · ⊂ GK = G such that :

• F = F(Gr) for some filtration element Gr.

• If C is a contractible component of some Gi, then f j(C) ⊂ Gi−1 for some
j > 0.

If O is replaced by an iterate Os then f : G→ G may be chosen to be reduced.

Proof. The first step in the proof is to show that for any nested sequence
F1 @ · · · @ Fl = {[[Fn]]} of O-invariant free factor systems, there is a topolog-
ical representative f : G → G of O and a filtration ∅ ⊂ G1 ⊂ · · ·Gl = G so
that each Fi is realized by Gi. The construction of f : G → G is very similar
to the one in Lemma 1.16 of [BH1].

We argue by induction on l, the l = 1 case following from the fact
that every O is represented by a homotopy equivalence of Rn. Let Fl−1 =
{[[F 1]], . . . , [[F k]]}. Choose automorphisms Φi : Fn → Fn representing O such
that Φi(F i) = F i.

For 1 ≤ i ≤ k and 1 ≤ j ≤ l − 2, define F ij = {[[F i]]} ∧ Fj . Equivalently
F ij consists of those elements of Fj that are contained (in the sense of @) in
[[F i]]. Then F i1 @ · · · @ F il−2 @ {[[F i]]} and Fj = ∪ki=1F ij . By induction on
l, there are topological representatives fi : Ki → Ki of the restriction of O to
F i and there are filtrations ∅ = Ki

0 ⊂ Ki
1 ⊂ · · ·Ki

l−1 = Ki so that each F ij is
realized by Ki

j . We may assume inductively that fi fixes a vertex vi of Ki and
that the marking on Ki identifies F i with π1(Ki, vi) and identifies Φi with the
automorphism (fi)# : π1(Ki, vi)→ π1(Ki, vi).

Let F k+1 ∼= Fnk+1
be a free factor such that F 1 ∗ · · · ∗ F k+1 ∼= Fn. Define

G to be the graph obtained from the disjoint union of the Ki’s by adding
edges Ei, 2 ≤ i ≤ k, connecting v1 to vi, and by adding nk+1 loops {Lj}
based at v1. Collapsing the Ei’s to v1 gives a homotopy equivalence of (G, v1)
onto a graph (G′, v′) whose fundamental group is naturally identified with
F 1 ∗ · · · ∗ F k+1 ∼= Fn. This provides a marking on G.
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K1

K3

K2

L1

L2

E2

E3

The filtration φ = G0 ⊂ G1 ⊂ · · · ⊂ Gl = G is defined by Gj = ∪ki=1K
i
j .

It is immediate from the definitions that Fj = F(Gj).
There exists ci ∈ Fn, 2 ≤ i ≤ k, such that Φ1(x) = ciΦi(x)c̄i for all

x ∈ Fn. Let γi ⊂ G be the loops based at v1 that are identified, under the
marking, with ci. Extend ∪fi : ∪Ki → ∪Ki to a topological representative
f : G → G by defining f(Ei) = γiEi and by defining f(Lj) according to Φ1.
Then f# : π1(G, v1) → π1(G, v1) induces Φ1 : Fn → Fn and so represents O.
This completes the first part of the proof.

The second step in the proof is to promote f : G→ G to a relative train
track map. This may cause the filtration to be expanded but we will maintain
the property that each Fj is realized by some filtration element. Applying this
with F1 = F and l = 2 will complete the proof of the first part of the lemma.

In Section 5 of [BH1], there is an algorithm that begins with an arbitrary
topological representative ofO and filtration and produces a relative train track
map and filtration that represents O. The algorithm uses only the operations
of : subdivision; folding; tightening; collapsing pre-trivial forests; valence-one
homotopy; and (with some restrictions) valence-two homotopy. (See [BH1] for
definitions.) It suffices to work one step at a time and show that if f̂ : Ĝ→ Ĝ

is obtained from f : G → G by performing one of these operations and if
each Fi is realized by a filtration element of G, then each Fi is realized by a
filtration element of Ĝ.

Let p : G → Ĝ be the natural homotopy equivalence. We will show
that if C1 and C2 are non-contractible components of a filtration element Gk
in G, then Ĉ1 = p(C1) and Ĉ2 = p(C2) are disjoint f̂ -invariant subgraphs
and [[π1(Ci)]] = [[π1(Ĉi)]]. Since p(Gk) is a filtration element in the induced
filtration on Ĝ, this will complete the second step.

We consider first the case that Ĝ is obtained from G by collapsing a pre-
trivial forest X. (A forest is pre-trivial if its image under some iterate of f is
a finite union of points.) Since a component of X cannot intersect both C1

and C2, Ĉ1 and Ĉ2 are disjoint. Let X0 be a component of X. If Ci ∩X0 has
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more than one component then there is a circuit that is not contained in Ci
but whose image under some iterate of f is contained in Ci. This contradicts
the fact that f and f |Ci are homotopy equivalences. Thus Ci∩X is connected
and [[π1(Ci)]] = [[π1(Ĉi)]].

The operations of subdivision, folding, tightening and valence-one homo-
topy are straightforward to check and we leave this to the reader. Suppose
that v is a valence-two vertex with incident edges Er and Es. If Er and Es are
disjoint from C1∪C2 then the valence-two homotopy does not affect C1 or C2.
If Er and Es are both contained in C1∪C2, then they are both contained in C1

or both contained in C2, say C1. In this case, C2 is unchanged by the valence-
two homotopy and it follows immediately from the definitions that Ĉ1∩Ĉ2 = ∅
and that [[π1(C1)]] = [[π1(Ĉ1)]]. If one edge, say Er, is contained in C1 ∪ C2

but Es is not, then Es is not contained in Gk. In particular, Es belongs to
a higher stratum than does Er so the valence-two homotopy is performed by
sliding v across Er. From the point of view of Gk, a valence-one homotopy is
being performed on one of its components. The desired properties now follow
immediately from the definitions. This completes the second step.

If C is a contractible component of Gi and no f j(C) is contained in Gi−1,
then there is a collection of components of Gi that form an invariant forest.
Collapse each of these components to points. After tightening the images of the
remaining edges and possibly collapsing edges in other zero strata to points,
there is a quotient map q : G → G′, an induced topological representative
f ′ : G′ → G′ and a filtration with elements of the form q(Gj). By construction,
each F(Gj) = F(q(Gj)) so it is still true that each Fj is realized by some
filtration element. We will show that f ′ : G′ → G′ is a relative train track
map. Thus, after repeating this operation finitely many times, we establish
the first statement in the lemma.

Assume that the edges in G′ have the same labels as they did in G. The
key point is that for any path σ ⊂ G, the edge path associated to σ′ = q#(σ) is
obtained from the edge path associated to σ by removing all occurrences of the
collapsed edges. In particular, if E is an edge of G that does not collapse, then
f ′(E) is obtained from f(E) by removing occurrences of collapsed edges. It is
straightforward to check that q induces a one-to-one correspondence between
the exponentially-growing (respectively non-exponentially-growing) strata of
f : G → G and the exponentially-growing (respectively non-exponentially-
growing) strata of f ′ : G′ → G′. If Hs is exponentially growing, then conditions
1 and 3 in the definition of relative train track map for q(Hs) follow immediately
from conditions 1 and 3 for Hs. Condition 2 for q(Hs) follows from condition 2
for Hs and the observation that if σ ⊂ G is nontrivial, then σ′ is trivial if and
only if some fk(σ) is entirely contained in a component of Gi that is collapsed
by q. In particular if σ′ and each fk#(σ) are nontrivial, then each (f ′)k#(σ) is
nontrivial. The remaining details are left to the reader.
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For the last statement of the lemma, extend F to a maximal (with respect
to @) nested sequence C of distinct free factor systems Fi such that each Fi is
invariant under the action of some iterate of O. Choose s > 0 so that each Fi
is Os-invariant. Let f : G → G be a relative train track map representing Os
and let ∅ = G0 ⊂ G1 ⊂ · · · ⊂ Gm be a filtration for f : G→ G such that each
Fi is realized by a filtration element. In other words, C is a nested subsequence
of ∅ @ F(G1) @ · · · @ F(Gm) = {[[Fn]]}. Since C is maximal, f : G → G is
reduced.

3. Attracting laminations

3.1. Attracting laminations associated to exponentially-growing strata.
Measured foliations play a central role in Thurston’s classification of map-
ping classes. When working in Out(Fn), one’s method of attack is determined,
to a great extent, by how one chooses to generalize measured foliations. In
this paper, we adopt a Nielsen-like point of view similar to that of [HT]. In
particular, we work with laminations rather than foliations, we make extensive
use of the space of ends (in this case ∂Fn) and we restrict our considerations
to topological rather than measure theoretic properties.

An important feature of our approach is that we work directly in B. Thus
an attracting lamination Λ+, defined below, is a closed set of lines and not a
single point in a space of (measured) laminations. This makes certain argu-
ments longer and perhaps less transparent but it has an essential advantage:
it enlarges the basin of attraction for the attracting laminations (see Theo-
rem 6.0.1 and Remark 6.0.2). This is crucial for our application of the ‘Tits
ping-pong’ argument via Corollary 3.4.3.

In this subsection we define attracting laminations in terms of the action
of an outer automorphism O on the space of lines B and then begin to develop
their properties in terms of relative train track maps f : G→ G that represent
O. A different approach to laminations may be found in [Lus].

Definitions 3.1.1. We say that β′ ∈ B is weakly attracted to β ∈ B under
the action of O if Ok#(β′) → β. (We describe the attraction as weak to em-
phasize that we are working in a non-Hausdorff space that ignores measure.)
A subset U ⊂ B is an attracting neighborhood of β ∈ B for the action of O if
O#(U) ⊂ U and if {Ok#(U) : k ≥ 0} is a neighborhood basis for β in B. If
U is an attracting neighborhood of β for the action of O, then β′ is weakly
attracted to β under the action of O if and only if some Ok#(β′) ∈ U . The
reader will easily check that if α ⊂ G realizes β′ and γ ⊂ G realizes β, then β′

is weakly attracted to β if and only if each subpath of γ is contained in fk#(α)
for all sufficiently large k. We sometimes say that γ is weakly attracted to α

under the action of f#.
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Remark 3.1.2. Since B is not Hausdorff, limits are not unique. For ex-
ample, working by analogy in the mapping class group of a closed surface S,
suppose that φ : S → S is a homeomorphism in Thurston normal form and
that there are two pseudo-Anosov components S1 and S2. Denote the stable
and unstable laminations of φ|Si by Λ−i and Λ+

i respectively; let λ+
i be a leaf

of Λ+
i . Every complete geodesic γ ⊂ S that intersects the interior of Si and is

not a leaf of Λ−i is weakly attracted to λ+
i . Thus most complete geodesics in

S are weakly attracted to both λ+
1 and λ+

2 .

Definitions 3.1.3. A bi-infinite path σ in a marked graph G is birecurrent
if every finite subpath of σ occurs infinitely often as an unoriented subpath of
each end of σ. A line in G is birecurrent if the path representing it, with either
choice of orientation, is birecurrent. An element of B is birecurrent if some,
and hence any (see Lemma 3.1.4), realization in a marked graph is birecurrent.

Lemma 3.1.4. If some realization of β ∈ B in a marked graph is birecur-
rent then every realization of β ∈ B in a marked graph is birecurrent. If β is
birecurrent, then Ψ#(β) is birecurrent for all Ψ ∈ Out(Fn).

Proof. Suppose that σ ⊂ G and σ′ ⊂ G′ are realizations of β and that σ
is birecurrent. Let h : G → G′ be a homotopy equivalence that respects the
markings and let C be the bounded cancellation constant for h . Choose lifts
σ̃ ⊂ G̃, σ̃′ ⊂ G̃′ and h̃ : G̃→ G̃′ such that h̃#(σ̃) = σ̃′.

Given a finite subpath σ̃′0 ⊂ σ̃′, extend σ̃′0 to τ̃ ′ ⊂ σ̃′ by adding C initial
and terminal edges. Choose a finite subpath τ̃ ⊂ σ̃ such that h̃#(τ̃) ⊃ τ̃ ′.
Since σ is birecurrent, each end of σ̃ contains infinitely many copies τ̃i of τ̃ .
Define µ̃′i by removing C initial and terminal edges from h̃#(τ̃i). Lemma 2.3.1
implies that µ̃′i ⊂ σ̃′. By construction, each µ̃′i contains a copy of σ̃′0 and we
have verified that σ′ is birecurrent.

For the second part of the lemma, suppose that β is realized by σ ⊂ G

and that σ is birecurrent. Choose a topological representative f : G→ G of Ψ.
The preceding argument, with h : G→ G′ replaced by f : G→ G, carries over
with no other changes to prove that f#(σ) is birecurrent. Since f#(σ) realizes
Ψ#(β), this completes the proof.

Definitions 3.1.5. A closed subset Λ+ of B is an attracting lamination for
O if it is the closure of a single point β that:

(1) is birecurrent;

(2) has an attracting neighborhood for the action of some iterate of O;

(3) is not carried by an O-periodic free factor of rank one.

β is said to be generic for Λ+ or simply Λ+-generic. We denote the set of
attracting laminations for O by L(O).
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Lemma 3.1.16. L(O) is O-invariant.

Proof. Suppose that β is generic with respect to Λ+ ∈ L(O). Lemma 3.1.4
implies that O#(β) is birecurrent. If V is an attracting neighborhood for β
under the action of Os then O#(V ) is an attracting neighborhood for O#(β)
under the action of Os. If [[F ]] is an O-periodic, rank-one free factor that
carries O#(β) and if Φ : Fn → Fn represents O−1, then [[Φ(F )]] is an O-
periodic rank-one free factor that carries β. Thus O(β) is generic with respect
to O#(Λ+) ∈ L(O).

In order to analyze L(O), we bring relative train track maps into the
discussion.

Definitions 3.1.7. Assume that f : G → G and ∅ = G0 ⊂ G1 ⊂ · · · ⊂
GK = G are a relative train track map and filtration representing O and that
Hr is an exponentially-growing stratum. For each edge E of Hr and k ≥ 0,
define the k-tile determined by E to be the unoriented path determined by
fk#(E); i.e. fk#(E) with either of its orientations. A path in G is called a tile
if it is a k-tile for some k. A k-tiling of a path in Gr is a decomposition into
subpaths that are either k-tiles or are contained in Gr−1. A bi-infinite path
λ ⊂ G has an exhaustion by tiles if it can be written as the increasing union of
tiles; equivalently λ has an exhaustion by tiles if each of its subpaths occurs as
a subpath of a tile in λ. If λ has an exhaustion by tiles, then condition (3) in
the definition of relative train track maps (subsection 2.5) implies that λ ⊂ Gr
is r-legal. We say that a line in G has a k-tiling or has an exhaustion by tiles
if the path representing it, with either choice of orientation, has this property.

A nonnegative matrix M is aperiodic if it has an iterate Mk that is pos-
itive; i.e. if each entry of Mk is positive. Aperiodic matrices are irreducible
but the converse is not true. See [Sen] for the precise relationship between
aperiodic and irreducible matrices. If f : G→ G is a relative train track map,
then we say that an exponentially-growing stratum Hr is aperiodic if the tran-
sition submatrix Mr is aperiodic and that f : G → G is eg-aperiodic if each
exponentially-growing stratum is aperiodic.

The following lemma records some elementary but useful observations.

Lemma 3.1.8. Assume that Hr is an exponentially-growing stratum.

1. Every path in Gr has a 0-tiling.

2. If σ is r-legal and has a k-tiling, then f#(σ) has a (k + 1)-tiling.

3. If k < l, then each l-tile has a k-tiling ; if Mk0
r is positive and l − k ≥ k0

then each k-tile occurs as a subpath of each l-tile.
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4. The ijth coefficient of Mk
r is the number of times that the ith edge in Hr

is crossed, in either direction, by the k-tile determined by the jth edge in
Hr.

5. If λ has an exhaustion by tiles then f#(λ) has an exhaustion by tiles.

Proof. (1) is immediate from the definitions. (2), (4) and (5) follow from
Lemma 2.5.1. (3) follows from (1), (2), and (4).

The natural way to find attracting laminations is to look at weak limits of
Ok(α) for some circuit α. When working with respect to a relative train track
map f : G → G, one can look at the weak limits of fk(E) for some edge E.
We use this simple approach in the next pair of lemmas.

Lemma 3.1.9. Suppose that f : G → G and ∅ = G0 ⊂ G1 ⊂ · · · ⊂
GK = G are a relative train track map and filtration representing O and that
Hr is an aperiodic exponentially-growing stratum. Then there is an attracting
lamination Λ+ with generic leaf β so that Hr is the highest stratum crossed by
the realization λ of β in G.

Proof. Choose an edge E of Hr and m > 0 so that fm# (E) = αEβ for some
nontrivial paths α, β ⊂ Gr. Let h = fm; choose lifts Ẽ, α̃, β̃ and h̃ : Γ→ Γ so
that h̃(Ẽ) = α̃Ẽβ̃. Define τ̃j = h̃j#(Ẽ) and note that τ̃j is a lift of a jm-tile.
Then τ̃0 = Ẽ, τ̃1 = α̃τ̃0β̃ and more generally τ̃j+1 = α̃j τ̃j β̃j , for nontrivial
paths α̃j and β̃j . The τ̃j ’s are therefore an increasing sequence of lifts of tiles
whose union is a bi-infinite path λ̃ ⊂ Γ that is fixed by h̃#. We claim that
the projection λ ⊂ G realizes an element β ∈ B that is generic with respect to
some element of L(O).

Since Ẽ is mapped over itself by h̃, there is a point x̃ ∈ Ẽ that is fixed
by h̃. After replacing m by a multiple if necessary, we may assume that the
h#-image of any edge in Hr contains at least two Hr-edges. Define λ̃k to be the
subpath of λ̃ that begins with the kth H̃r-edge to the left of Ẽ and ends with
the kth H̃r-edge to the right of Ẽ; define Vk = N(λk). Lemma 2.5.1 implies
that h̃#(λ̃k) ⊃ λ̃2k. By Lemma 2.3.1(3), h#(Vk) ⊂ Vk+1 for all sufficiently
large k. The Vk’s are a neighborhood basis for λ and so for all sufficiently large
k, Vk is an attracting neighborhood of λ for the action of Om.

Since the difference between the number of edges in h̃#(λ̃k) and the num-
ber of edges in λ̃k is unbounded, the λ̃k’s cannot be subpaths of a single
h̃#-invariant axis. In other words, λ is not a circuit and so cannot be carried
by any free factor of rank one.

By construction, λ has an exhaustion by tiles. We now use this to show
that λ has a k-tiling for all k ≥ 1. A k-tiling of λ corresponds to a subdivision
of λ̃ and so is determined by the vertices of λ̃ that are the endpoints of the
subdivision pieces. By Lemma 3.1.8(3), we may assume that each tile τi in
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an exhaustion of λ has a k-tiling and so defines a finite set Ṽi of vertices of λ̃.
After passing to a subsequence, we may assume that a vertex ṽ ∈ λ̃ satisfies
either ṽ ∈ Ṽi for all large i or ṽ 6∈ Ṽi for all large i. The set of vertices that
satisfy the former condition determines a k-tiling of λ.

Lemma 2.5.1 implies that the first and last edges of any tile are con-
tained in Hr. Thus each end of λ must contain infinitely many edges in Hr.
Lemma 3.1.8(3) and the existence of k-tilings for all k imply that each tile
occurs infinitely often in each end of λ. Since every finite subpath of λ is
contained in a tile, λ is birecurrent.

Having proved that L(O) is not empty, we next list some useful properties
of generic leaves.

Lemma 3.1.10. Assume that β ∈ B is a generic line of some Λ+ ∈ L(O),
that f : G → G and ∅ = G0 ⊂ G1 ⊂ · · · ⊂ GK = G are a relative train
track map and filtration representing O and that λ is the realization of β in G.
Then:

(1) The highest stratum Hr crossed by λ is exponentially growing.

(2) λ is r-legal.

Assume that tiles are defined with respect to Hr:

(3) λ has a k-tiling for all k ≥ 1.

(4) λ has an exhaustion by tiles.

Proof. We argue by induction on the rank n of Fn. The n = 1 case is
vacuous so we may assume that the lemma holds for outer automorphisms of
free groups with rank smaller than n.

As a first case suppose that λ ⊂ GK−1. Let m be the smallest positive
integer so that the component C of GK−1 that contains λ is fm-invariant. The
inductive hypothesis, applied to the restriction of Om to π1(C) completes the
proof.

We now assume that λ contains edges of HK . Necessarily λ must cross
some edges of HK infinitely many times. Choose s > 0 so that λ has an
attracting neighborhood for the action of Os and let α 6= λ ⊂ G be a circuit
that is weakly attracted to λ under the action of fs#. Since fsl#(α) weakly
converges to λ as l→∞, fs# cannot act periodically on α with period different
from one; since α 6= γ, fs# cannot fix α. Thus the number of edges in fsl#(α)
grows without bound. Since fsl#(α) weakly converges to a line with infinitely
many HK-edges, the number of HK-edges in fsl#(α) grows without bound. It
follows that HK must be an exponentially-growing stratum. This completes
the proof of (1).
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For (2), let j be the number of illegal turns that α has in Hr. The number
of illegal turns of fsl#(α) in Hr is bounded above by j. Choose a subpath λ0

of λ. Since λ is a weak limit of the fsl#(α)’s, λ0 occurs as a subpath of the
periodic line determined by fsl#(α) for all large l. Since the length of the circuit
fsl#(α) increases without bound, λ0 is covered by two fundamental domains of
the line fsi# (α) for all large l. It follows that the number of illegal turns of λ0 in
Hr is bounded above by 2j. Birecurrence, and the fact that λ0 was arbitrary,
therefore imply that λ is r-legal.

For (3), fix k ≥ 0 and let λ̃ ⊂ Γ be a lift of of λ. A k-tiling of λ corresponds
to a subdivision of λ̃ and so is determined by the vertices of λ̃ that are the
endpoints of the subdivision pieces.

Let q be the number of edges in α. For any finite subpath λ0 ⊂ λ let
λ1 ⊂ λ be a finite subpath that contains 2q+1 copies of λ0. As in the previous
case, if l is sufficiently large, then λ1 occurs as a subpath of the periodic
line determined by fsl#(α) that is covered by two fundamental domains. In
particular at least one copy of λ0 occurs as a subpath of fsl#(E) for some edge
E of Gr. We conclude that λ is an increasing union of finite subpaths that
have k-tilings. The k-tilings of these subpaths correspond to finite sets Ṽi of
vertices of λ̃. After passing to a subsequence, we may assume that a vertex
ṽ ∈ λ̃ satisfies either ṽ ∈ Ṽi for all large i or ṽ 6∈ Ṽi for all large i. The set
of vertices that satisfy the former condition determines a k-tiling of λ. This
proves (3).

To prove (4), choose a finite subpath λ0 ⊂ λ. Birecurrence implies that
there is a finite subpath λ1 ⊂ λ that contains two disjoint copies of λ0. After
enlarging λ0 if necessary we may assume that λ0 contains at least one edge of
Hr. By (3) λ has a k-tiling where k is so large that each k-tile contains more
edges than λ1 does. In any k-tiling of λ there are at most two k-tiles that
intersect λ1; one of these must contain a copy of λ0. We have now shown that
every finite subpath of λ is contained in a tile in λ. This completes the proof
of (4).

Corollary 3.1.11. Assume that f : G → G and ∅ = G0 ⊂ G1 ⊂ · · · ⊂
GK = G are a relative train track map and filtration representing O, that Hr

is an aperiodic exponentially-growing stratum and that tiles are defined with
respect to Hr. Assume further that β ∈ B is Λ+-generic for some Λ+ ∈ L(O)
and that Hr is the highest stratum crossed by the realization of β in G. Then
{N(τ) : τ is a tile} is a neighborhood basis in B for β. In particular, all such
β have the same closure.

Proof. Let λ ⊂ G be the realization of β. Lemma 3.1.10(3) and Lemma
3.1.8(3) imply that λ contains all tiles. Conversely, Lemma 3.1.10(4) implies
that every subpath of λ is contained in a tile in λ.
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Definitions 3.1.12. Lemma 3.1.9, Lemma 3.1.10 and Corollary 3.1.11 im-
ply that for any relative train track map representing O and for any aperi-
odic exponentially-growing stratum Hr there is a unique element Λ+ ∈ L(O)
with the property that Hr is the highest stratum crossed by the realization
λ ⊂ G of a Λ+-generic line. We say that Hr is the stratum determined by Λ+

and that Λ+ is the attracting lamination associated to Hr.

Lemma 3.1.13. L(O) is finite.

Proof. Choose a relative train track map f : G → G and filtration ∅ =
G0 ⊂ G1 ⊂ · · · ⊂ GK = G representing O. If f : G→ G is eg-aperiodic (i.e. if
each exponentially-growing stratum Hr is aperiodic) then there is a one-to-one
correspondence between the exponentially-growing strata and the elements of
L(O). Under these conditions, the lemma is clear.

On the other hand, suppose that some Mr is not aperiodic. There is a
partition ([Sen]) of the edges of Hr into s > 1 sets P1, . . . Ps such that for each
edge E ∈ Pi, the edge path f#(E) only crosses edges in Pi+1(mod s) and in
Gr−1. The matrix M s

r is not irreducible and so the filtration for f must be
enlarged to obtain a filtration for fs. After replacing f by fs, Hr divides into
s exponentially-growing strata. If s is maximal, then the transition matrix
for each of these s exponentially-growing strata is aperiodic and irreducible.
We have shown that some iterate Op of O is represented by an eg-aperiodic
relative train track map . Since L(Op) = L(O), we are reduced to the previous
case.

It is natural to focus on the case that each element of L(O) is O-invariant.
In the analogy with the mapping class group this corresponds to assuming that
the pseudo-Anosov components are fixed rather than permuted. The following
lemma relates this hypothesis to relative train track maps.

Lemma 3.1.14. The following are equivalent :

(1) Each element of L(O) is O-invariant.

(2) Each element of L(O) has an attracting neighborhood for O#.

(3) Every relative train track map f : G→ G representing O is eg-aperiodic.

(4) Some relative train track map f : G→ G representing O is eg-aperiodic.

Proof. It is obvious that (3)⇒ (4).
Suppose that f : G→ G is an eg-aperiodic relative train track map for O,

that Λ+ ∈ L(O) and that Hr is the exponentially-growing stratum associated
to Λ+. If λ ⊂ Gr is Λ+-generic, then f#(λ) is O(Λ+)-generic. Since Hr is the
highest stratum crossed by f#(λ), Corollary 3.1.11 implies that O(Λ+) = Λ+.
Thus (4)⇒ (1).
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Suppose that f : G → G is a relative train track map representing O,
that Hr is an exponentially-growing stratum and that Mr is not aperiodic.
There is a partition of the edges of Hr into s > 1 sets P1, . . . Ps such that for
each edge E ∈ Pi, the edge path f#(E) only crosses edges in Pi+1(mod s) and
in Gr−1. The matrix M s

r is not irreducible and so the filtration for f must
be enlarged to obtain a filtration for fs. After replacing f by fs, Hr divides
into s exponentially-growing strata, one for each Pi. By Lemma 3.1.9 each of
these contributes an element to L(O) that clearly does not have an attracting
neighborhood for O. Thus (2)⇒ (3).

Suppose that Λ+ ∈ L(O) is O-invariant, that β is a Λ+-generic line and
that V is an attracting neighborhood for β with respect to the action of Os.
Each Oi#(β) ∈ Oi#(V ) is generic with respect to Λ+. Corollary 3.1.11 implies
that β ∈ Oi#(V ). Thus U = V ∩ O#(V ) ∩ · · · ∩ Os−1

# (V ) is a neighborhood of
β that satisfies O#(U) ⊂ U . Moreover, Os#(U) ⊂ V . It follows that U is an
attracting neighborhood for β. Thus (1)⇒ (2).

We conclude this subsection with a pair of lemmas that are needed for
future reference.

Lemma 3.1.15. Assume that Hr is an aperiodic exponentially-growing
stratum for a train track map f : G→ G, that Λ+ ∈ L(O) is associated to Hr

and that δ is a line in Λ+ that is not entirely contained in Gr−1. Then the
closure of δ is all of Λ+. If δ is birecurrent then it is Λ+-generic.

Proof. Fix k ≥ 0. By Lemma 3.1.10(3), each Λ+-generic line has a k-tiling.
Since δ is a weak limit of Λ+-generic lines, δ is an increasing union of finite
subpaths that have k-tilings. It follows (cf. the proof of Lemma 3.1.10(3)) that
δ has a k-tiling. If δ 6⊂ Gr−1, then δ must contain at least one k-tile. Since k
is arbitrary, Corollary 3.1.11 and Lemma 3.1.8(3) imply that the closure of δ
contains each Λ+-generic line and so contains Λ+. It follows immediately that
δ satisfies condition (3) of Definition 3.1.5. Condition (2) of Definition 3.1.5
follows from the fact that every neighborhood of a generic line is also a neigh-
borhood of δ. If δ is birecurrent then condition (1) is also satisfied and δ is
Λ+-generic.

Lemma 3.1.16. A generic line of Λ+ ∈ L(O) is never a circuit.

Proof. A set in B consisting of a single circuit is closed in B. If a Λ+-
generic line β is a circuit, then Λ+ = β. Choose a relative train track map
f : G → G representing O. Since L(O) is finite and invariant, the realiza-
tion λ ⊂ G for β is invariant for the action of some iterate of f#. But this
contradicts the fact that λ ⊂ Gr is r-legal and crosses edges in Hr for some
exponentially-growing stratum Hr.
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3.2. Paired laminations. In this subsection we define a pairing between
L(O) and L(O−1) that is analogous to the pairing between the stable and
unstable foliations of a pseudo-Anosov homeomorphism. We will need the
following lemma and corollary.

Lemma 3.2.1. Suppose that Fn has generators {a1, . . . , an} and that Fn−1

is the subgroup generated by {a1, . . . , an−1}. If Φ : Fn → Fn is an automor-
phism and Fn−1 is Φ-invariant, then Φ(an) contains exactly one occurrence of
an or ān.

Proof. The restriction Φ|Fn−1 extends by an 7→ an to an automorphism
Φ′ : Fn → Fn. After replacing Φ by Φ(Φ′)−1, we may assume that Φ|Fn−1 is
the identity.

Let G = Rn be the rose with n petals and let f : G → G be the obvious
topological representative of Φ. The edges of G are labeled e1, . . . en and the
restriction of f to the subgraph Gn−1 consisting of e1, . . . en−1 is the identity.
If the f -image of an initial (respectively terminal) segment of en is contained in
Gn−1, then fold that initial (respectively terminal) segment into Gn−1. We may
now assume that f(en) begins and ends with en or ēn. If f is an immersion,
then it is a homeomorphism and we are done. Assume then that f is not an
immersion. The only fold that can take place is between the initial and terminal
ends of en. Let p : G → G′ be the maximal such fold and let f ′ : G′ → G

be the induced map (i.e. f = f ′p). By construction, f ′ is an immersion and
hence a homeomorphism. But G′ has two vertices while G has only one. This
contradiction completes the proof.

Corollary 3.2.2. If f : G → G is a topological representative and Hi

is a stratum that consists of a single edge E, then f(E) crosses E, in either
direction, at most once.

Proof. We may assume without loss of generality that Gi = G. Suppose at
first that Gi−1 is connected. Choose a maximal tree T for G that is contained
in Gi−1 and that contains both endpoints of E. Let B = {a1, . . . , an−1, E} be
the basis of Fn determined by the edges of G \ T , let Fn−1 be the subgroup
generated by {a1, . . . , an−1} and let Φ : Fn → Fn be the automorphism induced
by f and T . The corollary follows directly from Lemma 3.2.1.

Suppose now that Gi−1 is not connected. Denote the components of Gi−1

by C1 and C2 and suppose at first that C1 and C2 are f -invariant. If Cj
has a single vertex, let hj : G → G be the identity. If Cj has at least two
vertices, choose one, xj , that is not an endpoint of E and let hj : G → G be
a map with support in Cj that is homotopic to the identity and that satisfies
hjf(xj) = xj . Let f ′ : G → G be the topological representative defined by
f ′(e) = (h1h2f)#(e) for each edge e of G. Since f(E) and f ′(E) cross E the
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same number of times, we may replace f with f ′. In particular, we may assume
that f fixes x1 and x2. Add an edge F to G with endpoints x1 and x2, and
extend f by F 7→ F . This defines a topological representative (of a different
outer automorphism) to which the previous argument applies.

If f permutes C1 and C2 then, arguing as above, we may assume that
there are vertices xj ∈ Cj that are permuted by f . Add F to G as above and
extend f by F 7→ F̄ . The proof concludes as in the previous case.

Definitions 3.2.3. Since an attracting lamination Λ+ is the closure of a
single line β, any free factor that carries β carries every line in Λ+. Corol-
lary 2.6.5 therefore implies that there is a unique free factor F i of minimal
rank whose conjugacy class [[F i]] carries every line in Λ+. We denote [[F i]] by
F (Λ+). The rank of Λ+ is defined to be the rank of F i. For any connected
graph G, the rank of G is defined to be the rank of H1(G).

We say that the laminations Λ+ and Λ− of the following lemma are paired.
A key point in the proof is that O and O−1 have the same invariant free factor
systems.

Lemma 3.2.4. For each Λ+ ∈ L(O) there is a unique Λ− ∈ L(O−1) such
that F (Λ+) = F (Λ−).

Proof. We induct on the rank n of Fn. If n = 1, then there are no
exponentially-growing strata in any relative train track map representing an
iterate of O and so L(O) is empty. We may therefore assume that the lemma
holds for outer automorphisms of Fk where k < n.

There is no loss in replacing O by an iterate. We may therefore assume
that each element of L(O) is O-invariant. Choose Λ+ ∈ L(O). Since F (Λ+)
is unique, F (Λ+) is O-invariant. If the rank of Λ+ is less than n, then the
inductive hypothesis, applied to the restriction of O to F (Λ+), implies that
there exists a unique Λ− ∈ L(O−1) such that F (Λ+) = F (Λ−). We may
therefore assume that there is a pairing between the elements of L(O) with
rank less than n and the the elements of L(O−1) with rank less than n.

For any exponentially-growing stratum Hr there are bi-infinite paths in
Gr crossing edges in Hr. It follows that the rank of each component of Gr−1 is
less than the rank of Gr. In particular, there is at most one element of L(O)
or L(O−1) with rank n. It therefore suffices to assume that there is an element
Λ+ ∈ L(O) with rank n and to prove that there is an element Λ− ∈ L(O−1)
with rank n.

After we replace O by a further iterate if necessary, there is (Lemma 2.6.7)
a reduced relative train track map f : G → G and filtration ∅ = G0 ⊂ G1 ⊂
· · · ⊂ GK = G representing O. Now, Λ+ is associated to the top stratum
HK and each element of L(O) and L(O−1) with rank less than n is carried
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by F = F(GK−1). Corollary 3.2.2 implies that HK is not a single edge; since
subdivision vertices in HK can be removed without loss, HK is not an arc. It
follows that F is neither a single (conjugacy class of a) free factor of rank n−1
nor a pair of (conjugacy classes of) free factors with rank sum equal to n.

Choose (Lemma 2.6.7) a relative train track map f ′ : G′ → G′ repre-
senting an iterate of O−1 such that F is realized by a filtration element. The
transition submatrix for a non-exponentially-growing stratum is a permuta-
tion and so has an iterate that equals the identity. We may therefore assume,
after replacing f ′ by an iterate and enlarging the filtration if necessary, that
each non-exponentially-growing stratum is a single edge. We may also as-
sume that f : G → G is eg-aperiodic. If H ′K′ is the topmost stratum then,
since f : G → G is reduced, F = F(G′K′−1). Since H ′K′ cannot be a zero
stratum, the concluding observation of the preceding paragraph rules out the
possibility that it is a single edge. Thus H ′K′ is exponentially growing. Since
the expanding lamination associated to H ′K′ is not carried by F , it must have
rank n.

3.3. Expansion factors. In this subsection we assume that Λ+ is an at-
tracting lamination for some element of Out(Fn). Define the stabilizer of Λ+

to be Stab(Λ+) = {Ψ ∈ Out(Fn) : Ψ#(Λ+) = Λ+}. The following corollary
(of Proposition 3.3.3 below) is the main result of this subsection; it is essential
to our reduction of the Tits alternative for Out(Fn) to the Tits alternative for
UPG(Fn).

Corollary 3.3.1. There is a homomorphism PFΛ+ : Stab(Λ+) → Z

such that Ψ ∈ Ker(PFΛ+) if and only if Λ+ 6∈ L(Ψ) and Λ+ 6∈ L(Ψ−1).

The analogous result for the mapping class group is an immediate corollary
of the fact (exposé 12 of [FLP]) that the measured foliations associated to
a pseudo-Anosov homeomorphism are uniquely ergodic. Any mapping class
that topologically preserves the measured foliation must projectively fix its
invariant transverse measure and so multiplies this transverse measure by some
scalar factor. The assignment of the logarithm of this scalar factor to the
mapping class defines a homomorphism to R. After rescaling this provides a
homomorphism to Z analogous to PFΛ+ .

Because we are working in B and not a more structured space that takes
measures into account, we cannot measure the attraction factor directly. In-
stead of an invariant measure defined on the lamination itself, we use a length
function on paths in a marked graph. The length function depends on the
choice of marked graph but the factor by which an element of Stab(Λ+) ex-
pands this length does not.
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Definition 3.3.2. Assume that f : G→ G and ∅ = G0 ⊂ G1 ⊂ · · · ⊂ GK =
G are a relative train track map and filtration for an element of Stab(Λ+) and
that Λ+ is the attracting lamination associated to the (necessarily aperiodic)
exponentially-growing stratum Hr. For any path σ ⊂ G define ELr(σ) to be
the edge length of σ, counting only the edges of Hr that are entirely contained
in σ. We say that Ψ ∈ Stab(Λ+) asymptotically expands Λ+ by the factor µ if
for every such choice of ∅ = G0 ⊂ G1 ⊂ · · · ⊂ GK = G and f : G → G, every
topological representative g : G→ G of Ψ and for all η > 0

(∗) µ− η < ELr(g#(σ))
ELr(σ)

< µ+ η

whenever σ is contained in a Λ+-generic line and ELr(σ) is sufficiently large.

For the remainder of this subsection we assume that f : G → G, Hr,
∅ = G0 ⊂ G1 ⊂ · · · ⊂ GK = G and Λ+ are as in Definition 3.3.2.

The following proposition relates asymptotic expansion of Λ+ to Perron-
Frobenius eigenvalues. In particular, it implies that the Perron-Frobenius
eigenvalue associated to an exponentially-growing stratum of a relative train
track map f : G→ G depends only on the outer automorphism O determined
by f and on the element of L(O) that is associated to the stratum.

Proposition 3.3.3. (1) Every Ψ ∈ Stab(Λ+) asymptotically expands Λ+

by some factor µ = µ(Ψ).

(2) µ(ΨΨ′) = µ(Ψ)µ(Ψ′).

(3) µ(Ψ) > 1 if and only if Λ+ ∈ L(Ψ).

(4) If Λ+ ∈ L(Ψ) and f ′ : G′ → G′ is a relative train track map for Ψ,
then µ(Ψ) = µ′s is the Perron-Frobenius eigenvalue for the transition
submatrix M ′s of the exponentially-growing stratum H ′s associated to Λ+.

Our main result follows easily from Proposition 3.3.3.

Proof of Corollary 3.3.1. Define PF ∗Λ(Ψ) = log(µ(Ψ)). Proposition 3.3.3
and the observation that PF ∗Λ(Ψ−1) = −PF ∗Λ(Ψ) (which follows from Propo-
sition 3.3.3(2)) imply that each µ(Ψ), other than 1, occurs as the Perron-
Frobenius eigenvalue for an irreducible matrix of uniformly bounded size. It
follows (cf. page 37 of [BH1]) that the image of PF ∗Λ is an infinite discrete
subset of R and is hence isomorphic to Z. Identify the image with Z and call
the resulting homomorphism PFΛ. The desired properties follow immediately
from Proposition 3.3.3.

We need a pair of preliminary estimates before beginning the proof of
Proposition 3.3.3.
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Definitions 3.3.4. Let {Ei} be the edges of Hr and let µr be the Perron-
Frobenius eigenvalue for Mr. The Perron-Frobenius theorem ([Sen]) implies
that µ−nr Mn

r converges to a matrix M∗ whose columns are projectively equal.
Normalize the column vectors of M∗ so that the sum of the entries is one and
denote this common frequency vector by A = (ai). Let τki be the k-tile fk#(Ei).

Every Λ+-generic line λ has a unique 0-tiling. Pushing this forward by f#,
as in Lemma 3.1.8(2), produces a 1-tiling of f#(λ) that we call the standard
1-tiling of f#(λ). Continue this to define the standard k-tiling of fk#(λ). Since
Λ+ is O-invariant, λ = fk#(γk) for some Λ+-generic line γk. In this way every
Λ+-generic line has a standard k-tiling for all k ≥ 0.

The following lemma states that the k-tiles are ‘evenly distributed’ in
Λ-generic lines.

Lemma 3.3.5. Fix ε > 0 and k ≥ 0. Suppose that σ is a finite subpath
of a Λ+-generic line λ. Among all k-tiles in the standard k-tiling of λ that are
entirely contained in σ, denote the fraction that equals τki by αik(σ). If ELr(σ)
is sufficiently large, then ai − ε < αik(σ) < ai + ε.

Proof. Choose l > 0. In the standard l-tiling of λ, there are at most
two l-tiles that intersect σ but are not entirely contained in σ. If ELr(σ) is
sufficiently large, then there is no loss in ignoring the Hr edges of σ in these
two l-tiles and we may assume that σ is a union of l-tiles and paths in Gr−1. It
therefore suffices to assume that σ is an l-tile for some arbitrarily large l. By
Lemma 2.5.1 and the definitions, it suffices to assume that k = 0. This case is
an immediate consequence of Lemma 3.1.8(4).

Lemma 3.3.6. Assume that g : G → G is a topological representa-
tive and that Λ+ is g#-invariant. There is a constant C1 = C1(g) satisfying
ELr(g#(δ)) < C1 for any subpath δ ⊂ Gr−1 of a Λ+-generic line.

Proof. If the lemma fails, then there exist Λ-generic lines λj and finite
subpaths δj ⊂ Gr−1 of λj such that the central segment of g#(δj) obtained
by removing the first and last j edges contains at least one edge in Hr. After
passing to a subsequence, we may assume that the δj ’s are an increasing se-
quence whose union is a line δ∗ ⊂ Gr−1 with the property that g#(δ∗) 6⊂ Gr−1.
Since δ∗ is a line in Λ+ whose closure is not all of Λ+ and since g# is a home-
omorphism that preserves Λ+, g#(δ∗) is a line in Λ+ whose closure is not all
of Λ+. This contradicts Lemma 3.1.15 and so completes the proof.

Proof of Proposition 3.3.3. Assume that f : G→ G, ∅ = G0 ⊂ G1 ⊂ · · · ⊂
GK = G, Hr and g : G→ G are as in Definition 3.3.2, that ai and τki are as in
Definitions 3.3.4 and that σ is a finite subpath of a Λ+-generic line. Define

µk =
∑
i aiELr(g#(τki ))∑
i aiELr(τki )

.
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We will show that for all ε > 0 : if k is sufficiently large (relative to ε) and if
ELr(σ) is sufficiently large (relative to ε and k) then

(∗∗) (1− ε)µk ≤
ELr(g#(σ))
ELr(σ)

≤ (1 + ε)µk.

It will follow that µ = limµk exists and that for all η > 0, (∗) holds whenever
ELr(σ) is sufficiently large (relative to η).

We will verify (∗∗) relative to the choices of f : G → G, ∅ = G0 ⊂ G1 ⊂
· · · ⊂ GK = G, Hr, and g : G→ G and then check that µ does not depend on
these choices.

Let bcc(g) be a bounded cancellation constant for g : G → G and let C1

be the constant of Lemma 3.3.6. In the following list ∼ε means that the error
of approximation is small relative to ε. Choose k so large that for all i:

(A) C1/ELr(τki ) ∼ε 0,

(B) bcc(g)/ELr(τki ) ∼ε 0.

Now restrict attention to σ where ELr(σ) is so large that:

(C) αik(σ) ∼ε ai,

(D) ELr(τki )/ELr(σ) ∼ε 0.

We can now verify (∗∗). In order to approximate ELr(g#(σ)) we allow
ourselves to make assumptions that result in errors that are a small percentage
of the total. There are four such assumptions. The first is that σ begins and
ends with a k-tile in the standard k-tiling of λ. Thus σ is a concatenation
of k-tiles γj and maximal subpaths δl ⊂ Gr−1; let N(σ) be the number of
k-tiles in this decomposition. The error that this assumption contributes is at
most twice the number of Hr-edges in a k-tile and so is controlled by (D). The
second assumption is that the approximation in (C) is exact. The third is that
each ELr(g#(δl)) = 0; this error is controlled by (A). The final assumption
is that g#(σ) ⊂ g#(λ) is a concatenation of the g#(γj)’s and g#(δl)’s (with
no cancellation at the junctures). This produces an error that is bounded by
2bcc(g)N(σ) and so is controlled by (B).

Once these assumptions are made, ELr(g#(σ)) =
∑
iN(σ)aiELr(g#(τki )).

When we apply this again with g = identity, ELr(σ) =
∑
iN(σ)aiELr(τki ).

Thus ELr(g#(σ))
ELr(σ) = µk and we have verified (∗∗).

If g∗ : G → G is another topological representative of Ψ, then there are
lifts g̃ : Γ→ Γ and g̃∗ : Γ→ Γ such that the distance between g̃(x̃) and g̃∗(x̃)
is bounded independently of x̃. It follows that ELr(g#(σ)) − ELr(g∗#(σ)) is
bounded independently of σ and hence that µ does not depend on the choice
of g.
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Suppose next that f̂ : Ĝ → Ĝ and ∅ = Ĝ0 ⊂ Ĝ1 ⊂ · · · ⊂ ĜK̂ = Ĝ is
another relative train track map and filtration representing O, that Λ+ is the
attracting lamination associated to the stratum Ĥs and that ÊLs is the edge
length function that counts edges of Ĥs in Ĝ.

Choose a homotopy equivalence h : G → Ĝ that respects the markings
and that restricts to an immersion on each edge. Arguing exactly as above we
conclude that there is a positive constant ν so that for all ε > 0

(∗ ∗ ∗) (1− ε)ν < ÊLs(h#(σ))
ELr(σ)

< (1− ε)ν

whenever σ is contained in a Λ+-generic line and ELr(σ) is sufficiently large.
The details of this modification are left to the reader.

Suppose now that ĝ : Ĝ → Ĝ represents Ψ. For any finite path σ ⊂ Gr,
h#g#(σ) and ĝ#h#(σ) differ by initial and terminal segments of uniformly
bounded size. It follows, by (***), that

ÊLs(ĝ#h#(σ))

ÊLs(h#(σ))
∼ ÊLs(h#g#(σ))

ÊLs(h#(σ))
∼ ELr(g#(σ))

ELr(σ)

where the error of approximation goes to 0 as ELr(σ) → ∞ or equivalently
as ÊLs(h#(σ)) → ∞. We conclude that µ is independent of the choice of
f : G → G and ∅ = G0 ⊂ G1 ⊂ · · · ⊂ GK = G . This completes the proof of
part (1) of Proposition 3.3.3.

Suppose that g : G → G and g′ : G → G are topological representatives
for Ψ and Ψ′ respectively. If σ ⊂ G is contained in a Λ+-generic line, then
there is a subpath σ′ ⊂ G of g#(σ) that is contained in a Λ+-generic line and
that differs from g#(σ) only in an initial and terminal segment of uniformly
bounded length. Similarly, g′#g#(σ) ⊂ G differs from g′#(σ′) only in an initial
and terminal segment of uniformly bounded length. Thus µ(ΨΨ′) = µ(Ψ)µ(Ψ′)
and we have proved part (2).

Suppose now that µ(Ψ) > 1 and that σ0 is a finite subpath of a Λ+-generic
line λ. Let σ1 be the subpath of g#(λ) obtained from g#(σ0) by removing the
initial and terminal subpaths of length bcc(g). Lemma 2.3.1(3) implies that
g#(N(σ0)) ⊂ N(σ1). If ELr(σ0) is sufficiently large, then ELr(σ1) > ELr(σ0)
and we may iterate the argument to produce σk with increasing ELr-length
such that g#(N(σk−1)) ⊂ N(σk) and hence gk#(N(σ0)) ⊂ N(σk). Since gk#(λ)
is Λ+-generic, Corollary 3.1.11 implies that λ ∈ N(σk) for all k.

By Lemma 3.1.10(4) σ0 is contained in some tile, say an l-tile, in λ. By
Lemma 3.3.5 there exists k so that σk contains every l-tile. In particular,
N(σk) ⊂ N(σ0). Lemma 3.3.5 and Corollary 3.1.11 imply that the N(σj)’s are
a neighborhood basis for λ and hence that N(σ0) is an attracting neighborhood
of λ for the action of Ψk

#. It follows that Λ+ ∈ L(Ψ) and we have verified half
of (3).
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If Λ+ ∈ L(Ψ), we may assume that the relative train track map f : G→ G

used to compute µ represents Ψ, that g = f and that σ is a k tile τki for some
large k. With these assumptions ELr(g#(σ)) is the ith column sum of Mk+1

r

and ELr(σ)) is the ith column sum of Mk
r . The Perron-Frobenius theorem

(cf. the definition of M∗ above) implies that ELr(g#(σ))/ELr(σ)) → µr as
k →∞. This completes the proof of parts (3) and (4).

3.4. Detecting F2 via laminations. We now show how expanding lami-
nations can be used to prove that a group of outer automorphisms contains
a free subgroup of rank two. Our criterion is based on a technique of Tits
(Proposition 1.1 of [Tit]), a version of which appears in the next lemma.

Lemma 3.4.1. Suppose that a group H acts on a space X, that there are
subsets U+, U−, V + and V − of X, a point x ∈ X and elements f, g ∈ H such
that

1. x 6∈ (U+ ∪ U− ∪ V + ∪ V −),

2. f({x} ∪ U+ ∪ V + ∪ V −) ⊂ U+,

3. f−1({x} ∪ U− ∪ V + ∪ V −) ⊂ U−,

4. g({x} ∪ U+ ∪ U− ∪ V +) ⊂ V +,

5. g−1({x} ∪ U+ ∪ U− ∪ V −) ⊂ V −.

Then the subgroup of H generated by f and g is isomorphic to F2.

In our case, H will be a subgroup of Out(Fn) and X will be the space B.
The ‘ping pong’ method of Tits can be recast as follows.

Lemma 3.4.2. Suppose that :

• Λ+ ∈ L(O) and Λ− ∈ L(O−1) are paired and O-invariant.

• Γ+ ∈ L(Ψ) and Γ− ∈ L(Ψ−1) are paired and Ψ-invariant.

• Generic lines in Λ+ and Λ− are weakly attracted to Γ+ (respectively Γ−)
under the action of Ψ (respectively Ψ−1).

• Generic lines in Γ+ and Γ− are weakly attracted to Λ+ (respectively Λ−)
under the action of O (respectively O−1).

Then ON and ΨN generate a free subgroup of rank two for all sufficiently
large N .

Proof. Let λ± and γ± be generic lines for Λ± and Γ±; let U± and V ± be
attracting neighborhoods of λ± and γ± respectively.
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There exists k ≥ 0 such that Ok#(γ+) ⊂ U+. Since {Ψl
#(V +)} is a neigh-

borhood basis for γ+, there exists l ≥ 0 such that Ok#(Ψl
#(V +)) ⊂ U+. This

inclusion remains valid if k and/or l are increased.
Repeating this argument on various combinations of O±1 and Ψ±1, we see

that for all sufficiently large K and L,

• OK# ΨL
#(V +),OK# Ψ−L# (V −) ⊂ U+,

• O−K# ΨL
#(V +),O−K# Ψ−L# (V −) ⊂ U−,

• ΨK
#OL#(U+),ΨK

#O−L# (U−) ⊂ V +,

• Ψ−K# OL#(U+),Ψ−K# O−L# (U−) ⊂ V −.

Defining U+
L (respectively U−L , V

+
L , V

−
L ) byOL#(U+) (respectivelyO−L# (U−),

ΨL
#(V +), Ψ−L# (V −)) and defining N = K + L, we have

(1) ON# (V +
L ),ON# (V −L ) ⊂ U+

L ,

(2) O−N# (V +
L ),O−N# (V −L ) ⊂ U−L ,

(3) ΨN
#(U+

L ),ΨN
#(U−L ) ⊂ V +

L ,

(4) Ψ−N# (U+
L ),Ψ−N# (U−L ) ⊂ V −L .

Since U± and V ± are attracting neighborhoods, we also have

(5) ON# (U+
L ) ⊂ U+

L ;O−N# (U−L ) ⊂ U−L ; ΨN
#(V +

L ) ⊂ V +
L ; and Ψ−N# (V −L ) ⊂ V −L .

Choose a circuit σ ⊂ G that is weakly attracted to Λ+ under the action
of O and to Λ− under the action of O−1. By (3) and (4), Om#(σ) is weakly at-
tracted to Γ+ (respectively Γ−) under the action of Ψ (respectively Ψ−1) for all
sufficiently large m, say m ≥ M . Let x = OM# (σ) ∈ B. Since (Lemma 3.1.16)
generic lines in attracting laminations cannot be circuits, we can choose L so
that x 6∈ (U+

L ∪U−L ∪V +
L ∪V −L ). For large K and hence large N , ON# (x) ∈ U+

L ;
O−N# (x) ∈ U−L ; ΨN

#(x) ∈ V +
L ; and Ψ−N# (x) ∈ V −L .

We have now verified all the hypotheses of Lemma 3.4.1.

Now we state the specific application of Lemma 3.4.2 to be used.

Corollary 3.4.3. Suppose that Λ+ ∈ L(O) and Λ− ∈ L(O−1) are paired
and O-invariant, that H is a subgroup of Out(Fn) containing O and that there
is an element ψ ∈ H such that generic lines of the four laminations ψ±1(Λ±)
are weakly attracted to Λ+ under the action of O and to Λ− under the action
of O−1. Then H contains a free subgroup of rank two.
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Proof. Define Ψ = ψOψ−1 and note that Γ+ = ψ#(Λ+) ∈ L(Ψ+) and
Γ− = ψ#(Λ−) ∈ L(Ψ−1) are paired and Ψ-invariant. The condition on
ψ±1

# (Λ±) can be restated as:

1. Γ± is weakly attracted to Λ+ (respectively Λ−) under the action of O
(respectively O−1).

2. ψ−1
# Λ± is weakly attracted to ψ−1

# (Γ+) (respectively ψ−1
# (Γ−)) under the

action of ψ−1Ψψ (respectively ψ−1Ψ−1ψ).

This last condition is equivalent to:

3. Λ± is weakly attracted to Γ+ (respectively Γ−) under the action of Ψ
(respectively Ψ−1).

The corollary therefore follows from Lemma 3.4.2.

4. Splittings

4.1. Preliminaries and non-exponentially-growing strata. To understand
the action of an outer automorphism O on the space B of abstract lines, we
choose a relative train track map f : G → G representing O and study the
induced action f# on the space B(G) of lines in G. One advantage of working
in B(G) is that it is possible to subdivide a bi-infinite path in G into subpaths
in G. We will be interested in subdivisions in which the action of f# on the
whole is the ‘sum’ of the action of f# on the parts. We make this precise as
follows.

Suppose that σ = . . . σl−1σl . . . is a decomposition of a path or circuit
σ ⊂ G into nontrivial subpaths. If σ is a finite path or a circuit, then the
decomposition is assumed to be finite but infinite paths may have infinite
decompositions. Decompositions of a circuit σ = σ1 . . . σl are always assumed
to be cyclic; in particular, σ1 and σ̄l do not have a common initial segment.
If σ is a path then we assume that there are at least two subpaths in the
decomposition but if σ is a circuit then we allow σ = σ1.

We say that σ = . . . σl−1σl . . . is a k-splitting if

fk#(σ) = . . . fk#(σl−1)fk#(σl) . . .

is a decomposition into subpaths and is a splitting if it is a k- splitting for all
k > 0.

If f̃ : Γ → Γ and σ̃ ⊂ Γ are lifts, then a decomposition σ̃ = . . . σ̃l−1σ̃l . . .

into subpaths (with at least two pieces and with finitely many pieces if σ̃ is
finite) is called a k-splitting if f̃k#(σ̃) = . . . f̃k#(σ̃l−1)f̃k#(σ̃l) . . . is a decomposition
into subpaths, and is called a splitting if it is a k-splitting for all k ≥ 0. If σ
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is a path in G then every k-splitting (splitting) of σ̃ projects to a k-splitting
(splitting) of σ. If σ is a circuit and σ̃ is the axis of the covering translation T ,
then T -invariant k-splittings (splittings) of σ̃ project to k-splittings (splittings)
of σ.

Decompositions of σ̃ are determined by the juncture points J̃ of the sub-
paths. If the decomposition determined by J̃ is a k-splitting (splitting) then
we say that σ̃ can be k-split (split) at J̃ . If J̃ contains a single point x̃, then
we say that σ̃ can be k-split (split) at x̃. As a matter of notation, we will only
use · to separate subpaths if the separation is a splitting.

We first record some elementary properties of k-splittings and splittings.

Lemma 4.1.1. (1) If σ is a circuit, σ = σ′1 is a splitting and σ′1 =
σ1 · . . . · σl, then σ = σ1· . . . ·σl. In other words, splittings of the path σ1

determine splittings of the circuit σ.
If σ ⊂ G is a path or circuit then:

(2) If σ = σ1 · σ2 and σ1 = σ′1 · σ′2 then σ = σ′1 · σ′2 · σ2. The analogous result
with the roles of σ1 and σ2 reversed also holds.

(3) σ̃ can be k-split at x̃ if and only if f̃k(x̃) ∈ f̃k#(σ̃).

(4) {x̃ ∈ σ̃ : σ̃ can be k-split at x̃} is closed.

(5) If f̃#(σ̃) can be split at ỹ and if x̃ ∈ σ̃ satisfies f̃(x̃) = ỹ, then σ̃ can be
split at x̃.

If σ ⊂ G is a path then

(6) Assume that α = α1α2 is a k-splitting, that σ = αβ is a decomposition
into subpaths and that not all of fk#(α2) is canceled when fk#(α)fk#(β) is
tightened to fk#(σ). Let β′ = α2β. Then σ = α1β

′ is a k-splitting.

Proof. Parts (1), (2), and (3) follow immediately from the definitions.
Parts (4), (5), and (6) follow from (3).

The next lemma complements Lemma 4.1.1(1).

Lemma 4.1.2. Every circuit σ ⊂ G has a splitting σ = σ1.

Proof. Choose lifts f̃ : Γ → Γ and σ̃ ⊂ Γ and let T : Γ → Γ be the
covering translation with axis σ̃. The set S̃k = {x̃ ∈ σ̃ : f̃k(x̃) ∈ f̃k#(σ̃)} is
closed. An easy induction argument shows that fN maps ∩Nk=1S̃k onto f̃N# (σ̃)
for all N ≥ 1. Since ∩Nk=1S̃k is T -invariant and nonempty, it must intersect
each fundamental domain of σ̃. Thus the T -invariant set ∩∞k=1S̃k is nonempty.
Choose a T -orbit J̃ ⊂ ∩∞k=1S̃k. If x̃, ỹ ∈ J̃ and x̃ < ỹ in the ordering induced
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from σ̃ then for all k > 0, fk(x̃), fk(ỹ) ∈ fk#(σ̃) and fk(x̃) < fk(ỹ) in the
ordering induced from fk#(σ̃). It follows immediately that σ̃ can be k-split at
J̃ for all k > 0, and hence can be split at J̃ . Since J̃ is an orbit of T , there is
an induced splitting σ = σ1.

If σ intersects the interior of some edge of Hi then we say that σ intersects
Hi nontrivially. We organize splittings of σ according to the growth rate of
the highest stratum that σ intersects nontrivially. After the next definition, we
begin with the basic splitting lemma for the non-exponentially-growing case.

Definition 4.1.3. Suppose that f : G→ G is a topological representative,
that the non-exponentially-growing stratum Hi consists of a single edge Ei
and that f(Ei) = Eiui for some path ui ⊂ Gi−1. (It is part of the definition
of an improved relative train track map that each nonexponentially-growing
stratum consists of a single edge.) We say that paths of the form EiγĒi, Eiγ,
and γĒi, where γ ⊂ Gi−1, are basic paths of height i.

The restriction on the endpoints of σ in the following lemma reduces the
number of special cases that we must consider.

Lemma 4.1.4. Suppose that f : G→ G and Ei are as in Definition 4.1.3.
Suppose further that σ ⊂ Gi is a path or circuit that intersects Hi nontrivially
and that the endpoints of σ, if any, are not contained in the interior of Ei.
Then σ has a splitting whose pieces are either basic paths of height i or are
contained in Gi−1.

Proof. Suppose at first that σ is a path. Choose lifts f̃ : Γ → Γ and
σ̃ ⊂ Γ. Fix k > 0. There is an initial segment Eki of Ei such that fk(Eki ) = Ei.
No other points in Gi are mapped by fk into the interior of Ei. If a copy of
Ei cancels with a copy of Ēi when fk(σ) is tightened to fk#(σ), then there is a
subpath µ in σ connecting a copy of Eki to a copy of Ēki such that fk#(µ) = ∗.
But µ is a closed path and f is a homotopy equivalence so this is impossible. We
conclude that no such cancellation occurs and hence (Lemma 4.1.1(3)) that σ̃
can be k-split at any point in the interior of a lift of Eki or Ēki . Lemma 4.1.1(4)
implies that σ̃ can be k-split at the initial vertex of any lift of Ei and at
the terminal vertex of any lift of Ēi. Since k is arbitrary σ̃ can be split at
these points. Lemma 4.1.1(2) and induction allow us to split at all such points
simultaneously. The induced splitting of σ satisfies the conclusions of the
lemma.

If σ is a circuit, first apply Lemma 4.1.2 to obtain a splitting σ = σ1.
If the basepoint of σ1 is not contained in the interior of Ei or Ēi , then by
our previous argument, σ1 has a splitting of the right type. Lemma 4.1.1(1)
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produces the desired splitting of σ. Suppose then that the basepoint of σ1 is
contained in the interior of Ei or Ēi. Arguing as in the previous case, we see
that σ̃1 can be split at the initial vertex of any lift of Ei and at the terminal
vertex of any lift of Ēi. Let σ1 = τ1· . . . ·τm be the resulting splitting of σ1

and let τ ′1 = τmτ1. Then σ = τ ′1 · τ2. . .·τm−1 is the desired splitting.

4.2. Exponentially-growing strata. We return to the non-exponentially-
growing case in Section 5.5. In this subsection we focus on the exponentially
growing case. If Hr is an exponentially-growing stratum, then denote the
maximal invariant set {x ∈ Hr : fk(x) ∈ Hr,∀k ≥ 0} by Ir. The pre-image
of Ir in Γ is denoted Ĩr. The train track property gives the following basic
splitting property.

Lemma 4.2.1. Suppose that f : G→ G is a relative train track map, that
Hr is an exponentially-growing stratum and that σ ⊂ Gr is an r-legal path. If
x̃ ∈ σ̃ ∩ Ĩr and if every neighborhood of x̃ in σ̃ intersects H̃r nontrivially, then
σ̃ can be split at x̃.

Proof. Let σ̃ = σ̃1σ̃2 be the decomposition determined by subdividing
at x̃. Lemma 4.1.1(3), Lemma 2.5.1 and induction on k imply that σ̃ = σ̃1σ̃2

is a k-splitting for all k.

Lemma 4.2.2 below is a local version of Lemma 4.2.1. Its proof exploits
the fact that exponential growth dominates bounded loss if the initial length
is large enough.

Suppose that f : G → G is a relative train track map, that Hr is an
exponentially-growing stratum, that τ is a path in G and that α ⊂ Gr is a
subpath of τ with endpoints at vertices. If there are k Hr-edges to the left and
to the right of α in τ , define Wk(α) to be the subpath of τ that begins with
the kth Hr-edge to the left of α and ends with the kth Hr-edge to the right
of α. We say that α is k-protected in τ if its first and last edges are in Hr, if
Wk(α) ⊂ Gr and if Wk(α) is r-legal.

Lemma 4.2.2. Assume that f : G→ G is a relative train track map and
that Hr is an exponentially-growing stratum. There is a constant K so that if
τ is a path in G and if α ⊂ Gr is a K-protected subpath of τ , then τ can be
split at the endpoints of α.

Proof. Choose l so that the f l-image of an edge in Hr contains at least
two edges in Hr. Let K = 2lC where C is a bounded cancellation constant for
f : G→ G .
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We will show that if α is K-protected in τ , then τ can be i-split at the
endpoints of α for 1 ≤ i ≤ l. Moreover, f l#(α) is K-protected in f l#(τ).
Iteration of this argument proves that τ can be i-split at the endpoints of α
for all i.

Lemma 4.1.1(6), Lemma 2.5.1 and the bounded cancellation lemma imply
that if α is k-protected for k > C, then τ can be 1-split at the endpoints of α
and that f#(α) is k − C protected. Thus if α is K protected, then τ can be
i-split at the endpoints of α and also at the endpoints of WK−lC(α) = WlC(α)
for 1 ≤ i ≤ l. Since f l#(WlC(α)) ⊃ W2lC(f l#(α)) = WK(f l#(α)), f l#(α) is
K-protected in f l#(τ).

In view of the fact that B(G) is homeomorphic to B, it is clear what it
means for a bi-infinite path in G to be weakly attracted to a generic line of
an element of L(O). We now extend this (and adapt the notation) so that it
applies to arbitrary paths in G.

Definition 4.2.3. Suppose that f : G → G is a relative train track map,
that Hr is an aperiodic exponentially-growing stratum, that Λ+ ∈ L(O) is
associated to Hr and that σ ⊂ Gr is a path or circuit. Then σ is weakly
attracted to Λ+ if each finite subpath of the realization of some (and hence any)
generic line of Λ+ occurs as an unoriented subpath of fk#(σ) for all sufficiently
large k.

Corollary 4.2.4. Assume that f : G→ G is a relative train track map,
that Λ+ is the expanding lamination associated to an aperiodic exponentially-
growing stratum Hr and that σ ⊂ G is a path or circuit. Then the following
are equivalent :

1. σ is weakly attracted to Λ+.

2. Some fk#(σ) splits into subpaths, at least one of which is weakly attracted
to Λ+.

3. Some fk#(σ) splits into subpaths, at least one of which is an edge of Hr.

Proof. If σ is a circuit then choose σ1 as in Lemma 4.1.2. For every finite
subpath λ0 of a generic line λ, there is a subpath λ1 of λ that contains two
disjoint copies of λ0. If λ1 occurs as an unoriented subpath of fk#σ then λ0

occurs as an unoriented subpath of fk#σ1. It follows that σ is weakly attracted
to Λ+ if and only if σ1 is weakly attracted to Λ+. We may therefore assume
that σ is a path.

Corollary 3.1.11 and Lemma 3.1.8(3) imply that any edge of Hr is weakly
attracted to Λ+. Thus (3) implies (2). It is immediate from the definitions of
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splitting and weak attraction that (2) implies (1). If σ is weakly attracted to
Λ+, then some fk#(σ) contains r-legal subpaths in Gr that contain arbitrarily
many edges in Hr. Lemma 4.2.2 implies that fk#(σ) splits into subpaths, at
least one of which is r-legal, is contained in Gr and contains edges of Hr.
Condition (3) now follows from Lemma 4.2.1.

Lemma 4.2.2 suggests that if Hr is an exponentially-growing stratum, then
σ ⊂ Gr can be split into pieces that are either r-legal or are neighborhoods of
an illegal turn in Hr. We make that precise in Lemma 4.2.6 below. First we
choose the appropriate neighborhoods of an illegal turn in Hr.

If f : G → G is a relative train track map and Hr is an exponentially-
growing stratum, then define Pr to be the set of paths ρ ⊂ Gr such that:

(i) Each fk#(ρ) contains exactly one illegal turn in Hr.

(ii) The initial and terminal (possibly partial) edges of each fk#(ρ) are
contained in Hr.

(iii) The number of Hr-edges in fk#(ρ) is bounded independently of k.

The following lemma is essentially contained in the proof of Lemma 5.11
of [BH1]. We give a proof here for the convenience of the reader. Recall
(subsection 2.2) that we do not distinguish between a path σ ⊂ G and its
associated edge path E′0E1 . . . E

′
k. In the following proof it is necessary to keep

track of those edges in the edge path that are contained in Hr. We write
σ ∩Hr for the ordered sequence of edges and partial edges of E′0E1 . . . E

′
k that

are contained in Hr.

Lemma 4.2.5. Pr is a finite f#-invariant set.

Proof. The f#-invariance of Pr is immediate from the definition. Decom-
pose ρ ∈ Pr as a concatenation ρ = αβ where α and β are r-legal.

When fk(α) and fk(β) are tightened to fk#(α) and fk#(β), no Hr-edges
are canceled. When fk#(α)fk#(β) is tightened to fk#(ρ), an initial segment of
fk#(ᾱ) is canceled with an initial segment of fk#(β). Since fk#(ρ) has an illegal
turn in Hr, the first noncanceled edges in fk#(ᾱ) and fk#(β) are contained in
Hr. The cancellation between fk#(ᾱ) and fk#(β) is therefore determined by
fk#(ᾱ) ∩ Hr and fk#(β) ∩ Hr : the two paths cancel until the first distinct
elements of fk#(ᾱ)∩Hr and fk#(β)∩Hr are encountered. Note that fk#(ᾱ)∩Hr

and fk#(β) ∩Hr are determined by α ∩Hr and β ∩Hr.
We claim that as ρ varies over all elements of Pr, ρ ∩ Hr takes on only

finitely many values. If ρ has a splitting then at least one of the resulting
pieces is r-legal and intersects Hr nontrivially. This contradicts Lemma 2.5.1
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and condition(iii). Lemma 4.2.2 therefore implies that the number of Hr edges
in ρ is bounded independently of ρ. Let α0 and β̄0 be the initial (possibly
partial) edges of α ∩Hr and β̄ ∩Hr respectively. The only possible difficulty
is that there might exist ρ = αβ and ρ′ = α′β′ where the only difference
between ρ ∩ Hr and ρ′ ∩ Hr is that the length of α0 and α′0 and the length
of β0 and β′0 may differ. Suppose for concreteness that α′0 is a proper subset
of α0 and that A is their difference. Property (ii) implies that the number of
edges in fk#(A)∩Hr grows without bound. Property (iii) therefore implies that
for sufficiently large k, edges in fk#(A) ∩ Hr must be canceled with edges of
fk#(β)∩Hr. This implies that all of fk#(ᾱ′)∩Hr is canceled with a proper initial
segment X of fk#(β) ∩ Hr. But X, like every initial segment of fk#(β) ∩ Hr,
either contains or is contained in fk#(β′)∩Hr. In the former case, all of fk#(β′)
is canceled with part of fk#(ᾱ′); in the latter case all of fk#(α′) is canceled with
part of fk#(β̄′). In either case, fk#(ρ′) is r-legal in contradiction to condition
(i). We have now verified the claim.

Property(ii), the fact that α0 and β0 take on only finitely many values and
the fact that the number of Hr-edges in α and in β are bounded independently
of ρ imply that there exists k > 0, independent of ρ, such that fk#(ρ) is obtained
from fk#(α0) and fk#(β0) by concatenating and by cancelling at the juncture.
This implies that fk#(ρ), and hence ρ, takes on only finitely many values.

Lemma 4.2.6. Suppose that f : G → G is a relative train track map,
that Hr is an exponentially-growing stratum, that σ ⊂ Gr is a path or circuit
and that each fk#(σ) has the same finite number of illegal turns in Hr. Then
σ can be split into subpaths that are either r-legal or elements of Pr.

Proof. We may assume by Lemma 4.1.2 and Lemma 4.1.1(1) that σ is a
path. We induct on the number m of illegal turns that σ has in Hr. If m = 0
then σ is r-legal and there is nothing to prove. Suppose that m = 1. Write
σ = αβ where α and β are r-legal subpaths. After possibly splitting off an
initial segment of α and a terminal segment of β according to Lemma 4.2.2,
we may assume that α and β contain only finitely many Hr-edges.

It is convenient to work with lifts f̃ : Γ → Γ, H̃r and σ̃ = α̃β̃ to the
universal cover. We first check that if α̃ is infinite then there is at least one
point in α̃ at which σ̃ can be split. For each k > 0, f̃k#(σ̃) is obtained from
f̃k#(α̃) and f̃k#(β̃) by concatenating and by cancelling terminal edges of f̃k#(α̃)
with initial edges of f̃k#(β̃). Since each f̃k#(σ̃) has an illegal turn in H̃r, not all
of the H̃r-edges of f̃k#(α̃) are canceled during this process. Let x̃ be the initial
vertex of the first H̃r-edge in σ̃. Lemma 4.2.1 and Lemma 4.1.1(6) imply that
σ̃ can be k-split at x̃. Since k is arbitrary σ̃ can be split at x̃.
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The set of points at which σ̃ can be split is closed. If σ̃ can be split at
a point in α̃, choose the splitting point that is closest to the terminal end of
α̃. After splitting σ̃ at this point we may assume that there are no splitting
points for σ̃ in α̃. By a completely similar argument we may also assume that
there are no splitting points for σ̃ in β̃. It remains to show that if σ has no
splittings, then σ is an element of Pr.

Condition (i) of Pr follows from the hypothesis of the lemma. If condition
(iii) is violated, then Lemma 4.2.2 implies that some fk#(σ) has a splitting.
Lemma 4.1.1(5) then implies that σ has a splitting, which is a contradiction.
The first (possibly partial) edge of σ must be contained in Hr; otherwise, as
above, σ can be split at the initial vertex of the first edge of α in Hr. The same
argument shows that the terminal (possibly partial) edge of β is contained in
Hr. This implies (ii) and completes the proof in the m = 1 case.

Suppose now that m > 1. Decompose σ̃ = σ̃1 . . . σ̃m+1 so that each
juncture is an illegal turn in H̃r and each σ̃i is r-legal. Each f̃k#(σ̃) has a
decomposition f̃k#(σ̃) = τ̃k1 . . . τ̃

k
m+1 into maximal r-legal subpaths. The set

S̃2
k = {x̃ ∈ σ̃2 : f̃k(x̃) ∈ f̃k#(σ̃)} is closed. An easy induction argument shows

that fN maps ∩Nk=1S̃
2
N onto τ̃N2 for all N ≥ 1. It follows that ∩∞k=1S̃

2
k is

nonempty and that it is therefore possible (Lemma 4.1.1(3)) to split σ̃ at a
point in σ̃2. This splits σ into subpaths that have fewer than m illegal turns
in Hr and induction on m completes the proof.

5. Improved relative train track maps

Corollary 3.4.3 connects the Tits alternative to the action of O on bi-
infinite paths and in particular to the basins of attraction for an expanding
lamination pair Λ±. In the next section we state and prove our weak at-
traction theorem which characterizes these basins of attraction for ‘topmost’
laminations. In this section, we lay the groundwork for that analysis.

This is the most technical section in the paper. All future references to
results in this section will be made to subsection 5.1. It is therefore possible
to skim the proof of Theorem 5.1.5 and follow the proof of Theorem 7.0.1.

5.1. Statements.

Definition 5.1.1. A nontrivial path σ ⊂ G is a periodic Nielsen path for
f : G→ G if fk#(σ) = σ for some k ≥ 1; if k = 1, then we sometimes simply say
that σ is a Nielsen path. We say that the periodic Nielsen path σ is indivisible
if it cannot be written as a concatenation of nontrivial periodic Nielsen paths.

The relative train track maps of [BH1] must be modified to suit our present
needs. There, it was sufficient to control the Nielsen paths; in this paper, we
must also control the periodic Nielsen paths. We do this by replacing O by
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an iterate in which every periodic Nielsen path is a Nielsen path and then
applying the techniques of [BH1]. This is carried out in subsection 5.2. [BH1]
contains a characterization of the irreducible outer automorphisms that arise
as pseudo-Anosov mapping classes. In subsection 5.3, we generalize this by
characterizing geometric strata (defined below).

Remark 5.1.2. Lemma 4.2.6 implies that if f : G → G is a relative train
track map and Hr is an exponentially-growing stratum, then the indivisible
periodic Nielsen paths in Gr that intersect Hr nontrivially are precisely the
elements of Pr that have periodic orbit under the action of f#.

Definition 5.1.3. Suppose that Hi is a single edge Ei and that f(Ei) =
Eiτ

l for some closed indivisible Nielsen path τ ⊂ Gi−1 and some l > 0. The
exceptional paths of height i are those paths of the form Eiτ

kĒj or Eiτ̄kĒj
where k ≥ 0, j ≤ i, Hj is a single edge Ej and f(Ej) = Ejτ

m for some
m > 0. The set of exceptional paths of height i is f#-invariant. It is an easy
consequence of Lemma 4.1.1(3) that an exceptional path of height i has no
splittings. If σ is an exceptional path of some unspecified height, then we
sometimes simply say that σ is an exceptional path.

Definition 5.1.4. Suppose that:

• g : Q→ Q is a homotopy equivalence of a graph Q, all of whose compo-
nents are noncontractible.

• α1, . . . , αm are circuits in Q that are permuted by g#.

• S is a compact surface with m+1 boundary components, α∗1, . . . , α
∗
m and

ρ∗.

• φ : S → S is a pseudo-Anosov homeomorphism that permutes the α∗i ’s
in the same way that g# permutes the αi’s.

Let A be the union of m annuli A1, . . . , Am. Define Y to be the space
obtained from Q ∪ A ∪ S by attaching one end of Ai to αi and the other end
to α∗i . Extend g ∪ φ to a homotopy equivalence h : Y → Y by interpolating
between g(αi) and φ(α∗i ) on A. We say that h : Y → Y is a geometric extension
of g : Q→ Q.

Suppose that f : G → G is a topological representative and that Hi is
an exponentially-growing stratum. We say that Hi is a geometric stratum if
there exists h : Y → Y as above and a homotopy equivalence Φ : (Y,Q) →
(noncontractible components of Gi, noncontractible components of Gi−1) such
that fΦ ' Φh. In particular, Φ# identifies the outer automorphism induced by
h with the outer automorphism induced by restricting f to the noncontractible
components of Gi.
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Relative train track maps are topological representatives whose exponent-
ially-growing strata satisfy certain extra conditions. We will also add con-
ditions on the zero strata and on the non-exponentially-growing strata. By
passing to an iterate and subdividing if necessary (or by adding homological
restrictions as in [BFH2]), we may assume that each non-exponentially-growing
stratum Hi is a single edge Ei and that f(Ei) = Eiui for some path ui ⊂ Gi−1.
We introduce a move, called sliding, to arrange that ui be a closed path and
that f(Ei) = Ei ·ui. This is carried out in subsection 5.4 and analyzed further
in subsection 5.5.

A relative train track map that satisfies the conclusions of the following
theorem is said to be an improved relative train track map. The proof of
Theorem 7.0.1 is given in subsection 5.6.

Theorem 5.1.5. For every outer automorphism O and O-invariant free
factor system F there is an eg-aperiodic relative train track map f : G → G

and filtration ∅ = G0 ⊂ G1 ⊂ · · · ⊂ GK = G representing an iterate of O with
the following properties.

• F = F(Gr) for some filtration element Gr.

• f is reduced (Definition 2.6.6).

• Every periodic Nielsen path has period one.

• For every vertex v ∈ G, f(v) is a fixed point. If v is an endpoint of an
edge in a non-exponentially-growing stratum then v is a fixed point. If v
is the endpoint of an edge in an exponentially-growing stratum Hi and if
v is also contained in a noncontractible component of Gi−1, then v is a
fixed point.

• Hi is a zero stratum if and only if it is the union of the contractible
components of Gi.

• If Hi is a zero stratum, then

z-(i) Hi+1 is an exponentially-growing stratum.

z-(ii) f |Hi is an immersion.

z-(iii) Each vertex in Hi that has valence less than three in Gi+1 is the
endpoint of an edge of Hi+1.

• If Hi is a non-exponentially-growing stratum, then

ne-(i) Hi is a single edge Ei.

ne-(ii) f(Ei) = Ei · ui for some closed path ui ⊂ Gi−1 whose basepoint is
fixed by f .



      

THE TITS ALTERNATIVE FOR Out(Fn) 563

ne-(iii) If σ ⊂ Gi is a basic path of height i (Definition 4.1.3) that does
not split as a concatenation of two basic paths of height i or as a
concatenation of a basic path of height i with a path contained in
Gi−1, then either : (i) some fk#(σ) splits into pieces, one of which
equals Ei or Ēi; or (ii) ui is a Nielsen path and some fk#(σ) is an
exceptional path of height i.

• If Hi is an exponentially-growing stratum then

eg-(i) There is at most one indivisible Nielsen path ρi ⊂ Gi that intersects
Hi nontrivially. The initial edges of ρi and ρ̄i are distinct (possibly
partial) edges in Hi.

eg-(ii) If ρi ⊂ Gi is an indivisible Nielsen path that intersects Hi nontriv-
ially and if Hi is not geometric, then there is an edge E of Hi that
ρi crosses exactly once. (See also Lemma 5.1.7 below.)

eg-(iii) If Hi is geometric then there is an indivisible Nielsen path ρi ⊂ Gi
that intersects Hi nontrivially and satisfies the following properties:
(i) ρi is a closed path with basepoint in the interior of Hi; (ii) the
circuit determined by ρi corresponds to the unattached peripheral
curve ρ∗ of S; and (iii) the surface S is connected.

Lemma 5.1.7 below is used to analyze nongeometric exponentially-growing
strata.

Definition 5.1.6. For any subgraph X of G and finite path ρ ⊂ G, define
〈X, ρ〉 to be the groupoid of paths that can be decomposed into a concatenation
of subpaths that are either entirely contained in X or are equal to ρ or ρ̄.

Lemma 5.1.7. Suppose that f : G→ G is reduced, that Hr is an aperiodic
exponentially-growing stratum, that ρr ⊂ Gr is a Nielsen path that crosses some
edge E of Hr exactly once and that the first and last (possibly partial) edges
of ρr are contained in Hr. Then the endpoints of ρr are distinct and if both
endpoints are contained in Gr−1, then at least one of them is contained in a
contractible component of Gr−1. If X is a subgraph of G that does not contain
any edges of Hr, then there is a free factor system that carries the same bi-
infinite paths as 〈X, ρr〉.

Proof. We may assume, after subdividing if necessary, that the endpoints
of ρr are vertices. Let Ĝ be the graph obtained from G by removing the
edge E and adding a new edge Ê with endpoints equal to the initial and
terminal endpoints of ρ. Decompose ρ into the concatenation of subpaths
ρ = αEβ where α and β are disjoint from E. There is a homotopy equivalence
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h : G → Ĝ that is the ‘identity’ on all edges other than E and that satisfies
h(E) = ᾱÊβ̄. (The homotopy inverse sends Ê to ρr.) The map h# induces
a bijection between the bi-infinite paths in 〈X, ρr〉 and the bi-infinite paths
in the subgraph X ∪ Ê of Ĝ. In particular, 〈X, ρr〉 carries exactly the same
bi-infinite paths as the free factor system F(X ∪ Ê).

Suppose now that X = Gr−1. If the endpoints of ρr are equal or are both
contained in noncontractible components of Gr−1, then F(X ∪ Ê) is strictly
larger than F(X) = F(Gr−1). An r-legal bi-infinite path in 〈X, ρr〉 must lie
entirely in X. Thus F(X ∪ Ê) does not carry any line that is generic for the
element of L(O) associated to Hr and so is strictly smaller than F(Gr). Since
〈X, ρr〉 is f#-invariant, this contradicts the assumption that f : G → G is
reduced and completes the proof.

An outer automorphism O is said to have polynomial growth if some (and
hence every) relative train track map representing O has no exponentially-
growing strata. The set of all polynomial growth outer automorphisms is
denoted PG(Fn). An element of GL(n,Z) is unipotent if it is conjugate to an
upper triangular matrix with ones on the diagonal. We say that an element of
PG(Fn) is unipotent if its image in GL(n,Z) is unipotent. The set of unipotent
elements of PG(Fn) is denoted UPG(Fn) and plays a central role in [BFH2] and
[BFH1]. We conclude this subsection with a strengthening of Theorem 7.0.1
for elements of UPG(Fn).

Theorem 5.1.8. Suppose that O ∈ UPG(Fn) and that F is an O-invari-
ant free factor system. Then there is a relative train track map f : G → G

and filtration ∅ = G0 ⊂ G1 ⊂ · · · ⊂ GK = G representing O with the following
properties.

1. F = F(Gr) for some filtration element Gr.

2. Each Hi is a single edge Ei satisfying f(Ei) = Ei · ui for some closed
path ui ⊂ Gi−1.

3. Every vertex of G is fixed by f .

4. Every periodic Nielsen path has period one.

5. If σ is any path with endpoints at vertices, then there exists M = M(σ)
so that for each m ≥M , fm# (σ) splits into subpaths that are either single
edges or are exceptional.

6. M(σ) is a bounded multiple of the edge length of σ.

The proof of Theorem 5.1.8 is given in subsection 5.7.
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5.2. Nielsen paths in exponentially-growing strata. This subsection and
the one to follow focus on exponentially-growing strata.

Definition 5.2.1. Suppose that O fixes each element of L(O) =
{Λ+

1 , . . . ,Λ
+
l }, that µi is the expansion factor for the action of O on Λ+

i and
that F is an O-invariant free factor system. We say that a topological repre-
sentative f : G → G of O and filtration ∅ = G0 ⊂ G1 ⊂ · · · ⊂ GK = G are
F-Nielsen minimized if:

(1) f : G→ G is reduced.

(2) F = F(Gs) for some filtration element Gs.

(3) There are exactly l exponentially-growing strata and the Perron-Frobenius
eigenvalues of their transition submatrices equal µ1, . . . , µl.

(4) If Hr is an exponentially-growing stratum, then every indivisible periodic
Nielsen path ρ ⊂ Gr that intersects Hr nontrivially has period one.

(5) If C is a contractible component of some Gi, then f j(C) ⊂ Gi−1 for some
j > 0.

(6) For each exponentially-growing stratum Hr, let Nr(f) be the number of
indivisible Nielsen paths ρ ⊂ Gr that intersect Hr nontrivially. Then
N(f) =

∑
rNr(f) is as small as possible subject to conditions (1)–(5).

Remark 5.2.2. Proposition 3.3.3(4) implies that condition (3) is satisfied
by every relative train track map. In the course of proving Lemma 5.2.5 below,
we must consider topological representatives that are not relative train track
maps. That is why the definition does not include the hypothesis that f : G
→ G is a relative train track map and why (4) and (6) do not refer to Pr.

One might expect to leave (1), (2) and (5) out of the definition and add
them later as separate conditions. In that case the minimization of N(f) in
(6) would take place over a larger collection of topological representatives and
it is an a priori possibility that the absolute minimum N(f) would not occur
for a relative train track map satisfying (1), (2) and (5).

If we eliminate conditions (1), (2), (4) and (5) from the definition then
we recover the definition of stable topological representative from page 42 of
[BH1].

Lemma 5.2.3. For any O and F , there exists an F-Nielsen minimized
relative train track map f : G → G and filtration representing Ok for some
k > 0.
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Proof. After we replace O by an iterate if necessary, O fixes each element
of L(O). Lemma 2.6.7 produces a relative train track map and filtration that
represents some Ok and that satisfies (1), (2) and (5) in the definition of
F-Nielsen minimized. Lemma 3.1.14 implies that f : G → G is eg-aperiodic.
Proposition 3.3.3(4) implies that f : G→ G satisfies (3). Since (Remark 5.1.2)
every indivisible periodic Nielsen path is an element of the finite set Pr, we
may assume, by increasing k, that (4) is satisfied. Fix k, and choose, among all
topological representatives for Ok that satisfy (1)–(5), one, say f ′ : G′ → G′,
that minimizes N(f) and is hence F-Nielsen minimizing. If f ′ : G′ → G′

is a relative train track map, we are done. If not, modify f ′ : G′ → G′ by
performing ‘core subdivisions’ and ‘collapsing of inessential paths’ to construct
a relative train track map f : G → G. This is fully described in the proof of
Lemma 5.13, Lemma 5.14 and Theorem 5.12 of [BH1]. Since f : G → G

is a relative train track map, (3) is satisfied. The construction involves only
subdivision, folding and the collapse of pre-trivial forests. As discussed in the
proof of Lemma 2.6.7, (1) and (2) are satisfied. These operations preserve (5)
and do not change the period of any indivisible periodic Nielsen path nor any
Nr(f). Thus f : G→ G is still F-Nielsen minimized.

Suppose that f : G → G is a relative train track map and that Hr is an
exponentially-growing stratum. If ρr ⊂ Gr is an indivisible Nielsen path that
intersects Hr nontrivially, then ρr = αβ where α and β are r-legal and the turn
at the juncture of ᾱ and β is an illegal turn in Hr. We say that the fold at the
illegal turn of ρr in Hr is a full fold if either all of the initial (possibly partial)
edge E1 of ᾱ can be folded with all or part of the initial (possibly partial) edge
E2 of β or all of E2 can be folded with all or part of E1.

Lemma 5.2.4. Suppose that f : G → G is an F-Nielsen minimized
relative train track map, that Hr is an exponentially-growing stratum and that
ρr ⊂ Gr is an indivisible Nielsen path that intersects Hr nontrivially. Then
the fold at the illegal turn of ρr in Hr is a full fold.

Proof. This is a slight modification of Lemma 5.17 of [BH1]. There is a
decomposition ρr = αβ into r-legal paths in Gr and there is a path τ ⊂ Gr
such that f#(α) = ατ and f#(β̄) = β̄τ . We may assume, after subdividing if
necessary, that the endpoints of ρr are vertices. It suffices (page 25 of [BH1])
to show that α and β cannot both be single edges.

Suppose to the contrary that both α and β are single edges. Let G′ be
the graph obtained from G by identifying α and β̄ and let q : G → G′ be
the quotient map. Since f(α) = ατ and f(β̄) = β̄τ , there is an induced map
f ′ : G′ → G′ defined by f ′(q(E)) = q#f(E) for each edge E of G. If there



    

THE TITS ALTERNATIVE FOR Out(Fn) 567

are edges with trivial f ′-image, then they form a tree and we collapse each
component of the tree. After repeating this tighten and collapse procedure
finitely many times (cf. subsection 2.4) we arrive at a topological representative
we continue to call f ′ : G′ → G′ and a quotient map we continue to call
q : G→ G′. An edge in G is collapsed if and only if some iterate of f# maps it
to ρr or ρ̄r. In particular, only edges in zero strata can be collapsed. We claim
that conditions (1)–(5) in the definition of F-Nielsen minimized are satisfied
by f ′ : G′ → G′ and the filtration with elements of the form G′i = q(Gi). (If
each component of Hj is collapsed to a point then q(Gj) is not added to the
filtration.)

Lemma 5.1.7 implies that the endpoints of ρr are distinct and that at least
one of them is not contained in a noncontractible component of Gr−1. Thus
q is a homotopy equivalence (cf. subsection 2.4) and F(Gi) = F(G′i) for all i.
This implies conditions (1) and (2).

It is easy to check that condition (5) is stable under these collapse and
tighten operations and we leave this to the reader.

If E is an edge of Gr, then q(E) is an edge of G′ and f ′(q(E)) = qf(E).
(If E belongs to Hr, then this uses the fact that an r-legal path in Gr does
not cross the turn (ᾱ, β).) If E is an edge of G \ Gr that is not collapsed
by q, then f ′q(E) is obtained from qf(E) by cancelling edges in Hr. Thus
H ′i = q(Hi) is exponentially-growing if and only if Hi is exponentially-growing
and the Perron-Frobenius eigenvalues for Mi and M ′i are equal. This implies
that condition (3) holds.

For every path σ ⊂ G and k > 0, (f ′)k#(q#(σ)) = q#f
k
#(σ). In particular,

if σ is a periodic Nielsen path for f , then σ′ = q#(σ) is a periodic Nielsen path
for f ′ and the period of σ′ is at most the period of σ. If σ 6= ρr, then σ′ is not
trivial.

Conversely, suppose that σ′ ⊂ G′i is a periodic Nielsen path for f ′ : G′ →
G′. We choose a path σ ⊂ Gi satisfying q#(σ) = σ′ as follows. If the endpoints
of σ′ do not lie in the edge q(α) = q(β̄), then there is a unique path σ ⊂ G

satisfying q#(σ) = σ′. If an endpoint of σ′ lies in q(α) = q(β̄) but is distinct
from the initial endpoint of q(α) = q(β̄), then there is a unique path σ ⊂ G

that has periodic endpoints and that satisfies q#(σ) = σ′. Finally, if σ′ begins
or ends at the initial endpoint of q(α) = q(β̄), then there is a unique path
σ ⊂ G that does not begin or end with ρr or ρ̄r and that satisfies q#(σ) = σ′.
In all cases, σ is a periodic Nielsen path and the period of σ′ equals the period
of σ; moreover, if σ′ is indivisible, then σ is indivisible. Condition (4) for f ′

now follows from condition (4) for f .
Since q#(ρr) is trivial, we have decreased N(f). This contradiction com-

pletes the proof.

The following lemma is the main result of this subsection.
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Lemma 5.2.5. If f : G → G is an F-Nielsen minimized relative train
track map and Hr is an exponentially-growing stratum, then there exists at most
one indivisible Nielsen path ρr ⊂ Gr that intersects Hr nontrivially. Moreover,
if there is such an indivisible Nielsen path ρr, then:

• The first and last (possibly partial) edges of ρr are contained in Hr.

• The illegal turn of ρr in Hr is the only illegal turn in Hr.

• ρr crosses every edge in Hr at least once.

• Either ρr crosses every edge of Hr exactly twice or ρr crosses some edge
of Hr exactly once.

Proof. This is Theorem 5.15 of [BH1] with the word stable replaced by
F-Nielsen minimized. Having proved Lemma 5.2.4, we see that the proof given
in [BH1] carries over to this context without change.

5.3. Geometric strata. The following proposition generalizes Theorem 4.1
of [BH1]. The entire subsection is devoted to its proof.

Proposition 5.3.1. Suppose that f : G→ G is an F-Nielsen minimized
relative train track map with filtration ∅ = G0 ⊂ G1 ⊂ · · · ⊂ GK = G, that Hr

is an exponentially-growing stratum and that ρr ⊂ Gr is an indivisible Nielsen
path that crosses every edge of Hr exactly twice. Then:

• The endpoints of ρr are equal and are not contained in Gr−1.

• The initial (possibly partial) edges of ρr and ρ̄r are distinct.

• Hr is a geometric stratum. Moreover, the associated surface S is con-
nected and its unattached peripheral curve ρ∗ corresponds to the circuit
determined by ρr.

We assume throughout this subsection that K = r and that the endpoints
of ρr are vertices. This causes no loss of generality in our proof of Proposi-
tion 5.3.1.

We begin by recalling a pair of definitions from page 46 of [BH1].

Definition 5.3.2 (folding ρr: the proper case). Suppose that f : G → G,
Hr and ρr are as in the hypotheses of Proposition 5.3.1. Decompose ρr = αβ

into a concatenation of maximal r-legal subpaths and let E1 ⊂ Hr and E2 ⊂ Hr

be the initial edges of ᾱ and β respectively. Lemma 5.2.4 implies that one of
the edge paths f(Ei), i = 1 or 2, is an initial subpath of the other. For
concreteness, suppose that f(E1) is an initial subpath of f(E2). Assume that



      

THE TITS ALTERNATIVE FOR Out(Fn) 569

f(E1) is a proper subpath of f(E2). (The case that f(E1) = f(E2) is handled
in Definition 5.3.4.)

Let b be the (possibly trivial) maximal subpath of Gr−1 that follows E1

in ᾱ. Lemma 2.5.1 implies that f(E1)f#(b) is an initial segment of f#(ᾱ) that
is followed in f#(ᾱ) by an edge in Hr. Since f : G → G is a relative train
track map , f#(b) is nontrivial whenever b is nontrivial. The last edge of f(E2)
and the first edge of f#(ᾱ) that does not cancel with an edge of f#(β) are
contained in Hr. Thus f#(E1b) is a proper initial segment of f(E2). Define
F : G → G′ to be the generalized fold (see subsection 2.4) of E1b with the
corresponding proper initial subpath of E2. There is a map g : G′ → G such
that gF ' f rel V. We refer to F : G → G′ as the extended fold (determined
by ρr) and to g : G′ → G as a map induced by the extended fold. (Thus the
extended fold determined by ρr is a particular type of generalized fold; not
every generalized fold is the extended fold for some ρr.)

Since f is a relative train track map and Hr is the highest stratum, g(E′)
does not cross the turn (Ē1, E2) for any edge E′ of G′. Thus f ′ = Fg : G′ → G′

is a topological representative. The filtration for f ′ : G′ → G′ is defined by
H ′i = Hi for i < r and H ′r = (Hr \ E2) ∪ E′2. We say that f ′ : G′ → G′ is
obtained from f : G→ G by folding ρr and that ρ′r = F#(ρr) is the indivisible
Nielsen path determined by ρr.

The following lemma states, among other things, that f ′ : G′ → G′ is a
relative train track map. This would fail if we simply folded E1 with an initial
segment of E2.

Lemma 5.3.3. With notation as in Definition 5.3.2,

• f ′ : G′ → G′, H ′r, ρ
′
r and G′r−1 satisfy the hypotheses of Proposition 5.3.1.

• If f ′ : G′ → G′, H ′r, ρ
′
r and G′r−1 satisfy the conclusions of Proposi-

tion 5.3.1 then f : G → G, Hr, ρr and Gr−1 satisfy the conclusions of
Proposition 5.3.1.

• Hr and H ′r have the same number of edges.

Proof. A proof that f ′ : G′ → G′ is a relative train track map and that
H ′r is an exponentially-growing stratum is contained in the proof of Theorem
5.15 of [BH1]. As in the proof of Lemma 5.2.4, f ′ : G′ → G′ is F-Nielsen
minimizing.

The extended fold F : G → G′ can be described as follows. E2 is sub-
divided into two pieces if b is trivial and three pieces if b is nontrivial. The
first piece is labeled E1 and then identified with E1 ⊂ Hr; the middle piece, if
it exists, is labeled b and then identified with b ⊂ Gr−1; and the last piece is
labeled E′2 and is the new edge of H ′r. To construct ρ′r, subdivide and relabel
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E2

E2

X

E3

b

E1

X

E3

b
E1

E2

E2

0

0

both copies of E2 in ρr. Remove E1 and b (if it is nontrivial) from α to form
α′ and remove the first and middle segment (if it exists) of the subdivided E2

that is the first edge of β to form β′; ρ′r = α′β′. The key point is that the
second copy of E2 in ρr contributes to ρ′r a copy of the edges that are removed
from α to form α′. The losses and gains exactly balance so that ρ′r crosses
every H ′r edge exactly twice. The completes the proof of the first part of the
lemma.

Since F : (noncontractible components of Gr, noncontractible components
of Gr−1)→ (noncontractible components of G′r,noncontractible components of
G′r−1) is a homotopy equivalence, Hr is a geometric stratum if and only if H ′r is
a geometric stratum. By construction, F# maps the circuit determined by ρr
to the circuit determined by ρ′. If the initial endpoint v1 of ρr is not contained
in Gr−1, then each edge in the link of vi is in Hr. Each time that the interior
of ρr passes through v1, it crosses two edges of Hr. The total number of times
that ρr crosses the Hr-edges in the link of v1 is even. Since ρr starts at v1, it
must also end at v1. Thus the conclusion that the endpoints of ρr are equal is
a consequence of the other conclusions of Proposition 5.3.1. If an endpoint of
ρr is in Gr−1 or if the initial edges of ρr and ρ̄r are equal then the same is true
for F#(ρr) = ρ′r. This completes the second part of the lemma.

It is clear from the definitions that Hr and H ′r have the same number of
edges.

Definition 5.3.4 (folding ρr: the improper case). Suppose that f : G→ G,
Hr and ρr are as in Proposition 5.3.1. Decompose ρr = αβ into a concatenation
of maximal r-legal subpaths and let E1 ⊂ Hr and E2 ⊂ Hr be the initial edges
of ᾱ and β respectively. Assume that f(E1) = f(E2).

Define F : G→ G′ to be the fold of E1 with E2. There is an induced map
g : G′ → G satisfying gF = f . As in the previous case, f ′ = Fg : G′ → G′ is
a topological representative. We may think of Gr−1 as a subgraph of G′. The
filtration for f ′ : G′ → G′ is defined by G′i = Gi for i < r and G′r = G′.
If f ′ : G′ → G′ is a relative train track map then let ρ′r = F#(ρr). If
f ′ : G′ → G′ is not a relative train track map, then restore the relative train
track property by collapsing inessential connecting paths and by performing
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core subdivisions in Gr−1 as in the proof of Lemma 5.2.3. This process may
change the combinatorial type of G′r−1 but an edge of H ′r = F (Hr) is only af-
fected by being shortened according to a core subdivision. We abuse notation
by denoting the resulting relative train track map by f ′ : G′ → G′ and the
top stratum by H ′r even though G′ may have changed. F#(ρr) determines an
indivisible Nielsen path ρ′r that intersects H ′r nontrivially.

Lemma 5.3.5. With notation as in Definition 5.3.4,

• f ′ : G′ → G′, H ′r, ρ
′
r and G′r−1 satisfy the hypotheses of Proposition 5.3.1.

• If f ′ : G′ → G′, H ′r, ρ
′
r and G′r−1 satisfy the conclusions of Proposi-

tion 5.3.1 then f : G → G, Hr, ρr and Gr−1 satisfy the conclusions of
Proposition 5.3.1.

• H ′r has one less edge than Hr does.

Proof. By construction f ′ : G′ → G′ is a relative train track map. As in
the proof of Lemma 5.2.3, f ′ : G′ → G′ is F-Nielsen minimizing. Collapsing
inessential connecting paths and performing core subdivisions in Gr−1 has no
effect on the way that ρ′r crosses edges in H ′r. Thus the argument used in
Lemma 5.3.3 to prove that ρ′r crosses each edge of H ′r exactly twice applies in
this context as well. This completes the proof of the first part of the lemma.

The second part is proved exactly as it was in Lemma 5.3.3. The third
part is immediate from the construction.

While proving Proposition 5.3.1, there is no loss in replacing f : G → G

by f ′ : G′ → G′ produced by either a proper fold of ρr (Definition 5.3.2)
or by an improper fold of ρr (Definition 5.3.4). Moreover, this process can
be repeated by folding ρ′r and so on. We refer to this as repeatedly folding
the indivisible Nielsen path . If at some point the fold is improper, then the
number of edges in the r-stratum is reduced by the folding process. Since the
number of edges in the r-stratum never increases, improper folds occur only
finitely many times. We may therefore assume that as we repeatedly fold the
indivisible Nielsen path, each fold is proper.

Every topological representative ofG factors (subsection 2.4) as a sequence
of folds followed by a homeomorphism. In general, there is no preferred way
to choose the folds (although there is an a priori bound on the number of
folds that occur) but in our context it is natural to begin at the illegal turn
of ρr in Hr. This is the key to Lemma 5.3.6 below. To make its statement
precise, note that for any extended fold F : G → G′, we may think of Gr−1

as a subgraph of both G and G′ and with respect to this notation, F |Gr−1 =
identity.
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Lemma 5.3.6. If f : G → G and ρr ⊂ Gr satisfy the hypotheses of
Proposition 5.3.1, then there exist :

• a composition of extended folds fr : G→ G1,

• a composition fr−1 : G1 → G2 of folds involving edges in Gr−1,

• a homeomorphism θ : G2 → G,

such that f ' θfr−1fr rel V.

Proof. We use the notation of Definition 5.3.2; we also let ρ′r = α′β′ ⊂ G′r
be the decomposition of ρ′r into maximal r-legal subpaths. Let E′1 and E′2 be
the initial edges of ᾱ′ and β′ respectively and let F ′ : G′ → G′′ be the extended
fold of ρ′r with respect to f ′ : G′ → G′. We claim that either g cannot be
folded at (E′1, E

′
2) or F ′ : G′ → G′′ is a generalized fold for g : G′ → G. (By

construction, F ′ : G′ → G′′ is a generalized fold for f ′ : G′ → G′.) More
precisely, write E′2 as a concatenation of subpaths E′2 = µ′1µ

′
2µ
′
3 satisfying

f ′(µ′1) = f ′(E′1) and f ′(µ′2) = f ′#(b′) where b′ is the maximal subpath of G′r−1

following E′1 in ρ′r. (It is possible that both µ′2 and b′ are trivial.) We will
show that if g(E′1) and g(E′2) have a nontrivial common initial segment, then
g(µ′1) = g(E′1) and g′(µ′2) = g′#(b′).

As a first step toward verifying the claim, suppose that g(E′1) and g(E′2)
have a common initial segment but that the maximal g-fold of E′1 and E′2 does
not use all of µ′1. In other words, suppose that the g-fold is not full. Let
F̂ : G′ → Ĝ be the maximal g-fold of E′1 and E′2, let ĝ : Ĝ→ G be the induced
map satisfying ĝF̂ = g and let Ĝi = F̂ (G′i) for 1 ≤ i ≤ r. Since the fold is not
full, Ĥr = F̂ (H ′r) has one more edge than do H ′r and Hr.

E1
0 E2

0
F̂

Since F̂ is maximal, ĝ cannot be folded at the newly created vertex. By
Lemma 5.2.5, (E′1, E

′
2) is the only illegal turn for f ′ that involves an edge

in H ′r. Since every fold for g is also a fold for f ′ = Fg, F ′ is the only fold for
g that involves an edge in H ′r. It follows that all folds for ĝ have both edges in
Ĝr−1. If γ̂ ⊂ Ĝr−1 is any nontrivial path with endpoints in Ĥr ∩ Ĝr−1 = H ′r ∩
G′r−1 = Hr ∩Gr−1, then there exists a nontrivial path γ ⊂ Gr with endpoints
equal to those of γ̂ such that F̂#F#(γ) = γ̂; in particular, ĝ#(γ̂) = f#(γ) is
nontrivial. It follows that folding edges in Ĝr−1 according to ĝ|Ĝr−1 will not
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cause previously distinct vertices in Ĥr ∩ Ĝr−1 to become identified. Thus
no new illegal turns involving the edges of Ĥr are created during such folds.
Consecutively fold edges in Ĝr−1 according to ĝ|Ĝr−1 until no more folds are
possible; call this composition of folds fr−1 : Ĝ → G∗. There is an induced
immersion θ : G∗ → G satisfying f = θfr−1F̂F . Since G has no valence-one
vertices, θ is a homeomorphism. Now θ(fr−1(Ĝr−1)) = f(Gr−1) = Gr−1 so
that θ(fr−1(Ĥr)) = Hr. But θfr−1|Ĥr induces a bijection on edges and so this
contradicts the fact that Ĥr and Hr do not have the same number of edges.
We conclude that if g can be folded at (E′1, E

′
2), then all of E′1 can be folded

with a proper initial segment of E′2.
Let E be the first edge of f#(β) that is not part of the maximum common

initial segment of f#(ᾱ) and f#(β). Then the initial edge E′ in F (E) ⊂ G′

is the first edge of g#(β′) that is not part of the maximum common initial
segment of g#(ᾱ′) and g#(β′). Since E is contained in Hr, E′ is contained in
H ′r. In particular, E′ is not contained in b′ and we have verified the claim.

If g cannot be folded at (Ē′1, E
′
2), then define fr = F and construct fr−1

and θ exactly as above. Otherwise, let F ′ : G′ → G′′ be the extended fold of ρ′r
with respect to f ′ : G′ → G′ and let g′ : G′′ → G be the induced map satisfying
g′F ′ ' g rel V ′. If g′ cannot be folded at the illegal turn of ρ′′r , then define
fr = F ′F and construct fr−1 and θ exactly as above. Otherwise repeat the
argument of the claim to conclude that the extended fold of ρ′′r is a generalized
fold for g′.

Continue in this manner until we arrive at the desired factorization. The
process must terminate because there is a bound to the number of folds that
occur in any factorization of f : G→ G .

We associate a surface S and a graph K to f : G→ G and ρr as follows.
We think of ρr as a map with domain I × {0} ⊂ I × [0, 1] and subdivide
I × {0} into subintervals that map either to individual edges of Hr or into
maximal subpaths {bl} of Gr−1. The edges in the subdivision of I × {0} are
labeled according to the oriented images in G. For each edge Ei of Hr, identify
the two edges of I × {0} that are labeled Ei. The quotient of I × {0} by
this identification rule is a graph K. The quotient of all of I × [0, 1] by the
identification rule is a surface S that deformation retracts to K. The edges of
K inherit a labeling that defines a map h : K → G. For each edge Ei ⊂ Hr

there is a unique edge in K labeled Ei; for notational simplicity, we refer to
this edge as Ei. The other edges of K form a subgraph K0 consisting of edges
that are mapped to Gr−1. Note that K0 ⊂ ∂S. Let VK be the vertex set of K.

The next lemma states that an extended fold F : G → G′ can be lifted
to a homotopy equivalence between the graphs K and K ′ associated to the
indivisible Nielsen paths ρr and ρ′r respectively.
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Lemma 5.3.7. Suppose that f : G→ G, f ′ : G′ → G′, ρr and ρ′r are as in
Definition 5.3.2. Suppose further that K and K ′ are the graphs associated to
ρr and ρ′r respectively and that h : K → G and h′ : K ′ → G′ are the associated
labeling maps. Then there is a homotopy equivalence FK : K → K ′ such that :

• h′FK = Fh.

• FK induces a bijection between the vertices of K and the vertices of K ′.

• FK |K0 : K0 → K ′0 is a homeomorphism.

Proof. We use the notation of Definition 5.3.2. As described in the proof
of Lemma 5.3.3, there is a one-to-one correspondence between the edges of
K and the edges of K ′; this correspondence preserves labels with the single
exception that E2 corresponds to E′2.

To study the link structures of K and K ′, we think of ρr = e1 · . . . ·em as a
concatenation of subpaths where each ej is labeled by either an edge Ei ⊂ Hr

or a maximal subpath bl ⊂ Hr. Thus each ej is identified with an edge of
K. The link of a vertex in K is the equivalence class of oriented edges in K

generated by ēj ∼ ej+1 for 1 ≤ j ≤ m−1. Let ∼′ be the analogous equivalence
relation on oriented edges in K ′.

If b is trivial, let A = E1 (thought of as an edge of K); if b is not trivial, let
A = bK , the edge of K that corresponds to b. Let E3 be the edge that follows b
in ᾱ. The generating relations for ∼′ are obtained from the generating relations
for ∼ as follows. Erase E1 ∼ E2 and add E3 ∼′ E′2. If A = bK or if the second
occurrence of E1 in ρr is not followed by the second occurrence of E3 in ρr,
then erase Ā ∼ E3. (This accounts for the changes caused by the shortening
of α and β to α′ and β′.) If ρr does not begin with E2 or end with Ē2, then
ρr passes through a turn (X,E2) with X 6= E1. Erase X ∼ E2, add X ∼′ E1

and add Ā ∼′ E′2. (This accounts for the subdivision of E2 into the edge path
AE′2 or E1AE

′
2.) Finally, change ∼ to ∼′ in the remaining generating relations.
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The combinatorial types of K and K ′ differ in at most two links. The initial
endpoint of E2 is moved from the vertex containing X and E1 and is added to
the vertex containing E3 and Ā. (These vertices need not be distinct.)

E1

E2X
E3

A

X

E1 A

E3 E2
0

Links in K 0Links in K

We may think of K\E2 as a subgraph of both K and K ′; thus K is formed
by adding E2 and K ′ is formed by adding E′2. The maps h and h′ agree on
K \E2; h(E2) = E2 and h′(E′2) = E′2. Define FK to be the identity on K \E2

and FK(E2) = E1bKE
′
2 where we allow the possibility that bK is trivial. The

desired properties of FK follow immediately.

The next step in the proof of Proposition 5.3.1 is to show that f : G→ G

can be lifted to K.

Corollary 5.3.8. There is a homotopy equivalence fK : K → K such
that :

(i) hfK ' fh rel VK .

(ii) fK permutes the elements of VK .

(iii) fK |K0 is a homeomorphism.

Proof. Let θ, fr−1 and fr be as in Lemma 5.3.6. There is a relative train
track map f1 : G1 → G1 that is obtained by iteratively folding indivisible
Nielsen paths, starting with ρr and continuing through the extended folds that
make up fr. Let h1 : K1 → G1 be the associated labeling map. Lemma 5.3.7
implies that there exists F1 : K → K1 such that h1F1 = frh.

Let ρ1
r = (fr)#(ρr) ⊂ G1 be the corresponding indivisible Nielsen path

and let {b1l } be the maximal subpaths of ρ1
r in G1

r−1. Since f1 is a relative
train track map and f1|Gr−1 = f |Gr−1 = θfr−1|Gr−1, each θ#(fr−1)#(b1l ) is
a nontrivial path in Gr−1. By construction θfr−1|H1

r : H1
r → H1

r is injective
and θ#(fr−1)#(ρ1

r) = f#(ρr) = ρr. It follows that ρr is obtained from ρ1
r by

replacing each b1l with θ#(fr−1)#(b1l ) and relabeling an edge E1 of H1
r by the

edge θ#(fr−1)#(E1); thus K is obtained from K1 by changing the edge labels
b1l to θ#(fr−1)#(b1l ) and the edge labels E1 to θ#(fr−1)#(E1). This induces a
homeomorphism F2 : K1 → K such that hF2 ' θfr−1h

1 rel vertices.
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Define fK = F2F1. Then hfK = hF2F1 ' θfr−1h
1F1 = θfr−1frh = fh rel

VK . Since F1 induces a bijection of vertices and F2 is a homeomorphism, fK
permutes the vertices of K. Finally, since F1|K0 and F2 are homeomorphisms,
fK |K0 is a homeomorphism.

The next lemma exploits the fact that f : G→ G is reduced. If v̂ is vertex
of K, we denote its link, thought of as the oriented edges with initial vertex v̂,
by Lk(K, v̂). The link of v in G is denoted Lk(G, v).

Lemma 5.3.9. 1. If h(Lk(K, v̂)) ⊂ Hr, then h(Lk(K, v̂)) = Lk(G, h(v̂)).

2. The endpoints of ρr are equal and are not contained in Gr−1; the initial
edge of ρr is distinct from the initial edge of ρ̄r.

3. For each component C of K0, h#(C) is a nontrivial circuit in Gr−1.

Proof. Since fK |K0 is a homeomorphism and fK permutes the vertices of
K, we may assume, after replacing f by an iterate if necessary, that fK fixes
every vertex of K and restricts to the identity on K0.

v0

w0
X

p

D0

D

v

Suppose that D = h(Lk(K, v̂)) ⊂ Hr is not all of Lk(G, h(v̂)). Define
a new graph G′ from G as follows. Replace v = h(v̂) by a pair of vertices
v′ and w′; reattach the edges of D to v′ ( where they are labeled D′) and
the remaining edges in Lk(G, v) to w′; add an edge X connecting v′ and w′.
Define p : G′ → Gr to be the homotopy equivalence that collapses X to v. Let
G′r = G′ \ X and G′r−1 = p−1(Gr−1) \ X. Note that p|G′r−1 : G′r−1 → Gr−1

is a homeomorphism so that we may think of Gr−1 as a subgraph of both G

and G′. With this notation p|Gr−1 = identity. By construction, there is a map
h∗ : K → G′r satisfying ph∗ = h. If E is an edge of Hr, and so also an edge of
K, then for all k > 0, h∗#f

k
K(E) ⊂ G′r is a lift of fk#(E). Thus G′r carries the

lamination Λ+ ∈ L(O) associated to Hr and F(G′r) 6= F(Gr−1).
We next show that F(G′r) is O-invariant by defining a topological repre-

sentative f ′ : G′ → G′ such that pf ′ ' fp rel vertices and such that f ′ restricts
to a self map of G′r. On the edges of G′r−1 = Gr−1, f ′ = f . If E′ is an edge
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of H ′r = G′r \ G′r−1, then p(E′) is an edge of Hr and so h−1p(E′) is a well-
defined edge of K; define f ′(E′) = h∗fKh−1p(E′). Finally define f ′(X) = X.
Lemma 5.3.8 implies that pf ′ ' fp rel vertices on the edges of H ′r and hence
that pf ′ ' fp rel vertices on all edges. Since fK fixes all vertices, so does f ′.
It follows that f ′ is continuous. By definition, f ′ restricts to a self map of G′r.

To complete the proof of (1) we will show that F(G′r) 6= F(G′) = F(G) in
contradiction to the assumption that f : G → G is reduced and our previous
observation that F(G′r) 6= F(Gr−1). If F(G′r) = F(G′), then G′r must have two
components, one of which, Y ′, is contractible. Since G′r carries Λ+, Y ′ ⊂ G′r−1.
But then Y ′ is a contractible component of Gr−1 that contains the vertex
v = h(v̂) and is hence mapped to itself by f . This contradicts condition (5) in
the definition of F-Nielsen minimizing.

We now turn to the proof of (2). Let v1 be the initial vertex of ρr = αβ.
If v1 6∈ Gr−1, then each time the interior of ρr passes through v1 it crosses
two edges of Hr. The total number of times that ρr crosses the Hr-edges in
Lk(G, v) is even. Since ρr starts at v1, it must also end at v1. Suppose that
the initial edge E of ρr equals the initial edge of ρ̄r. For large k, there are
initial subpaths α0 and β0 of E such that α = fk#(α0) and β̄ = fk#(β0). We
may assume without loss that α0 ⊂ β0 and hence that α is an initial subpath
of β̄. Since the initial edge of β is in Hr, the difference between the number of
edges in fm# (α) and fm# (β) grows without bound, in contradiction to the fact
that for all m ≥ 0, ρr = fm# (ρr) is obtained from the concatenation of fm# (α)
and fm# (β) by cancelling at the juncture.

To complete the proof of (2), we assume that v1 ∈ Gr−1 and argue to a
contradiction. Let v̂1 be the initial endpoint of the lift to K of the first edge in
ρr. Part (1) implies that v̂1 is contained in a component C of K0. Since C is
completed to a circle in ∂S by ∂I× [0, 1]∪ I×{1}, C is an arc and v̂1 is one of
its endpoints. For notational concreteness, we give the argument when C has
two edges: A with endpoints v̂1 and v̂2 and label b1; and B with endpoints v̂2

and v̂3 and label b2. We also assume that v1 = v3 6= v2 where vi = h(v̂i). The
arguments in other cases require only straightforward modifications.

The subset of Lk(K, v̂i) that projects to Hr is denoted D̂i; its image in
Lk(G, vi) is denoted Di. Note that Lk(K, v̂1) = D̂1∪A, Lk(K, v̂2) = D̂2∪Ā∪B
and Lk(K, v̂3) = D̂3∪B̄. Define G′ to be the graph obtained from Gr as follows.
Replace v1 = v3 by three vertices v′1, v

′
3 and w′1; replace v2 by two vertices v′2

and w′2. The edges of Di are reattached to v′i (where they are labeled D′i).
The remaining edges in the link of v1 (respectively v2) are reattached to w′1
(respectively w′2). Add edges X connecting v′1 to w′1, A′ connecting v′1 to v′2
and B′ connecting v′2 to v′3. Define p : G′ → G to be the homotopy equivalence
that collapses X to v1, sends A′ to b1 and sends B′ to b2. As in the previous
case, there is a map h∗ : K → G′ \ X satisfying ph∗ = h and there is an
induced topological representative f ′ : G′ → G′ : that satisfies pf ′ = fp; that
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restricts to the identity on X∪A′∪B′; and that maps G′ \X into itself. Define
G′r−1 = p−1(Gr−1) \ (X ∪A′ ∪B′) and G′r = G′ \X. The proof now concludes
as in the previous case.

BA

X
K

B 0

A0

1v̂ 2v̂ 3v̂

G0

2v
0

2b

2b ih1b ih

1b

3v
0

1v
0

1w0
2w0

D1 D2 D3

D2
0

D3
0

D1
0

For part (3), we may assume by parts (1) and (2) that C is a loop. We will
give the argument when the boundary component C consists of three edges: A
with endpoints v̂1 and v̂2 and label b1; B with endpoints v̂2 and v̂3 and label
b2; and C with endpoints v̂3 and v̂1 and label b3. As in part (2) we assume
that v1 = v3 6= v2. Define G′ and p : G′ → G exactly as in part (2). If h#(C)
is trivial, then b3 ' b̄2b̄1 rel endpoints and there exists h∗ : K → G′ such
that ph∗ ' h rel vertices; one simply defines h∗(A) = A′, h∗(B) = B′ and
h∗(C) = B̄′Ā′. The proof now concludes as in the previous cases.

Proof of Proposition 5.3.1. We have already defined S. Parts (1) and (2)
of Lemma 5.3.9 imply that ∂I × {0, 1} ∪ I × {1} projects to a component ρ∗

of ∂S. The components of ∂S \ ρ∗ = K0 are denoted γ∗1 , . . . , γ
∗
m . Part (3)

of Lemma 5.3.9 implies that each γi = h#(γ∗i ) is a nontrivial circuit. Since
hfK ' fh and fK permutes the γ∗i ’s, f# permutes the γi’s and the induced
permutations of {1, . . . ,m} agree.

Define Ĝ = Gr−1 ∪h|K0
K. The identity map on Gr−1 and h fit together

to give a continuous map ĥ : Ĝ→ G. Part (1) of Lemma 5.3.9 implies that ĥ
induces a bijection between the vertices of K \K0 and the vertices of G\Gr−1.
Thus ĥ induces a bijection between the vertices of Ĝ and the vertices of G.
Since ĥ also induces a bijection on edges, ĥ is a homeomorphism.

Let A be the union of m annuli Ai, . . . , Am. Define Y to be the space
obtained from Gr−1 ∪ A ∪ S by attaching one end of Ai to γi and the other
end to γ∗i . By construction, S = M(ρKr ) is the mapping cylinder of the quo-
tient map ρKr : I × {0} → K. Since ĥ : Ĝ → G is a homeomorphism, Y is
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homeomorphic to the mapping cylinder M(ρr), where ρr is thought of as a
map of the interval into G. The natural deformation retraction of M(ρr) to
G defines Φ : (Y,Gr−1) → (G,Gr−1). It remains to show that if r : S → K

is the deformation retraction given by collapsing mapping cylinder lines, then
the homotopy equivalence fKr : S → S is homotopic to a pseudo-Anosov
homeomorphism φ.

Since r|K0 = identity and fK |K0 is a homeomorphism, fKr permutes the
components of K0 ⊂ ∂S. The component ρ∗ is freely homotopic in S to the
circuit determined by ρr and so is also fixed by (fKr)#. It follows (Theorem
3.1 of [Hem]) that fKr is homotopic to a homeomorphism φ. To prove that
the mapping class determined by φ is pseudo-Anosov, it suffices to show that
the only periodic conjugacy classes are the peripheral ones.

A nontrivial circuit σK ⊂ K determines a nontrivial circuit σ̂ ⊂ Ĝ and
hence a nontrivial circuit σ ⊂ G. If σK is periodic under the action of fK and
σK 6⊂ K0, then σ is periodic under the action of f and σ 6⊂ Gr−1. Lemma
4.2.6 and Lemma 5.2.5 imply that σ splits into subpaths that are either entirely
contained in Gr−1 or equal to ρr or ρ̄r. Part (2) of Lemma 5.3.9 implies that
σ is a multiple of ρr or ρ̄r.

5.4. Sliding. In this subsection we introduce and study the technique
used to arrange condition (ne-ii) of Theorem 7.0.1. We assume throughout
this subsection that f : G → G is a relative train track map, that Hi is a
non-exponentially-growing stratum and that each non-exponentially-growing
stratum Hj is a single edge Ei satisfying f(Ej) = Ejuj for some path uj ⊂
Gj−1.

For any path α ⊂ Gi−1 with initial endpoint equal to the terminal endpoint
of Ei and with terminal endpoint at a vertex of Gi−1, define a new graph G′

by replacing Ei with an edge E′i that has the same initial endpoint as Ei and
the same terminal endpoint as α. Every edge of G \ Ei is naturally identified
with an edge of G′ \ E′i; we use the same name for the edge in both graphs.
Similarly, a path β ⊂ G that does not cross Ei is identified with a path, also
called β, in G′.

®

Ei
0

Ei
p0
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There are homotopy equivalences p : G → G′ and p′ : G′ → G that equal
the ‘identity’ on the common edges of G and G′ and that satisfy p(Ei) = E′iᾱ
and p′(E′i) = Eiα respectively. Define f ′ : G′ → G′ by tightening pfp′ :
G′ → G′; in other words, on each edge of G′, f ′ = (pfp′)#. We say that
f ′ : G′ → G′ is obtained from f : G→ G by sliding Ei along α. For each Gj
define G′j = p(Gj).

The basic properties of sliding are listed in the following lemma.

Lemma 5.4.1. Suppose that f ′ : G′ → G′ is obtained from f : G → G

by sliding Ei along α. Then f ′(E′i) = E′iu
′
i where u′i = [ᾱuf(α)] ⊂ G′i−1.

Moreover, H ′j is exponentially growing (respectively non-exponentially grow-
ing) if and only if Hj is exponentially growing (respectively non-exponentially
growing). If f : G→ G is F-Nielsen minimizing, then so is f ′ : G′ → G′ .

Proof. We have f ′(E′i) = (pfp′)#(E′i) = (pf)#(Eiα) = p#([Eiuf(α)]) =
[E′iᾱuf(α)] = E′i[ᾱuf(α)]. Sliding has no effect on any F(Gj) so f ′ : G′ → G′

satisfies conditions (1) and (2) in the definition of F-Nielsen minimizing if
f : G→ G does.

Since f |Gi−1 agrees with f ′|G′i−1, we may restrict our attention to strata
Hj with j > i. If Hj is a zero stratum and E0 is an edge in Hj , then f(E0) ⊂
Gj−1. Thus f ′(E0) = (pf)#(E0) ⊂ G′j−1 and H ′j is also a zero stratum. If Hj is
non-exponentially growing, then, according to our standing assumption, Hj is
a single edge Ej and there is a path uj ⊂ Gj−1 such that f(Ej) = Ejuj . Thus
f ′(Ej) = (pf)#(Ej) = p#(Ejuj) = Ejp#(uj) where p#(uj) ⊂ G′j−1. Thus H ′j
is non-exponentially growing.

Suppose now that Hr is exponentially growing and that E is an edge of
Hr. For any nontrivial paths β ⊂ G and γ′ ⊂ G′ with endpoints at vertices,
(p′p)#(β) = β and (pp′)#(γ′) = γ′. In particular, p#(β) and p′#(γ′) are non-
trivial. The train track property implies that f(E) = a1b1a2 . . . blal+1 where
ai ⊂ Hr and bi ⊂ Gr−1 are nontrivial paths. Thus f ′(E) = (pf)#(E) =
p#(a1b1a2 . . . blal+1) = a1p#(b1)a2 . . . p#(bl)al+1. This implies that Hr is ex-
ponentially growing and that the transition submatrices, Mr and M ′r, and
hence the Perron-Frobenius eigenvalues µr and µ′r, are equal. If β′ ⊂ G′r−1

is a nontrivial path with endpoints in H ′r ∩ G′r−1, then p′#(β′) is a nontrivial
path with endpoints in Hr ∩ Gr−1 and hence (fp′)#(β′) is nontrivial. Thus
f ′#(β′) = (pfp′)#(β′) is nontrivial. We have now verified that f ′ : G′ → G′ is
a relative train track map.

If σ′ ⊂ G′r satisfies (f ′)k#(σ′) = σ′, then p′#(σ′) = p′#(pfp′)k#(σ′) =
(f)k#p

′
#(σ′). Similarly, if σ ⊂ Gr and fk#(σ) = σ, then p#(σ) = (pfk)#(σ) =

(f ′)k#p#(σ). In other words, p induces a period-preserving bijection between
indivisible periodic Nielsen paths in Gr and indivisible periodic Nielsen paths
in G′r. Thus f ′ : G′ → G′ is F-Nielsen minimized if f : G→ G is.
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In order to find good paths along which to slide, we consider a restricted
lift of f defined as follows. Choose a lift Ẽi in the universal cover Γ of G. Let
f̃ : Γ → Γ be the lift of f : G → G that fixes the initial endpoint of Ẽi, let
ũi be the lift of ui satisfying f̃(Ẽi) = Ẽiũi and let Γi−1 ⊂ Γ be the component
of the full pre-image of Gi−1 that contains ũi. Since f̃(Ẽi) = Ẽiũi, Γi−1 is
f̃ -invariant. Denote f̃ |Γi−1 by h : Γi−1 → Γi−1 and note that if q̃ is the initial
vertex of ũi, then h(q̃) is its terminal vertex.

The sliding operation can be lifted to Γ by replacing each lift of Ei with a
lift of E′i. Call the resulting tree Γ′. Let f̃ ′ : Γ′ → Γ′ be the lift of f ′ : G′ → G′

that fixes the initial endpoint of the lift Ẽ′i that corresponds to Ẽi. (Ẽi and
Ẽ′i have a ‘common’ initial endpoint.) Lemma 5.4.1 implies that Γ′i−1 = Γi−1

and that f̃ ′|Γ′i−1 = f̃ |Γi−1. In this sense, h : Γi−1 → Γi−1 is unchanged by the
sliding operation.

For any x̃, ỹ ∈ Γi−1, denote the path connecting x̃ to ỹ by [x̃, ỹ] and its
image under the covering projection pr : Γ→ G by pr([x̃, ỹ]) ⊂ Gi−1. Paths in
Gi−1 that have their initial endpoint at q = pr(q̃) and their terminal endpoint
at a vertex v are in one-to-one correspondence with paths in Γi−1 of the form
[q̃, ṽ] where pr(ṽ) = v and hence are in one-to-one correspondence with the set
of vertices ṽ of Γi−1. Thus we may speak of sliding along the path determined
by the vertex ṽ.

Lemma 5.4.2. If f ′ : G′ → G′ is obtained from f : G → G by sliding
along the path corresponding to a vertex ṽ, then f ′(E′i) = E′iu

′
i where u′i =

pr([ṽ, h(ṽ)]).

Proof. This follows immediately from Lemma 5.4.1 and the definition
of h.

The following proposition is the main result of this subsection. Conditions
(1) and (2) record the fact that we have taken u to be as simple as h will allow.
Condition (3) is a strengthening of the assertion that f ′(E′i) = E′i · u′i and is
used in Lemma 5.5.1.

Proposition 5.4.3. After subdivision at a periodic orbit of f : G → G

if necessary, there is a vertex ṽ of Γ that projects to a periodic point of f so
that if f ′ : G′ → G′ is obtained from f : G → G by sliding along the path
determined by ṽ, then f ′(E′i) = E′i · u′i where:

1. u′i is trivial if and only if h has a fixed point.
2. If u′i is nontrivial, then u′i is periodic under the action of f# if and only

if h commutes with a covering translation T of Γi−1; in this case, the
infinite ray R̃′ = ũ′ih#(ũ′i)h

2
#(ũ′i) . . . is contained in the axis of T .

3. If u′i is nontrivial, then E′i · w′i is a splitting for every initial segment
w′i of u′i.
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Proof. If Fix(h) 6= ∅, then, after subdividing if necessary, we may choose
ṽ ∈ Fix(h). Lemma 5.4.2 implies that u′ is the trivial path. We assume now
that h is fixed-point free. Lemma 5.4.2 implies that u′ cannot be trivial for
any choice of ṽ. This verifies condition (1).

Let X̃ = {x̃ : {x̃, h(x̃), h2(x̃), . . .} is an ordered subset of an infinite path in
Γi−1}. Note that h(X̃) ⊂ X̃ and that if x̃ ∈ X̃ and [x̃, h(x̃)] = [x̃, ỹ] · [ỹ, h(x̃)],
then ỹ ∈ X̃. The first step in the proof is to show that X̃ 6= ∅.

We say that the initial edge of [ṽ, h(ṽ)] is preferred by the vertex ṽ ∈ Γi−1.
If E is preferred by both (respectively neither) of its endpoints, then h(E),
thought of as an edge path, contains Ē (respectively E). But then some
subinterval of E maps to all of Ē (respectively E) and so must contain a fixed
point. This contradiction implies that E is preferred by exactly one of its
endpoints. For each ṽ ∈ Γi−1, let L(ṽ) = E0 · E1 · . . . be the infinite path
defined by choosing E0 to be the preferred edge for ṽ, and by inductively
choosing Ei+1 to be the preferred edge for the terminal endpoint of Ei.

Given ṽ, w̃ ∈ Γi−1, denote [ṽ, w̃] by γ̃. An easy induction argument on
edge length shows that either the initial edge of γ̃ is preferred by the initial
vertex of γ̃ or the terminal edge of γ̃ is preferred by the terminal vertex of γ̃
or both . In other words, either the initial edge of γ̃ is the initial edge of L(ṽ)
or the initial edge of the inverse of γ̃ is the initial edge of L(w̃) or both. It
follows that L(ṽ) and L(w̃) have a common infinite end. Define I(ṽ, w̃) to be
the initial vertex of L(ṽ) ∩ L(w̃); thus L(I(ṽ, w̃)) = L(ṽ) ∩ L(w̃).

~v

~w

;I( )~w~v

L( )~w

L( )~v

;I( )~w~vL( )

Choose a vertex ṽ0 and inductively define ṽi+1 = I(ṽi, h(ṽi)). Then
L(ṽ0) = [ṽ0, ṽ1][ṽ1, ṽ2][ṽ2, ṽ3] . . . and h#([ṽi, ṽi+1]) = [h(ṽi), h(ṽi+1)] contains
[ṽi+1, ṽi+2]. Define Ỹm = {ỹ ∈ [ṽ0, ṽ1] : hi(ỹ) ∈ [ṽi, ṽi+1] ∀ 0 ≤ i ≤ m}.
A straightforward induction argument shows that h(Ỹm) = [ṽm, ṽm+1] and in
particular that Ỹm 6= ∅. The Ỹm’s are a nested sequence of closed subsets of
[ṽ0, ṽ1] so that ∩Ỹm 6= ∅. By construction, ∩Ỹm ⊂ X̃ so that X̃ 6= ∅.
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L( )v0

~v3~v0

~v2

h( )~v0

h( )~v1

~v1

The next step is to choose a vertex ṽ ∈ X̃. Let s be the smallest positive
integer for which there exists x̃ ∈ X̃ satisfying pr[x̃, h(x̃)] ⊂ Gs. Choose such
an x̃. If Hs is non-exponentially growing, then Hs is a single edge Es and
f(Es) = Esus for some path us ⊂ Gs−1. After replacing x̃ by some hk(x̃)
if necessary, we may assume that [x̃, h(x̃)] contains at least one entire edge
ẽ whose projected image e equals either Es or Ēs and that pr(h(x̃)) is not
contained in the interior of Es. If e = Es let ṽ be the initial edge of ẽ; if
e = Ēs, let ṽ be the terminal edge of ẽ. Lemma 4.1.4 implies that [x̃, h(x̃)] can
be split at ṽ and hence that ṽ ∈ X̃.

If Hs is exponentially growing, then after replacing x̃ by some hk(x̃) if
necessary, we may assume that each [hi(x̃), hi+1(x̃)] has the same number of
illegal turns in Hs. Lemma 4.2.6 produces a splitting of [x̃, h(x̃)]. If one of
the resulting pieces is a lift ρ̃ of some ρ ∈ Ps, let ṽ be its initial endpoint.
Replacing x̃ by some hk(x̃) if necessary, we may assume by Lemma 4.2.5 that
v is f -periodic. After subdividing at the orbit of v, we may assume that ṽ ∈ X̃
is a vertex. If there are no ρ̃ pieces, then [x̃, h(x̃)] is s-legal. After replacing
x̃ by some hk(x̃) if necessary, we may assume that [x̃, h(x̃)] contains an entire
edge of Hs. Let ṽ be an endpoint of such an edge. Lemma 4.2.1 implies that
[x̃, h(x̃)] splits at ṽ and hence that ṽ ∈ X̃. Replacing ṽ by some hi(ṽ), we may
assume that v is a periodic point.

We assume from now on that ũ′i = [ṽ, h(ṽ)], where ṽ is chosen as above,
and that u′i ⊂ Gs is its projected image. If (f ′)k#(u′i) = u′i for some k > 0, then
the infinite ray R̃′ = ũ′ih#(ũ′i)h

2
#(ũ′i) . . . is contained in the axis of the covering

translation T : Γi−1 → Γi−1 that satisfies T (ũ′i) = hk#(ũ′i). Since h# preserves
the axis of T , h commutes with T .

Conversely, suppose that there is a covering translation T of Γi−1 that
commutes with h. Then T ([x̃, h(x̃)]) = [T x̃, h(T x̃)] for all x̃ and so L(T (ṽ)) =
T (L(ṽ)). This implies that L(ṽ) and T (L(ṽ)) have a common infinite end and
hence that L(ṽ) and the axis of T have a common infinite end. In particular,
hl(ṽ) is contained in the axis of T for all sufficiently large l. This implies that
there is a uniform bound to the edge length of [hl(ṽ), hl+1(ṽ)], and hence that
(f ′)l#(u′i) takes only finitely many values. After replacing ṽ by some hl(ṽ) if
necessary, we may assume that u′i is periodic under the action of f ′# and that
R̃′ is contained in the axis of T . We have now verified (2).
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Recall that R̃′ = ũ′i ·h#(ũ′i) ·h2
#(ũ′i) . . . is the infinite ray starting at ṽ and

containing {hi(ṽ) : i ≥ 0}. Let ũ′i = σ̃1 · σ̃2 · . . . · σ̃n0 be the splitting provided
by Lemma 4.2.1 if Hs is non-exponentially growing and by Lemma 4.2.6 if Hs

is exponentially growing. Then hi#(ũ′i) = hi#(σ̃1) ·hi#(σ̃2) · . . . ·hi#(σn0) and R̃′

has an infinite splitting R̃′ = σ̃1 · σ̃2 · . . . where σ̃in0+j = hi#(σ̃j).
To verify condition (3), we must show that [ṽ, hi(ṽ)] is contained in [ṽ, hi(ỹ)]

for all ỹ ∈ ũ′i. It suffices to show that hi(ũ′i) intersects hi−1
# (ũ′i) trivially. We

will prove the slightly stronger statement that hi(σ̃j), which tightens to σ̃in0+j ,
intersects σ̃in0+j−1 trivially for 1 ≤ j ≤ n0 and all i ≥ 0.

Suppose at first that Hs is non-exponentially growing. If the initial edge
of σ̃j is a lift of Es, then Lemma 4.1.4 implies that hi(σ̃j) is a lift of Es, possibly
followed by a sequence of edges in Γi−1 and possibly terminating in a lift of
Ēs; if hi(σ̃j) does terminate in a lift of Ēs then the sequence of edges in Γi−1

tightens to a nontrivial path. The initial edge of hi(σ̃j) is disjoint from the
rest of hi(σ̃j) and acts as a barrier to keep hi(σ̃j) from intersecting σ̃in0+j−1.
If the initial edge of σ̃j is not a lift of Es, then the terminal end of σ̃in0+j−1

is a lift of Ēs and hi(σ̃j) is a sequence of edges in Γi−1, possibly terminating
in a lift of Ēs; if the last edge of hi(σ̃j) is a lift of Ēs, then the sequence of
edges in Γi−1 tightens to a nontrivial path. The edges in Γi−1 cannot cross the
terminal edge of σ̃in0+j−1 and the terminating lift of Ēs, if it exists, cannot
either because the path between it and σ̃in0+j−1 is nontrivial.

Assume now that Hs is exponentially growing. If σ̃j = ρ̃ for some ρ ∈ Ps,
let ρ = αβ be the unique decomposition of ρ into s-legal subpaths. Lemma 2.5.1
implies that hi(α̃) (and also hi(β̃)) decomposes into a path that projects to Hs,
followed by a sequence of edges that project to Gs−1 and tighten to a nontrivial
path, followed by a path that projects to Hs and so on. The terminal end of
hi(α̃) and the initial end of hi(β̃) agree up to a point, but there is always an
initial subpath of hi(α̃) that is disjoint from the rest of hi(σ̃j). This prevents
hi(σ̃j) from crossing back to σ̃in0+j−1.

If σ̃j 6= ρ̃, then σ̃j is s-legal. If the initial edge of σ̃j projects to Hs, then
Lemma 2.5.1 implies that the initial edge of hi(σ̃j) is disjoint from the rest of
hi(σ̃j) and prevents hi(σ̃j) from crossing back to σ̃in0+j−1. If the initial edge
of σ̃j does not project to Hs, then the terminal edge of σin0+j−1 projects to
Hs and prevents hi(σ̃j) from crossing back to σ̃in0+j−1 : edges that project to
Gs−1 cannot cross this barrier and edges that project to Hs do not because
Lemma 2.5.1 implies that they are part of hi#(σ̃j).

5.5. Splitting basic paths. We proved in Lemma 4.1.4 that if f : G→ G is
a relative train track map and Hi is a single edge Ei satisfying f(Ei) = Eiui
for some path ui ⊂ Gi−1, then a path σ ⊂ Gi splits into subpaths that are
either entirely contained in Gi−1 or are basic paths of height i; i.e. are one of
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the following three types: Eiγ,EiγĒi, γĒi, where γ ⊂ Gi−1. The path γĒi is
the inverse of the path Eiγ̄ so it suffices to consider Eiγ and EiγĒi. In this
subsection we consider further splittings of the paths Eiγ and EiγĒi.

Lemma 5.5.1. Assume that :

• f : G→ G is a relative train track map;

• each exponentially-growing stratum Hi satisfies conditions eg-(i), eg- (ii),
and eg-(iii) of Theorem 7.0.1;

• each non-exponentially-growing stratum Hi is a single edge Ei and satis-
fies the conclusions of Proposition 5.4.3;

• if Hi is an exponentially-growing stratum then every indivisible periodic
Nielsen path ρ ⊂ Gi that intersects Hi nontrivially has period one.

Then every periodic Nielsen path has period one. If Hi is a non-exponentially-
growing stratum and if γ ⊂ Gi−1 is a nontrivial path then the following are
satisfied :

(1) If Eiγ (respectively EiγĒi) can be split at a point in the interior of Ei,
then fm# (Eiγ) = Ei · γ1 (respectively fm# (EiγĒi) = Ei · γ1Ēi) for some
m ≥ 0 and γ1 ⊂ Gi−1.

(2) If Eiγ has no splittings, then some fm# (Eiγ) is an exceptional path of
height i (Definition 5.1.3).

(3) If EiγĒi has no splittings, then EiγĒi is an exceptional path of height i.

Proof. The proof is by induction. If G1 = H1 is exponentially grow-
ing, then conditions (1)–(3) for f |G1 are vacuous and the condition on pe-
riodic Nielsen paths follows directly from our hypotheses. If G1 = H1 is
non-exponentially growing, then f pointwise fixes the single edge E1 in H1.
Conditions (1)–(3) are therefore vacuous and the condition on periodic Nielsen
paths follows from the fact that f |G1 is the identity.

We assume now that the lemma holds for f |Gi−1 and prove it for f |Gi. If
Hi is exponentially growing, then the the condition on periodic Nielsen paths
follows from Lemma 4.2.6 and the inductive hypothesis; conditions (1)–(3)
are vacuous. We may therefore assume that Hi is a single non-exponentially-
growing edge Ei and that f(Ei) = Ei ·ui. Let s be the smallest positive integer
for which ui ⊂ Gs.

Proposition 5.4.3 implies that for any nontrivial initial segment σ1 of Ei,
some fm# (σ1) = Ei · γ′ where γ′ ⊂ Gi−1. Thus if a path σ splits as σ = σ1 · σ2

where σ1 is a nontrivial initial segment of Ei then some fm# (σ) has a splitting
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of the form Ei · σ′. Part (1) of the lemma now follows from the fact that each
fm# (Eiγ) is of the form Eiγ1 and each fm# (EiγĒi) has the form Eiγ1Ēi where
γ1 ⊂ Gi−1.

In order to treat (2) and (3) simultaneously, let σ = Eiγ or EiγĒi. Assume
that σ has no splittings; in particular, ui is nontrivial.

Step 1 (cancelling large middle segments). As a first step in the proof
of (2) and (3), we use the absence of splittings to show that if σ = σ′1σ

′
2σ
′
3 is

any decomposition into nontrivial subpaths, then there exist M > 0 and an
M -splitting σ = σ1σ2σ3 such that σ1 is an initial subpath of σ′1, σ̄3 is an initial
subpath of σ̄′3 and fM# (σ) = fM# (σ1)fM# (σ3) where the indicated juncture point
is a vertex. There is no loss in assuming that σ′1 is contained in the initial edge
of σ and that σ′3 is contained in the terminal (possibly partial) edge of σ.

It is convenient to work with lifts f̃ and σ̃ = σ̃′1σ̃
′
2σ̃
′
3. The set S̃k = {x̃ ∈

σ̃ : f̃k(x̃) ∈ f̃k#(σ̃)} is closed. Since σ̃ can be split at any point of ∩∞k=1S̃k
(Lemma 4.1.1(3)), this infinite intersection contains only the endpoints of σ̃.
Thus there exists M > 0 so that ∩Mk=1S̃k ⊂ σ̃′1 ∪ σ̃′3. An easy induction
argument shows that fN maps ∩Nk=1S̃k onto f̃N# (σ̃) for all N ≥ 1. Since the
Ẽi that is the initial edge in f̃(σ̃) is not canceled when f̃k(σ̃) is tightened to
f̃k#(σ̃), each S̃k, and hence ∩Mk=1S̃k, contains an initial segment of Ẽi. Choose
a point x̃ ∈ (∩Mk=1S̃k)∩σ′1 so that f̃M (x̃) is as close to the terminal end of
f̃M# (σ) as possible and let σ̃1 be the initial segment of Ẽi terminating at x̃.
The choice of x̃ guarantees that f̃M (x̃) is a vertex. Moreover, fM# (σ̃1) is a
proper subinterval of fM# (σ̃): if not, then fM# (σ̃) = f l#(Eiµ∗) for some l and
some initial segment µ∗ of ui. This contradicts part (3) of Proposition 5.4.3,
Lemma 4.1.1(5) and the assumption that σ has no splittings. There are points
of ∩Mk=1S̃k in σ′3 that map arbitrarily close to f̃M (x̃). Since ∩Mk=1S̃k is closed
there exists ỹ ∈ ∩Mk=1S̃k in σ′3 such that f̃M (ỹ) = f̃M (x̃). The subdivision at
x̃ and ỹ defines the desired M -splitting. This completes the first step.

If σ = Eiγ, then, after replacing σ by some f l#(σ) if necessary, we may
assume that the last (possibly partial) edge of fk#(σ) is contained in the same
stratum for all k ≥ 0. An immediate consequence of step 1 is that the last
edge of σ is not pointwise fixed by f . Thus one of the following conditions is
satisfied:

(i) The terminal endpoint of σ is a vertex and the terminal edge is some
non-exponentially-growing Ēj with nontrivial uj .

(ii) The last edge of σ is contained in an exponentially-growing stratum Hr.

If σ = EiγĒi, then (i) holds for Ei = Ej without replacing σ by f l#(σ). Suppose
at first that (i) holds.
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Step 2 (at least 3 blocks cancel). Write σ = Eiγ
′Ēj , where γ = γ′ if

j = i. Define the ray Ri to be the infinite path ui · f#(ui) · f2
#(ui) · . . . and

define Rmi to be the initial segment ui · f#(ui) · f2
#(ui)· . . . ·fm−1

# (ui). We
refer to the fk#(ui)’s as the blocks of Ri. Define Rj and Rmj similarly with
uj replacing ui. Then fm# (σ) = [EiRmi f

m(γ′)R̄mj Ēj ]. We claim that if m is
sufficiently large, then a subpath of Rmi containing at least three blocks of
Ri cancels with a subpath of R̄mj containing at least three blocks of R̄j when
EiR

m
i f

m(γ′)R̄mj Ēj is tightened to fm# (σ).
By step 1, there are a positive integer M and initial subpaths µM of

RMi and ν̄M of R̄Mj so that fM# (σ) = EiµM ν̄M Ēj . For m > M , fm# (σ) =
fm−M# (EiµM ν̄M Ēj). Since EiµM = f l#(Eiµ∗) for some initial segment µ∗ of
ui, part (3) of Proposition 5.4.3 implies that EiµM = Ei ·µM ; similarly ν̄M Ēj =
ν̄M ·Ēj . Thus fm# (σ) is obtained from the concatenation of EiRm−Mi fm−M# (µM )
and fm−M# (ν̄M )R̄m−Mj Ēj by cancelling at the juncture point. Step 1 implies
that for sufficiently large m, long cancellation must occur in both Rm−Mi and
R̄m−Mj . The only way that this could happen is if long segments of Rm−Mi and
R̄m−Mj cancel with each other. This verifies our claim.

~Ei

~Ej

~Rj

~Ri

( )~¹M
~f#

m M¡

m M¡

( )~ºM
~f#
m M¡

m M¡

Step 3 (Hs is non-exponentially-growing). For future reference we for-
mulate the third step as a sublemma. In step 5 we will apply the sublemma
to δ = fm# (σ) where m is as in step 2.

Sublemma 1. If Ei and Ej (i ≥ j) have distinct lifts Ẽi and Ẽj whose
corresponding rays R̃i and R̃j have a common subpath that contains at least
three blocks in each ray and if Hs is a non-exponentially-growing stratum, then
the path δ̃ ⊂ Γ that connects the initial endpoint of Ẽi to the terminal endpoint
of Ẽj projects to an exceptional path δ ⊂ G of height i.
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Proof of sublemma 1. Let Γi−1 ⊂ Γ be the component of the full pre-image
of Gi−1 that contains ũi and ũj and let hi : Γi−1 → Γi−1 and hj : Γi−1 → Γi−1

be the restricted lifts of f that fix the initial endpoints of Ẽi and Ẽj respectively.
We consider first the case that hi = hj . Part (1) of Proposition 5.4.3

implies that hi is fixed-point free and hence that the initial endpoint of Ẽj
does not lie in Γi−1; thus Ej = Ei. The covering translation S of Γi−1 that
carries ũi = 〈ṽ, hi(ṽ)〉 to ũj = 〈S(ṽ), hj(S(ṽ))〉 commutes with hi. Part (2)
of Proposition 5.4.3 implies that fk#(ui) = ui for some k > 0 and hence by
the inductive hypothesis that f#(ui) = ui; moreover, both R̃i and R̃j are
contained in the axis of S. It follows that ui is a multiple of the indivisible
circuit τ determined by S and that the segment of the axis of S that separates
the terminal endpoints of Ẽi and Ẽj projects to τ q or τ̄ q for some q ≥ 0. Thus
δ = Eiτ

qĒi or Eiτ̄ qĒi is exceptional. This completes the proof in the special
case and we assume from now on that hi 6= hj .

~z0

~Ri

~Rj

hi hi

hj hj

~z1 ~z2 ~z3 ~z4 ~z5

Let X̃ ⊂ R̃i be the set of vertices that are either the initial endpoint of
a lift of Es in R̃i or the terminal endpoint of a lift of Ēs in R̃i. Order the
elements of X̃ so that x̃l < x̃l+1 in the orientation on R̃i. Lemma 4.1.4 implies
that hi(x̃l) = x̃l+n0 for all l and some fixed n0. Define Ỹ ⊂ R̃j and m0 similarly
using Rj and hj instead of Ri and hi. Then Z̃ = X̃ ∩ Ỹ ⊂ R̃i ∩ R̃j contains
at least n0 + m0 + 1 consecutive elements z̃0, . . . , z̃n0+m0 of X̃ and of Ỹ and
hihj(z̃0) = hi(z̃m0) = z̃n0+m0 = hj(z̃n0) = hjhi(z̃0). Since hihj and hjhi are
lifts of f2 that agree at a point, they are equal.

There is a nontrivial covering translation S of Γi−1 such that Shi = hj and
there is a covering translation T of Γi−1 such that Thj = hiS. Then hihj =
hiShi = Thjhi so T is the identity and hi commutes with S. A symmetric
argument shows that hj also commutes with S. Part (2) of Proposition 5.4.3
implies that ui, uj ⊂ Gi−1 are periodic Nielsen paths and that R̃i and R̃j
are contained in the axis of S. By the inductive hypothesis, f#(ui) = ui
and f#(uj) = uj . The covering translation Si of Γi−1 that carries the initial
endpoint of ũi to the terminal endpoint of ũi and the covering translation Sj
of Γi−1 that carries the initial endpoint of ũj to the terminal endpoint of ũj
both preserve the axis of S and hence commute with S and with each other.



     

THE TITS ALTERNATIVE FOR Out(Fn) 589

The segment of the axis of S that separates the terminal endpoints of Ẽi and
Ẽj projects to τ q or τ̄ q where τ is the circuit corresponding to the axis of S
and q ≥ 0. After replacing S with S−1 if necessary, ui = τk and uj = τ l or τ̄ l.
Since R̃i and R̃j have a common subpath that contains blocks in both rays,
uj = τ l and δ is exceptional.

Step 4 (Hs is exponentially growing). Suppose that m is as in step 2 and
that Hs is exponentially growing. We will prove that fm# (σ) is an exceptional
path of height i. Let hi : Γi−1 → Γi−1 and hj : Γi−1 → Γi−1 be as in step 3.

If the decomposition of ui given by Lemma 4.2.6 contains at least one ρs
or ρ̄s, then the argument of step 3 requires only one modification. Namely, X̃
is defined to be the set of lifts of ρs or ρ̄s. These get ‘translated’ by hi and hj
so the argument goes through exactly as before.

It remains to rule out the possibility that the decomposition of ui given by
Lemma 4.2.6 contains no ρs or ρ̄s. Suppose to the contrary. Then ui is s-legal.
Since blocks of R̄j cancel with segments of Ri, uj is also s-legal. The action of
f on Ri and Rj is more like an affine map than like a translation so we do not
use the previous argument. By step 2, fm# (σ) = Eiµmν̄mĒj where µm and ν̄m
are initial subpaths of Ri and R̄j and in particular are s-legal. Lemma 4.2.2
implies that µm and νm take on only finitely many values and hence that
some fm# (σ) is a periodic Nielsen path, say fm+p

# (σ) = fm# (σ). There is a lift
f̃ : Γ→ Γ whose restriction to Γi−1 equals hi. Thus f̃ fixes the initial endpoint
of Ẽi and f̃p fixes the initial endpoint w̃ of Ẽj .

If Ei 6= Ej , then w̃ ∈ Γi−1. Part (1) of Proposition 5.4.3 implies that
p > 1. Let γ̃ ⊂ Γ be the path that connects w̃ to hi(w̃) and let γ be its image
in Gi−1. Then γ is a periodic Nielsen path and so by the inductive hypothesis
is a Nielsen path. But then [γp] = [γf(γ) . . . fp−1(γ)] lifts to the trivial path
[γ̃hi(γ̃) · . . . · hp−1

i (γ̃)] which is impossible. We conclude that Ei = Ej . The
covering translation S of Γ that carries the initial endpoint of Ẽi to the initial
endpoint of Ẽj commutes with f̃p. The restriction S|Γi−1 therefore commutes
with hpi . Since hpj = (S|Γi−1)hpi (S|Γi−1)−1, hpi = hpj . This implies that R̃i and
S(R̃i) = R̃j have an infinite end in common and hence that R̃i and the axis
of S have an infinite end in common. It follows that hi preserves the axis of
S and so commutes with S. This contradicts part (2) of Proposition 5.4.3 and
the fact that ui is s-legal.

Step 5 ((2) and (3) are satisfied when (i) holds). Choose a lift Ẽi in the
universal cover Γ and choose m as in step 2. There is a lift of fm# (σ) that
begins with Ẽi and ends at the inverse of some Ẽj . Let R̃i and R̃j be the lifts
of Ri and Rj that begin at the terminal endpoints of Ẽi and Ẽj respectively.
Our choice of m guarantees that R̃i ∩ R̃j contains at least three blocks in each
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ray. By steps 3 and 4, fm# (σ) is an exceptional path of height i. If i = j, then
fm# (σ) is fixed by f#. Since σ and fm# (σ) have the same endpoints and the
same image under fm# , they must be equal. In particular, σ is an exceptional
path of height i.

Step 6 (Case (ii) does not occur). Suppose that (ii) holds. Step 1 im-
plies that for all sufficiently large m, fm# (Eiγ) = Eiµmνm where µm ⊂ Ri
and where νm ⊂ Gr is r-legal. Step 1 also implies that if (l − m) is suffi-
ciently large, then Hr-edges of f (l−m)

# (νm) cancel with edges of f (l−m)
# (µm)

when f
(l−m)
# (Eiµm)f (l−m)

# (νm) is tightened to f l#(σ); thus r ≤ s. The sym-
metric argument shows that s ≤ r (so that s = r) and that µm must be s-legal.
Lemma 4.2.2 implies that µm takes on only finitely many values. The same is
true for νm: the argument is essentially the same as the one in the proof of
Lemma 4.2.5. There are no subtleties in applying this argument and we leave
the details to the reader. We conclude that fm# (σ) is a periodic Nielsen path.
But the argument of the last paragraph in the proof of step 4 proves that this
is impossible. We conclude that (ii) does not occur.

Step 7 (Conclusion). It remains to prove that every periodic Nielsen
path ρ ⊂ Gi has period one. Lemma 4.1.4 implies that ρ splits into periodic
Nielsen paths that are either contained in Gi−1 or are basic paths. Conditions
(1)–(3) of this lemma (which we have already verified), imply that a basic
path that is also a periodic Nielsen path splits into exceptional paths of height
i and periodic Nielsen paths in Gi−1. By induction and by examination of the
exceptional paths, we conclude that ρ has period one.

5.6. Proof of Theorem 5.1.5. Choose (Lemma 5.2.3) a reduced F-Nielsen
minimizing relative train track map f : G → G and filtration ∅ = G0 ⊂ G1 ⊂
· · · ⊂ GK = G that represents Ok for some k ≥ 1. We will modify f : G→ G

in various ways but will continue to call the resulting relative train track map
f : G→ G. (Modifications of f : G→ G may of course involve changes in G.)

Condition (5) in the definition of F-Nielsen minimizing (Definition 5.2.1)
implies that contractible components of Gi’s are unions of zero strata.

Lemma 5.2.5, Lemma 5.1.7 and Proposition 5.3.1 imply (eg-i), (eg-ii) and
(eg-iii). If Hr is an exponentially-growing stratum and ρ ⊂ Gr is an indivisible
periodic Nielsen path that intersects Hr nontrivially, then since f : G → G is
F-Nielsen minimizing, ρ has period one. These properties are unchanged by
taking iterates.

After passing to an iterate if necessary, we may assume: that f(v) is a fixed
point for each vertex v; that the noncontractible components of the Gi’s are
mapped to themselves by f ; and that each non-exponentially-growing stratum
Hi consists of a single edge Ei satisfying f(Ei) = wiEivi for some paths wi, vi
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in Gi−1. After subdividing at a fixed point in the interior of Ei if necessary,
we may assume that wi is the trivial path.

Suppose that Hi is exponentially growing, that C is a noncontractible
component of Gi−1 and that v ∈ Hi∩C. Choose a path α between v and f(v).
Since f |C : C → C is a homotopy equivalence of C, there is a closed path β

based at f(v) so that f#(β) = f#(α). Then δ = [αβ̄] is a path between v and
f(v) such that f#(δ) is trivial. The train track property for Hi implies that δ
is trivial and hence that v = f(v) is a fixed point.

Apply Proposition 5.4.3 to the non-exponentially-growing strata in the
filtration for f : G→ G working upwards. At the end of this process, we have
lost none of our previously acquired properties and arranged that if Hi is a non-
exponentially-growing stratum then f(Ei) = Ei · ui. Moreover, the endpoints
of the edges in non-exponentially-growing strata are now periodic points; after
passing to a further iterate, they are fixed points. We have therefore established
(ne-ii). Suppose that Hi is non-exponentially growing and that σ = Eiγ, γĒi
or EiγĒi is a basic path of height i (Definition 4.1.3). If σ splits at some point
of γ, then σ splits as a concatenation of either two basic paths of height i or a
basic path of height i and a path in Gi−1. Lemma 5.5.1 implies that if σ splits
at a point in Ei or Ēi then some fk#(σ) splits as a concatenation of two subpaths
one of which is Ei or Ēi. Lemma 5.5.1 also implies that if σ has no splittings,
then some fk#(σ) is an exceptional path of height i. Thus condition (ne-iii) is
satisfied. Applying Lemma 5.5.1 once again we see that every periodic Nielsen
path has period one. The properties that we have verified so far are all stable
under passing to an iterate of f .

We now turn our attention to the zero strata. We have already established
that a contractible component of any Gi is made up of edges in zero strata. We
next show that if Hi is a zero stratum, then Hi is contained in the union of the
contractible components of Gi. Suppose to the contrary that a zero stratum
Hi intersects a noncontractible component C of Gi and that i is the largest
positive integer for which this occurs. Then f(C) ⊂ cl(C \ (Hi ∩ C)) and so
cl(C \ (Hi ∩ C)) is a proper subgraph of C that has the same rank as C. We
may therefore choose a vertex v of Hi that has valence one in C. Since G does
not have valence one vertices, v is incident to an edge that is part of a higher
stratum and so by assumption is not a zero stratum. But we have already
shown that such vertices are fixed points. This contradicts the fact that the
only edge incident to v in C maps off of itself. We conclude that a zero stratum
Hi is contained in the union of the contractible components of Gi.

We next reorganize the zero strata and push them up the filtration as
high as possible. Assume that Hi is a zero stratum. Since vertices in zero
strata are not fixed points and so are not the f -image of a vertex, no edge in
G has f -image entirely contained in zero strata. In particular, the contractible
components of Gi are disjoint from f(Gi). We may therefore amalgamate the
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edges in all of the contractible components of Gi into a single zero stratum
(still called Hi). If Hi+1 is a zero stratum, then we can amalgamate Hi and
Hi+1 into a single stratum (still called Hi). We may therefore assume that
Hi+1 is not a zero stratum. If some components of Hi are components of Gi+1,
then they are not in the image of Gi+1, and we can remove these components
from Hi and consider them as a new zero stratum Hi+2. We may therefore
assume that Gi+1 has no contractible components. Since the endpoints of
edges in non-exponentially-growing strata are fixed points, Hi+1 must be an
exponentially-growing stratum.

After performing these operations on each zero stratum, working upward
through the filtration, we see that condition z-(i) is satisfied and Hi is a zero
stratum if and only if it is the union of the contractible components of Gi.

If Hi is a zero stratum and f |Hi is not an immersion, then we can fold
a pair of edges in Hi. Tighten the images of the remaining edges. Since the
f -image of an edge does not lie entirely in zero strata, no edge has trivial image
after tightening. Folding and tightening in this manner do not undo any of our
established properties (cf. 4.3.6 of [BH2]) and they reduce the total number
of edges in the image of Hi. After finitely many steps, f |Hi is an immersion.
Perform this folding operation on each zero stratum, working up through the
filtration so that the modifications made in one zero stratum do not undo the
modifications made in the previous strata. At the end of this process, condition
z-(ii) is satisfied.

If v is a vertex in a zero stratum Hi, then it is not fixed by f and so is
not the endpoint of an edge in Hj with j > i+ 1. Since G has no valence one
vertices, v must have valence at least two in Gi+1. If v has valence two and if
both incident edges are contained in Hi, then erase v as a vertex. Since v is
not the image of any vertex the map remains simplicial. After erasing all such
vertices, z-(iii) is satisfied.

5.7. UPG(Fn). We assume in this section that Zn is identified with the
abelianization of Fn and hence also with H1(G;Z) for any marked graph G.
There is an induced homomorphism from Out(Fn) to GL(n;Z).

We also assume in this section that F is an O-invariant free factor system.

Definitions 5.7.1. Denote {O ∈ Out(Fn) : L(O) = ∅} by PG(Fn). Thus
O ∈ PG(Fn) if and only if some, and hence every, relative train track map
representing O has no exponentially-growing strata. Recall that an element of
GL(n;Z) is unipotent if it is conjugate to an upper triangular matrix with 1’s
on the diagonals. The subset of PG(Fn) consisting of elements O whose image
in GL(n;Z) is unipotent is denoted UPG(Fn).

The following lemma shows that zero strata are not needed for elements
of PG(Fn).
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Lemma 5.7.2. Every O ∈ PG(Fn) is represented by a relative train track
map f : G→ G and filtration ∅ = G0 ⊂ G1 ⊂ · · · ⊂ GK = G such that :

1. F = F(Gr) for some filtration element Gr.

2. Each vertex of each Gi has valence at least two. In particular, there are
no zero strata and all components of Gi are noncontractible.

Proof. Lemma 2.6.7 provides a relative train track map f : G → G

and filtration ∅ = G0 ⊂ G1 ⊂ · · · ⊂ GK = G satisfying condition 1. Since
O ∈ PG(Fn), f : G → G has no exponentially-growing strata. If v is a
valence one vertex of some Gi and if E is the unique edge of Gi that is incident
to v, then perform a homotopy of f by precomposing f with the homotopy
that slides v across E to the other endpoint of E and then tightening. This
homotopy only affects edges that are incident to v. If E′ 6= E is an edge of Hl

that is incident to v, then the homotopy changes the way f(E′) crosses edges
in Gi, but the relative train track property is maintained since l > i. (Keep
in mind that a topological representative of an element of PG(Fn) is a relative
train track map if and only if it has no exponentially-growing strata.) The
new image of E is trivial so we can collapse E. This does not affect the relative
train track property and does not change any [[π1(Gj)]], so that condition 1 is
still satisfied. After finitely many such moves, condition 2 is satisfied.

Definition 5.7.3. Suppose that f : G → G and ∅ = G0 ⊂ G1 ⊂ · · · ⊂
GK = G are a relative train track map and filtration representing O ∈ PG(Fn)
and that there are no zero strata in the filtration. Choose a maximal tree T
for G whose intersection Ti with each Gi is a maximal forest for Gi. For each
edge e in Gi \ Ti choose an embedded circuit γ ⊂ Gi that contains e but is
otherwise contained in Ti. We say that the basis B for H1(G;Z) determined
by the homology classes of the γ’s is a PG basis determined by f : G → G.
The element of GL(n;Z) determined by B and the action of f on H1(G,Z) is
denoted MB.

Lemma 5.7.4. If B is a PG basis determined by f : G → G, then each
diagonal entry in MB is either −1, 0 or 1.

Proof. An element b ∈ B corresponds to an edge e in some Gi \Ti and an
embedded circuit γ ⊂ Gi. The lemma follows from the fact that f#(γ) either
crosses e once or not at all.

The following proposition relates the UPG property to relative train track
maps.
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Proposition 5.7.5. The following are equivalent :

(1) O ∈ UPG(Fn).

(2) If B is a PG basis determined by f : G → G, then each diagonal entry
in MB equals 1.

(3) There is relative train track map f : G → G and filtration ∅ = G0 ⊂
G1 ⊂ · · · ⊂ GK = G representing O such that :

(3-a) F = F(Gr) for some filtration element Gr.

(3-b) Each vertex of each Gi has valence at least two.

(3-c) Each Hi is a single edge Ei satisfying f(Ei) = viEiui for paths
vi, ui ⊂ Gi−1.

Proof. If (3) is satisfied and B is a PG basis determined by f : G → G

and ∅ = G0 ⊂ G1 ⊂ · · · ⊂ GK = G then MB is upper triangular with 1’s on
the diagonal. Thus (3)⇒ (1).

If (1) is satisfied, then MB is conjugate to an upper triangular matrix with
1’s on the diagonal and so has trace n. Condition (2) follows from Lemma 5.7.4.
Thus (1)⇒ (2).

The remainder of the proof is dedicated to proving that (2)⇒ (3). Lemma
5.7.2 provides f : G → G and ∅ = G0 ⊂ G1 ⊂ · · · ⊂ GK = G satisfying (3-a)
and (3-b). We will arrange (3-c) by induction on i. Note that if O ∈ UPG(Fn)
and B is a PG basis for f : G→ G, then Ok ∈ UPG(Fn) and B is a PG basis
for Ok with matrix Mk

B. We may therefore apply (2) to iterates of f .
Let B be a PG basis for f : G → G . Since f transitively permutes the

edges in G1, conditions (3-b) and (2) imply that G1 is connected. Choose
an element b ∈ B, let e be the corresponding edge in G1 and let γ be the
corresponding embedded circuit in G1. If G1 has rank at least two, then there
is an edge e′ ⊂ G1 that is not in γ. After replacing f by an iterate if necessary,
we may assume that f(e′) = e. But then the circuit f(γ) does not contain e

and so the diagonal element corresponding to b is 0. This contradicts (2) and
we conclude that G1 has rank one. By (3-b), G1 is homeomorphic to a circle.

If G1 contains more than one edge, then f |G1 is a nontrivial rotation.
Choose a homotopy ht : G → G with support in a small neighborhood of
G1 so that h0 = identity and h1|G1 = (f |G1)−1. Define a new topological
representative of G by tightening fh1. At this point, the map (which we still
call f) fixes each edge in G1; collapse all but one of these edges to arrange for
G1 to be a single edge E1. As in the proof of Lemma 5.7.2, f : G → G is a
relative train track map and (3-a) is still satisfied as is condition (3-b). Now
(2) rules out the possibility that f(E1) = Ē1.
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We assume now that (3-c) holds for Gi−1 and prove it for Gi. Suppose
that Hi = {E1, . . . , Ep}. (We reserve the notation Ej for the edges of G after
(3-c) has been satisfied.) Then f(Ej) = vjE

j+1uj or f(Ej) = vjĒ
j+1uj for

subpaths vj , uj ⊂ Gi−1, where the indices of the Ej ’s are taken mod p and
where some reordering may have been necessary. If the Ej ’s are disjoint from
Gi−1, then they determine a component of Gi and we may proceed exactly as
in the G1 case. We may therefore assume that some, and hence every, Ej has
at least one in endpoint Gi−1. Let C1 be a component of Gi−1 that contains
an endpoint of each Ej . There are three cases to consider, depending on the
location of the other endpoint of Ej .

Suppose at first that both endpoints of each Ej lie in C1. In this case,
each Ej determines an element of B. The embedded circuit γ corresponding
to E1 is the concatenation of E1 and a subpath in Gi−1. If p > 1 then the
circuit f#(γ) is therefore a concatenation of E2 or Ē2 with a subpath in Gi−1.
But then the diagonal element associated to E1 is 0 in contradiction to (2). If
p = 1 and f(E1) = u1Ē1v1 then the diagonal element associated to E1 is −1.
This also contradicts (2) so (3-c) is satisfied.

Suppose next that each Ej has an endpoint in a component C2 6= C1 of
Gi−1. In this case f(Ej) = vjEj+1uj and we need only show that p = 1. We
may assume that the intersection of the maximal tree T with Hi is E1. If p > 1,
then the embedded circuit γ corresponding to Ep intersects Hi in Ē1 and Ep.
The image circuit f#(γ) intersects Hi in Ē2 and E1. Thus the diagonal entry
of MB corresponding to E2 is 0 if p > 2 and −1 if p = 2. This contradiction
to (2) verifies that p = 1.

Finally, we rule out the possibility that E1 has an endpoint x that is not
in Gi−1. Since Gi does not have valence-one vertices, there must be at least
one other edge of Hi, say E2, with an endpoint at x. We may assume that
E1 ⊂ T but that no other Ej with an endpoint at x is contained in T . As in
the previous case, E2 determines an element of B whose diagonal entry in MB

is either 0 or −1. This contradiction to (2) completes the proof.

Corollary 5.7.6. If O ∈ PG(Fn) is contained in the kernel of the
natural homomorphism

Out(Fn)→ GL(n;Z)→ GL(n,Z/3Z),

then O ∈ UPG(Fn). In particular, every subgroup of PG(Fn) contains a finite
index subgroup in UPG(Fn).

Proof. This is an immediate consequence of Lemma 5.7.4, condition (2)
of Proposition 5.7.5 and the obvious fact that −1 and 0 are not congruent to
1 mod 3.
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Corollary 5.7.7. Suppose that O ∈ UPG(Fn) and that F is an
O-invariant free factor system. Then there are a relative train track map
f : G → G and filtration ∅ = G0 ⊂ G1 ⊂ · · · ⊂ GK = G that represent
O and that satisfy conditions (1), (2), (3) and (4) of Theorem 5.1.8.

Proof. Choose f : G → G and ∅ = G0 ⊂ G1 ⊂ · · · ⊂ GK = G as in part
(3) of Proposition 5.7.5. Then Condition (1) is satisfied and all periodic points
of f are fixed points. We arrange (2) by induction on i as follows. The i = 1
case follows from the fact that f |G1 = identity. Suppose then that (2) holds
for 1 ≤ j ≤ i − 1. If both ui and vi are nontrivial, then subdivide Ei at the
unique fixed point in the interior of Ei to create two edges with either ui or vi
trivial. If vi is not trivial, replace Ei by Ēi. We may therefore assume that vi
is trivial. Apply Proposition 5.4.3 to arrange that f(Ei) = Ei · ui where the
initial endpoint of ui is periodic and hence fixed. Since f |Gi−1 is unchanged,
(2) is now satisfied for 1 ≤ j ≤ i. This completes the induction step.

Condition (2) implies condition (3). Lemma 5.5.1 implies condition (4).

A useful corollary of condition (3) of Theorem 5.1.8 is that for any path τ
with endpoints at vertices, there is a unique path σ with endpoints at vertices
such that f#(σ) = τ . Since every exceptional path is the image of an excep-
tional path, a nonexceptional path cannot have an image that is an exceptional
path.

We say that a path σ with endpoints at vertices has height i if it crosses
Ei but does not cross Ej for any j > i. By Lemma 4.1.4, every path of height
i with endpoints at vertices has a splitting whose pieces are either basic paths
of height i or paths with height less than i. This provides a recursive splitting
of σ into basic pieces. We will use the following notion of complexity as the
basis for induction arguments.

Definition 5.7.8. We subdivide basic paths of height i into two types.
Those of the form Eiγ and γĒi are called type 1 basic paths of height i and
those of the form EiγĒi are called type 2 basic paths of height i. The complexity
of a basic path is the ordered pair specifying its height and its type; the pairs
are ordered lexicographically. Thus a type 2 basic path of height i has greater
complexity than a type one basic path of height i and lower complexity than a
type one basic path of height i+ 1. If σ has height i and σ = σ1· . . . ·σl is the
splitting of Lemma 4.1.4, then the complexity of σ is the highest complexity
that occurs among those σj that are basic paths of height i.

Proof of Theorem 5.1.8. Choose f : G → G and ∅ = G0 ⊂ G1 ⊂ · · · ⊂
GK = G as in Corollary 5.7.7.

Step 1 (Property (5)). We prove (5) by induction on the complexity of
σ and assume without loss of generality that σ is a basic path of height i and
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that σ = Eiγ or σ = EiγiĒi. In either case, if σ = σ1 · σ2 is a splitting into
subpaths with endpoints at vertices, then σ2 has strictly smaller complexity
than σ.

Since f |G1 is the identity, M(σ) = 0 for σ with height 1. We may therefore
assume that (5) holds for paths with complexity lower than σ. In particular,
M(Ej) = 0 for all j < i. After replacing ui by fM(ui)

# (ui) if necessary, (which
requires sliding Ej as in the proof of Proposition 5.5.1) we may assume that
M(ui) = 0 and hence that M(Ei) = 0.

If σ has no splittings, then parts (2) and (3) of Lemma 5.5.1 imply that
some fk#(σ) is exceptional and so M(σ) ≤ k. Suppose then that σ can be
split. If σ can be split at some point in its initial edge, then part (1) of
Lemma 5.5.1 implies that fk#(σ) = Ei · β for some path β and some k ≥ 0.
Thus M(σ) ≤ k + M(β) and, since β has lower complexity than σ, induction
completes the proof. Finally, if σ cannot be split at any point in its initial edge,
then split as close to the initial vertex as possible. This yields σ = Eiµ1 · µ2

where Eiµ1 has no splittings. Parts (2) and (3) of Lemma 5.5.1 imply that
some fk#(σ) = α · β where α is an exceptional path. Thus M(σ) ≤ k + M(β)
and induction completes the proof of (5).

Step 2 (extending rays to lines). Let s = height(ui). For l ≥ 0, denote
f l#(ui) by Bl and define B−l ⊂ Gs to be the unique path with endpoints at
vertices such that f l#(B−l) = ui. Clearly f#(Bl) = Bl+1 for all l. For the
remainder of this proof we will refer to Es and Ēs as s-edges. Since fk# pre-
serves highest edges, the number of s-edges in Bl and the number of s-edges
in [BlBl+1] are independent of l. Since [B0B1] = B0B1, each [BlBl+1] has
twice as many s-edges as each Bl. In particular, no s-edges are canceled when
BlBl+1 is tightened to [BlBl+1]. By construction (see the proof of Propo-
sition 5.4.3) B0, and hence each Bl, either begins with Es or ends with Ēs.
Thus f#(BlBl+1) = f#(Bl)f#(Bl1) and we have shown that BlBl+1 = Bl ·Bl+1

for all l. The union of the Bl’s is an f#-invariant line in Gs.

We say that a bound independent of σ is a uniform bound. As in the
proof of (5), we argue by induction on complexity and the height-one case is
obvious. We may therefore assume that (6) holds for paths with complexity
lower than σ. There is no loss in assuming that ui is nontrivial and that
σ = Eiγ or σ = EiγĒi for some γ ⊂ Gi−1. To handle both of these cases
simultaneously we write σ = Eiµ where either µ = γ or µ = γĒi. In either
case, the complexity of µ is smaller than the complexity of σ. We argue by
induction on j = height(µ).

Step 3 (The case j < s). Suppose that j < s. If k > 0 then Bk−1 is not
entirely canceled when fk(σ) = EiB0 . . . Bk−1f

k(µ) is tightened to fk#(σ). It
follows (Lemma 4.1.1(6)) that f#(σ) = Ei · µ′ where µ′ = [B0f(µ)] and hence
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that M(σ) ≤M(µ′)+1. Since the length of µ′ is a uniformly bounded multiple
of the length of µ, induction on complexity completes the proof.

Step 4 (The case j = s). Suppose that j = s. We will use the obser-
vation that fk#(σ) = Ei[B0 . . . Bk−1f

k(µ)] = Eif
k
#([B−k . . . B−1µ]). Since fk#

preserves highest edges, any cancellation of s-edges when fk(σ) is tightened to
Eif

k
#([B−k . . . B−1µ]) occurs when B−k . . . B−1µ is tightened to [B−k . . . B−1µ].

We now restrict to k so large that B−k . . . B−1 contains more s-edges than µ

does. Decompose µ into subpaths µ = µ1µ2 where µ1 is the shortest initial seg-
ment that contains each s-edge of µ that is canceled when B−k . . . B−1µ is tight-
ened. Then µ1 = B̄−1B̄−2 . . . B̄−(r−1)B̄

∗
−r where B̄∗−r is an initial segment of

B̄−r and r ≥ 0. Now σ can be obtained from (EiB̄−1 . . . B̄−r−1)[B−r−1 . . . B−1µ]
by tightening at the indicated juncture. Applying fk#, we see that fk#(σ) is ob-
tained from (Ei · B0 · B1 · . . . · Bk−r−2)fk#([B−r−1 . . . B−1µ]) by cancelling at
the indicated juncture. By construction, the latter term begins with Bk−r−1

so there is no cancellation at the indicated juncture. Lemma 4.1.1(6) im-
plies that f r+2

# (σ) = Ei · B0 · f r+2
# ([B−r−1 . . . B−1µ]) and hence that M(σ) ≤

max{r + 2,M([B−r−1 . . . B−1µ])}. The path B−r−1 . . . B−1µ is obtained from
µ by removing µ1, adding B−r−1 and perhaps adding part of B−r. If r ≤ 1,
then the additional edges have a uniformly bounded length. If r > 1, then
µ1, and hence µ, contains B̄−r+1 and so the length of the additional edges is
a uniformly bounded multiple of the length of µ . In either case, induction on
complexity completes the proof.

Step 5 (The case j > s). We now assume that j > s. In this case the
splittings of µ produced by Lemma 4.1.4 extend to splittings of σ. Since all
but the first subpath in any such splitting of σ have lower complexity than σ,
we may assume that σ = EiνĒj where height(ν) < j. For the same reason, we
may also assume that σ does not split at any vertex. Let t = height(uj) and
let q =height(ν). For the remainder of the argument we make no use of the
fact that i > j. We may therefore argue symmetrically on i and j.

Denote fm# (uj) by Cm for m ≥ 0 and define Cm for m < 0 as we did for
Bl. We refer to the Bl’s as ‘B-blocks’ and the Cm’s as ‘C-blocks’. Now fk#(σ)
is obtained from (EiB0 · · ·Bk−1)fk#(ν)(C̄k−1 · · · C̄0 · Ēj) by cancellation at the
two indicated junctures. Suppose that as part of this cancellation process a
subpath of B0 · · ·Bk−1 that contains at least three B-blocks cancels with a
subpath of C̄k−1 · · · C̄0 that contains at least three C-blocks. Sublemma 1
implies that fk#(σ), and hence σ, is exceptional. In that case M(σ) = 0 and
there is nothing to prove. We may therefore assume that no such cancellation
occurs.

If q > max{s, t}, then splittings of ν produced by Lemma 4.1.4 extend to
splittings of σ in contradiction to our assumption that σ does not split at any
vertex. After interchanging the roles of i and j if necessary, we may assume
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that s ≥ max{q, t} and that any subpath of B0 · · ·Bk−1 that cancels with a
subpath of C̄k−1 · · · C̄0 contains fewer than three B-blocks.

If q < s then all cancellation of s-edges in B0 · · ·Bk−1 must be with
s-edges in C̄k−1 · · · C̄0. It follows that f4

#(σ) = [EiB0B1B2B3f
4(νĒj)] splits

as Ei · [B0B1B2B3f
4(νĒj)] and the proof concludes as in the j < s case above.

If q = s, then we argue as in the j = s case above. Restrict to k

so large that B−k . . . B−1 contains more s-edges than ν does. Decompose ν
into subpaths ν = ν1ν2 where ν1 is the shortest initial segment that con-
tains each s-edge of ν that is canceled when B−k . . . B−1ν is tightened. Then
ν1 = B̄−1B̄−2 . . . B̄−(r−1)B̄

∗
−r where B̄∗−r is an initial segment of B̄−r and

r ≥ 0. Now σ can be obtained from (EiB̄−1 . . . B̄−r−5)[B−r−5 . . . B−1ν]Ēj
by tightening at the indicated junctures. Applying fk# with k ≥ r + 6, we see
that fk#(σ) is obtained from (Ei · B0 · B1· . . . ·Bk−r−6)fk#([B−r−5 . . . B−1ν])
(C̄k−1· . . . ·C̄0Ēj) by cancelling at the indicated junctures. By construction,
fk#([B−r−5 . . . B−1ν])(C̄k−1· . . . ·C̄0Ēj) tightens to a path that begins with
Bk−r−5. It follows that f r+6

# (σ) = Ei ·B0 ·f r+6
# ([B−r−5 . . . B−1νĒj ]) and hence

that M(σ) ≤ max{r + 6,M([B−r−5 . . . B−1νĒj ])}. The proof concludes as in
the j = s case above.

We will need the following technical results in [BFH2].

Lemma 5.7.9. Suppose that f : G→ G is as in Theorem 5.1.8. There is
a constant C1 so that if ω is a closed path that is not a Nielsen path, σ = αωkβ

is a path and n > 0, then at most C1 copies of fn#(ω) are canceled when
fn#(α)fn#(ωk)fn#(β) is tightened to fn#(σ).

Proof. It is sufficient to consider the case where β is empty. The proof is
by induction on the height of α. If height(α) ≤ height(ω), then none of the
highest edges in fn#(ω) are canceled during the tightening. We may therefore
assume that height(α) > height(ω) and that we have verified the lemma for
all α of lower height. By Lemma 4.1.4 it is sufficient to consider the case
that α = Ejα

′ where height(α′) < j. Let Bl = f l#(uj) and Rj = B0 · B1·
. . . ·Bl · . . .; the Bl’s are called the blocks of Rj . Then fn#(σ) is obtained
from (EjB0 . . . Bn−1)[fn#(α′)fn#(ωk)] by tightening at the indicated juncture.
By the inductive hypothesis, the number of copies of fn#(ω) that are canceled
when fn#(α′)fn#(ωk) is tightened to [fn#(α′)fn#(ωk)] is bounded independently
of n, k, α′ and ω. Sublemma 5.7.11 below therefore completes the proof.

Sublemma 5.7.10. If γN ⊂ Rj and γN contains at least three blocks of
Rj for some N ≥ 3, then γ is a Nielsen path.

Proof. Lifting to the universal cover, we see that there exists R̃j = B̃0B̃1 . . .

where f̃(B̃l) = B̃l+1 and there exists a covering translation T corresponding
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to γ so that the axis of T has an interval I in common with R̃j that contains
three blocks of R̃j and three fundamental domains of the axis A(T ) of T . Since
T and f̃ both ‘translate’ the initial segments of the highest edges in I (cf. the
proof of Sublemma 1) the two lifts T f̃ and f̃T of f agree at a point and so
must be equal. We conclude that T commutes with f̃ and hence that γ is
Nielsen.

Sublemma 5.7.11. There is a constant K with the following property : If
γK ⊂ Rj , then γ is a Nielsen path.

Proof. The proof is by induction on j, the j = 1 case being trivial.
If uj has m edges, then Bl can be written as a concatenation of at most

m edges and at most m subpaths of rays Ri with i < j. By the inductive
hypothesis, there is a constant K0 so that if γK0 is contained in some Bl then
γ is a Nielsen path.

Let K = 5K0. If γK ⊂ Rj then either γK0 is contained in some Bl or γK

contains three blocks of Rj . In either case γ is a Nielsen path.

6. The weak attraction theorem

We assume throughout this section that O# fixes each element of L(O).
Each exponentially-growing stratumHr of an improved relative train track

map f : G → G has a canonically associated (see Lemma 4.2.5) finite set Pr
of paths in Gr. If Pr is nonempty, then it contains a preferred element ρr.
We assign a path ρ̂r to each exponentially-growing stratum Hr as follows. If
Pr 6= ∅, then ρ̂r = ρr. If Pr = ∅, then choose a vertex in Hr and define ρ̂r to
be the trivial path at that vertex. If Z is a subgraph of G and ρ̂r is trivial,
then a nontrivial path in G is contained in 〈Z, ρ̂r〉 (see Definition 5.1.6) if and
only if it is contained in Z.

An element of L(O) is said to be topmost if it is not contained in any other
element of L(O). Let Λ− be the expanding lamination for O−1 that is paired
(Lemma 3.2.4) with Λ+. The following weak attraction theorem is the main
result of this section. It is an explicit description of the basin of attraction of
Λ+ in the birecurrent elements of B. In the next section we will exploit the
fact that ‘most’ birecurrent paths are attracted to Λ+.

Theorem 6.0.1. Suppose that Λ+ is a topmost element of L(O), that
f : G → G is an improved relative train track map representing O and that
Hr is the exponentially-growing stratum that determines Λ+. Then there exists
a subgraph Z such that Z ∩ Gr = Gr−1 and such that every birecurrent path
γ ⊂ G satisfies exactly one of the following.
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1. γ is a generic line for Λ−.

2. γ ∈ 〈Z, ρ̂r〉.

3. γ is weakly attracted to Λ+.

Remark 6.0.2. Suppose that G = Gr and hence that Z = Gr−1. If Hr

is not a geometric stratum, then Lemma 5.1.7 and (eg-ii) imply that 〈Z, ρ̂r〉
contains the same bi-infinite paths as Gr−1. If Hr is a geometric stratum, then
(eg-iii) implies that ρ̂r = ρr and that the set of bi-infinite paths in 〈Z, ρr〉 is
the union of the bi-infinite paths in Gr−1 with the circuit ρr.

Remark 6.0.3. Suppose that φ : S → S is a homeomorphism of a compact
surface in Thurston normal form and that S0 ⊂ S is a proper subsurface that
is a pseudo-Anosov component of φ. The geometric analog of Theorem 6.0.1
implies that the expanding measured foliation F for φ|S0 weakly attracts every
closed curve that is not entirely contained in S\S0. If we work in the projective
foliation space PF rather than in B, then F is only certain to attract every
simple closed curve that is entirely contained in S0. Thus the basin of attraction
in B can be larger than the basin of attraction in PF.

The following proposition is one of the two main steps in proving Theo-
rem 6.0.1.

Proposition 6.0.4. Suppose that f : G → G is an improved relative
train track map representing O, that Λ+ is a topmost element of L(O) and
that Hr is the exponentially-growing stratum that determines Λ+. Then there
is a subgraph Z of G such that :

1. Z ∩Gr = Gr−1.

2. Z contains every zero stratum and every exponentially-growing stratum
other than Hr.

3. f(E) ∈ 〈Z, ρ̂r〉 for each edge E in Z.

4. Suppose that σ ⊂ G is a finite path whose endpoints are fixed by f . Then
σ ∈ 〈Z, ρ̂r〉 if and only if σ is not weakly attracted to Λ+.

We will state and prove some preliminary results before beginning the
proof of Proposition 6.0.4.

Lemma 6.0.5. Suppose that f : G→ G is an improved relative train track
map, that Hr is an exponentially-growing stratum, and that X is a subgraph of
G that does not contain any edges in Hr. Then the set of bi -infinite paths in
〈X, ρ̂r〉 determines a closed subset of BG.
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Proof. If ρ̂r is trivial then 〈X, ρ̂r〉 contains the same bi-infinite paths as
X and the lemma is obvious. We may therefore assume that ρ̂r = ρr.

A (not necessarily finite) path σ ∈ 〈X, ρr〉 has a locally defined canonical
decomposition into subpaths in 〈X, ρr〉. More precisely, suppose that σ =
. . . aiai+1ai+2 . . . is the decomposition into single edges of G. The ai’s can be
grouped into subpaths bj that are either single edges in X or ρr or ρ̄r. The bj ’s
are uniquely determined by the following rule. If (āi, ai+1) is an illegal turn in
Hr, then (āi, ai+1) is the illegal turn in either ρr or ρ̄r, and ai, ai+1 and some
adjacent edges are grouped into a bj that is ρr or ρ̄r respectively. All edges
not so grouped are in X and determine bj ’s. Let M be the number of edges in
ρr. Then the endpoints of the bj ’s are separated by at most M edges and the
subpath ai−M · · · ai+M determines whether or not the endpoint shared by ai
and ai+1 is an endpoint of some bj . We say that the endpoints of the bj ’s are
cutting vertices for σ. Any subpath of σ that is bounded by cutting vertices is
contained in 〈X, ρr〉.

Suppose that µi → γ in BG and that µi ∈ 〈X, ρr〉. Write γ as an increasing
union of finite subpaths γi. After passing to a subsequence, we may assume
that γi is a subpath of µi. There is a common subpath of µi and γi that is
bounded by cutting vertices in µi and that covers all of γi with the exception
of at most M edges at the beginning and end. Thus γ can be written as an
increasing union of subpaths in 〈X, ρr〉. The canonical decompositions of these
subpaths agree on their overlap so that γ ∈ 〈X, ρr〉.

The following lemma is due to Peter Scott.

Lemma 6.0.6. If Φ : F → F is an automorphism of a finitely generated
free group and H is a finitely generated subgroup of F such that Φ(H) ⊂ H,
then Φ(H) = H. In particular Φ|H is an automorphism.

Proof (Peter Scott). Suppose at first that H is a free factor of F . Then
Φ(H) is a free factor of F and the Kurosh subgroup theorem (see also Lemma
2.6.2) implies that Φ(H) is a free factor of H. Since Φ(H) and H have the
same rank, Φ(H) = H.

For general H, the LERF property implies that H is a free factor of some
finite index subgroup F ′ of F . The subgroup F ′′ = ∩iΦi(F ′) is an intersection
of subgroups of fixed finite index and so itself has finite index in F . By the
Kurosh subgroup theorem, H ∩ F ′′ is a free factor of F ′′. By construction
Φ(F ′′) = F ′′. Thus Φ(H ∩ F ′′) ⊂ H ∩ F ′′ and, by the special case considered
above, Φ(H ∩ F ′′) = H ∩ F ′′. Since this subgroup has the same finite index
in both Φ(H) and H, the index of Φ(H) in H must be one. In other words,
Φ(H) = H.
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Corollary 6.0.7. Suppose that f : G→ G is an improved relative train
track map and that X is a subgraph of G that does not contain any edges in
Hr. If f(E) ∈ 〈X, ρ̂r〉 for each edge E of X, then f# restricts to a bijection
on the set of bi -infinite paths in 〈X, ρ̂r〉 and to a bijection on the set of finite
paths in 〈X, ρ̂r〉 whose endpoints are fixed by f .

Proof. Suppose that τ is a path in 〈X, ρ̂r〉 with fixed endpoints and that
x is one of the endpoints of τ . Let H be the subgroup of π1(G, x) consisting
of those elements represented by closed paths in 〈X, ρ̂r〉 with basepoint at x
and let Φ : π1(G, x) → π1(G, x) be the automorphism determined by f . Our
hypotheses imply that Φ#(H) ⊂ H, and so Lemma 6.0.6 implies that Φ#|H is
an automorphism. Let β be the element of H determined by τf(τ̄) and let σ
be the closed path in 〈X, ρ̂r〉 with basepoint at x whose corresponding element
α ∈ H satisfies Φ(α) = β. Then f#(στ) = τ and we have shown that f#

restricts to a surjection on the set of finite paths in 〈X, ρ̂r〉 whose endpoints
are fixed by f . Injectivity is an immediate consequence of the fact that f is a
homotopy equivalence.

Since f# induces a bijection on the set of bi-infinite paths in X, we may
assume for the rest of the proof that ρ̂r = ρr. Noncontractible components of
X that do not contain either endpoint of ρr are permuted by f . The restriction
of f to the union of these components is a homotopy equivalence and so induces
a bijection on the set of bi-infinite paths that they carry. We may therefore
assume that each component of X contains an endpoint of ρr. Let x be the
initial endpoint of ρr and let H and Φ be defined as above.

A circuit in G can be written as a concatenation of subpaths in 〈X, ρr〉
if and only if the conjugacy class that it determines in π1(G, x) contains an
element of H. Since Φ|H is a homotopy equivalence, f# induces a bijection
of these circuits and hence on the set C of periodic bi-infinite paths in 〈X, ρr〉
that they determine. Every bi-infinite path in 〈X, ρr〉 can be approximated by
an element of C. Lemma 6.0.5 therefore implies that the set of bi-infinite paths
in 〈X, ρr〉 is the closure of C and hence that f# restricts to a surjection on the
set of bi-infinite paths in 〈X, ρr〉 . Injectivity of the restriction follows from
the fact that f# induces a bijection on the set of bi-infinite paths in G.

Proof of Proposition 6.0.4. We build Zi = Z ∩ Gi in stages, beginning
with Zr = Gr−1.

Step 1 (on verifying (4)). Before beginning the construction of Z, we
make two general observations about proving (4) for Zi once (3) for Zi is
known.

If σ ∈ 〈Zi, ρ̂r〉, then fk#(σ) ∈ 〈Zi, ρ̂r〉 for all k ≥ 0. Since 〈Zi, ρ̂r〉 does not
contain any r-legal paths with more Hr-edges than are contained in ρ̂r, σ is
not weakly attracted to Λ+. Thus we need only prove the ‘if’ half of (4). The
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second observation is that we can replace σ by fk#(σ) without loss of generality.
This replacement clearly has no effect on being weakly attracted to Λ+, so we
need only check that if fk#(σ) ∈ 〈Zi, ρ̂r〉 for some k > 0, then σ ∈ 〈Zi, ρ̂r〉. This
follows from Corollary 6.0.7 and the fact that σ is the only path in G whose
endpoints are fixed by f and that has fk#-image equal to fk#(σ).

Step 2 (Zr). Condition (3) for Zr follows from the invariance of Gr−1.
Suppose that σ ⊂ Gr has fixed endpoints and is not weakly attracted to Λ+.
After σ is replaced by some fk#(σ) if necessary, we may assume that each f i#(σ)
contains the same number, say m, of illegal turns in Hr. If m = 0, then σ is
r-legal; since σ is not weakly attracted to Λ+, σ ⊂ Gr−1 = Zr−1. Suppose
then that m > 0. Lemma 4.2.6 implies that Pr 6= ∅ and hence that ρ̂r = ρr.
Moreover, with k increased if necessary, Lemma 4.2.6 and the fact that ρr is
the unique periodic element of Pr imply that σ splits into pieces that are either
r-legal or equal to either ρr or ρ̄r. Since σ is not weakly attracted to Λ+, each
of the r-legal pieces must lie in Gr−1 = Zr−1. Thus σ ∈ 〈Zr−1, ρr〉 and (4) is
satisfied.

Assume now that we have defined Zi−1 satisfying (1)–(4) for some i > r.
To complete the inductive step we will define Zi maintaining (2) and then
verify (3) and (4).

Step 3 (the case that Hi is non-exponentially growing). When Hi is
non-exponentially growing, Hi is a single edge Ei and f(Ei) = Ei · ui for some
closed path ui whose basepoint is fixed by f . If ui is weakly attracted to
Λ+, then define Zi = Zi−1. Condition (3) for Zi−1 implies condition (3) for
Zi. To verify (4), we must show that if σ ⊂ Gi has fixed endpoints and is
not weakly attracted to Λ+, then σ ⊂ Gi−1. Suppose to the contrary that σ
crosses Ei. Since the endpoints of σ are fixed, they are not in the interior of
Ei. Lemma 4.1.4 implies that σ splits into subpaths, at least one of which is
a basic path of height i. Since ui is weakly attracted to Λ+, Lemma 3.1.16
implies that ui is not a Nielsen path. After σ is replaced by an iterate, ne-(iii)
implies that there is a further splitting of σ into pieces, at least one of which
is Ei or Ēi. This contradicts Corollary 4.2.4 and so verifies (4).

If ui is not weakly attracted to Λ+, then define Zi = Zi−1 ∪ Ei. The
inductive hypothesis implies that ui ∈ 〈Zi−1, ρ̂r〉 so (3) is satisfied. Assume
that σ ⊂ Gi has fixed endpoints and is not weakly attracted to Λ+. Since
σ splits into subpaths that are either entirely contained in Gi−1 or are basic
pieces of height i, we may assume that σ is a basic piece of height i. We may
assume further that no iterate of σ splits as a concatenation of two basic paths
or as a concatenation of one basic path and a path in Gi−1. Condition ne-(iii)
of Theorem 5.1.5 implies, after σ is replaced by an iterate if necessary, that
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σ is an exceptional path of height i; i.e. σ = Eiτ
kĒj or Eiτ̄kĒj where j ≤ i,

τ is a Nielsen path, ui = τ l and uj = τm. The inductive hypothesis implies
that τ ∈ 〈Zi−1, ρ̂r〉. If i 6= j, then the inductive hypothesis also implies that
Ej ∈ 〈Zi−1, ρ̂r〉. Thus σ ∈ 〈Zi, ρ̂r〉 and (4) is satisfied.

Step 4 (the case that Hi is exponentially growing). Suppose that Hi

is exponentially growing. Define Zi = Zi−1 ∪ Hi. For each edge Ej of Hi,
f(Ej) = a1 · b1 · a2 · . . . · am where each al is a subpath in Hi ⊂ Zi and
each bl ⊂ Gi−1. Since Λ+ is topmost, each bl is not weakly attracted to Λ+.
If the endpoints of bl are fixed, then the inductive hypothesis implies that
bl ∈ 〈Zi−1, ρ̂r〉. If the endpoints of bl are not fixed, then bl is contained in a
zero stratum and so is contained in Zi−1 by the inductive hypothesis. This
verifies (3).

Suppose that σ ⊂ Gi has fixed endpoints and is not weakly attracted
to Λ+. As in Step 2, Lemma 4.2.6 implies, after σ is replaced by an iterate
if necessary, that either Pi = ∅ and σ is i-legal or ρ̂i = ρi and σ splits into
pieces that are either i-legal or equal to ρi or ρ̄i. By Lemma 4.2.1, an i-legal
path splits into subpaths cj ⊂ Hi ⊂ Zi and dj ⊂ Gi−1; as in the preceding
argument the inductive hypothesis implies that dj ∈ 〈Zi−1, ρ̂r〉. It therefore
suffices to assume that ρ̂i = ρi and to show that ρi ∈ 〈Zi, ρ̂r〉. Decompose
ρi = αiβi where αi and βi are i-legal. If the initial endpoint of ρi is a vertex,
let E be the initial edge of ρi; otherwise, let E be the edge that contains the
initial endpoint of ρi. For sufficiently large k, αi is a subpath of fk#(E). Since
fk#(E) ∈ 〈Zi, ρ̂r〉 and the initial and terminal segments of αi are in Hi, and
so in particular are not in Gr, αi ∈ 〈Zi, ρ̂r〉. A similar argument holds for βi.
Thus ρi and ρ̄i are contained in 〈Zi, ρ̂r〉. This completes the proof in the case
that Hi is exponentially growing.

Step 5 (the case that Hi is a zero stratum). If Hi is a zero stratum, then
define Zi = Zi−1 ∪Hi. Property (4) for Gi follows from property (4) for Gi−1

and the observation that a path in Gi with fixed endpoints cannot be contained
in, and hence cannot intersect, a component of Gi that is mapped off of itself.

Theorem 5.1.5 implies that Hi+1 is an exponentially-growing stratum and
that Hi is a forest. For each edge Ej of Hi+1, f(Ej) = a1 · b1 ·a2· . . . ·am where
each al is a subpath in Hi+1 and each bl ⊂ Gi. Since Λ+ is topmost, each bl is
not weakly attracted to Λ+. Let {βl} be the set of paths in Hi that occur as
a bk in the above decomposition for some f(Ej).

Suppose that P,Q ∈ Hi+1∩Hi. We write P ∼ Q if P and Q belong to the
same component of Hi or equivalently if there is a path in Hi that connects
P and Q. There is also an equivalence relation generated by P ∼′ Q if and
only if P and Q are the endpoints of some βl. If we collapse each component
of the forest Hi to a point then the image of Gi+1 is a graph Ĝi+1 that is
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homotopy equivalent to Gi+1. We can also view Ĝi+1 as being obtained from
Gi+1\ int(Hi) by identifying ∼ equivalent points in Hi+1 ∩ Hi. Let Ĝ′i+1 be
the graph obtained from Gi+1\ int(Hi) by identifying ∼′ equivalent points in
Hi+1 ∩ Hi. Then Ĝi+1 is obtained from Ĝ′i+1 by identifying the elements in
certain finite subsets. Each ∼ equivalence class that contains m ∼′ equivalence
classes determines a set of m points in Ĝ′i+1 that must be identified to form
Ĝi+1. In particular, Ĝ′i+1 corresponds to a free factor system F of F(Gi+1)
that lies between F(Gi) = F(Gi−1) and F(Gi+1). A bi-infinite path is carried
by F if and only if it is contained in 〈(Gi+1 \ Hi),∪βl〉. This collection of
bi-infinite paths is mapped into itself by f#, so F is invariant under the action
of an iterate of O. Since f : G → G is reduced and F carries the expanding
lamination determined by Hi+1, F = F(Gi+1). This implies that ∼ and ∼′
must be the same relation.

Condition z-(ii) of Theorem 5.1.5 and the fact that each f(v) is fixed imply
that f(βl) is a path in Gi−1 with fixed endpoints. The inductive hypothesis
implies that f(βl) ∈ 〈Zi−1, ρ̂r〉.

If Pr = ∅, then f(βl) ⊂ Zi−1; since each edge in Hi is crossed by some
βl, (3) is satisfied. We may therefore assume that ρ̂r = ρr and that βl has a
decomposition as an alternating concatenation of subpaths µj that map into
Zi−1 and νj that map to either ρr or ρ̄r.

Suppose that δ1 and δ2 are paths in Hi with endpoints in Hi+1 ∩Hi and
that δ1 and δ2 have decompositions into µj ’s and νj ’s as above. We claim that
if δ1 and δ2 have a common initial endpoint, then [δ−1

1 δ2] has a decomposition
into µj ’s and νj ’s as above. It suffices to prove that the maximum common
initial segment α of δ1 and δ2 contains every νj that it intersects. If this fails,
then the image of the initial segment of both δ1 \α and δ2 \α would complete
the partial crossing of ρr or ρ̄r begun in the image of α. By condition eg-(i) of
Theorem 5.1.5, ρr and ρ̄r have different initial edges so the partial image can
only be completed in one way. Thus the initial segments of δ1 \ α and δ2 \ α
have the same image, in contradiction to the fact (z-(ii) of Theorem 5.1.5) that
f |Hi is an immersion. This verifies our claim.

Since ∼ equals ∼′, every path δ ⊂ Hi with endpoints in Hi+1 ∩Hi can be
expressed as [b1b2 . . . bm]. The previous paragraph and induction imply that
each δk = [b1 . . . bk], and in particular δ, has a decomposition into µj ’s and νj ’s
and that each νj occurs in the decomposition of some bl.

We next check that each νj is contained in a single edge of Hi. Suppose to
the contrary that some νj crosses a vertex w. Condition z-(iii) of Theorem 5.1.5
implies that there is a (possibly trivial) path τ that starts at w, ends in Hi+1∩
Hi and intersects νj only in w. Choose βl that contains νj . The unique path
δ ⊂ Hi that connects the initial endpoint P of βl to the terminal endpoint Q
of τ agrees with βl up to w and then follows τ . But then δ deviates from βl in
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the middle of νj , in contradiction to our observation in the previous paragraph
that the maximum common initial subinterval of δ and βl contains each νj that
it intersects. We conclude that each νj is contained in a single edge.

Given an edge e of Hi, choose βl = µ1ν1µ2ν2 . . . that contains it. The
endpoints of e are not contained in the interior of any νj so f(e) ∈ 〈Zi−1, ρr〉.
This completes the proof of (3).

P

Q
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The following proposition is the second main piece of the proof of Theo-
rem 6.0.1.

Proposition 6.0.8. Suppose that Hs is an exponentially-growing stratum
of an improved relative train track map f : G→ G, that γ ⊂ Gs is a birecurrent
path that is not contained in Gs−1 and that γ is not weakly attracted to the
expanding lamination Λ+

s associated to Hs. If Hs is nongeometric, then γ is a
generic line for Λ−s . If Hs is geometric, then either γ is a generic line for Λ−s
or γ = ρs.

Proof of Proposition 6.0.8 in the geometric case. We use the notation of
Definition 5.1.4; in particular, φ : S → S is a pseudo-Anosov homeomorphism,
Q is a graph, A is a collection of annuli, Y = Q ∪ A ∪ S, Φ : (Y,Q) → (Gs,
noncontractible components ofGs−1) is a homotopy equivalence and h : Y → Y

is a homotopy equivalence that satisfies Φh ' fΦ. Let λ be a generic line of
Λ+
s .

For every bi-infinite path σ ⊂ Gs there is a bi-infinite path σ∗ ⊂ Y

that intersects ∂S transversely, that intersects each Ai (if at all) in arcs that
run from one component of ∂Ai to the other and that satisfies Φ#(γ∗) = γ.
If σ is birecurrent then either σ∗ ⊂ Gs−1, σ∗ ⊂ S or its intersection with
∂S decomposes σ∗ into an alternating concatenation of finite paths a∗i ⊂ Y \
int(S) and finite geodesics b∗i ⊂ S; each a∗i represents a nontrivial element in
π1(Y \int(S)) and each b∗i represents a nontrivial element in π1(S, ∂S).

We assume that h#(σ∗) = ((f#(σ))∗. In other words, we assume that
h#(σ∗) intersects ∂S and the Ai’s as above.

For each b∗i and k > 0, hk#(σ∗) contains a path in S that is homotopic rel
∂S to φk(b∗i ). In particular, if σ corresponds to a circuit (and so is periodic),
then the length of the components of hk#(σ∗) ∩ S tend to infinity as k → ∞.
Thus λ∗∩S cannot contain any finite components and we conclude that λ∗ ⊂ S.
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We say that two paths µ1 and µ2 in S are δ-parallel if there is a map of a
rectangle into S that agrees with µ1 on its upper horizontal edge, agrees with µ2

on its lower horizontal edge and maps vertical fibers into arcs with length less
than δ. We say that σ∗ is weakly attracted to λ∗ if for each finite subpath λ∗0
of λ∗ and each δ > 0 there exists k > 0 so that hk#(σ∗) contains a subpath that
is δ-parallel to λ∗0. It is easy to check that σ∗ is weakly attracted to λ∗ if and
only if σ is weakly attracted to λ and we leave this to the reader. Thus generic
lines for Λ+

s correspond to generic leaves of the expanding lamination for φ.
The lemma now follows from well-known properties of the pseudo-Anosov
map φ.

The following lemma is a refinement of Lemma 4.2.5 and is needed for the
proof of Proposition 6.0.8 in the nongeometric case.

Lemma 6.0.9. Suppose that Hs is an exponentially-growing stratum of
an improved relative train track map f : G→ G.

• If Ps = ∅, then there is a positive integer K1 with the following property.
If k ≥ K1 and σ ⊂ Gs is a path with exactly one illegal turn in Hs, then
fk#(σ) is s-legal.

• If Ps 6= ∅ and ρ′s is a noninitial, nonterminal subpath of ρs, then there
exist positive integers L < K1 with the following property. If k ≥ K1 and
if both σ ⊂ Gs and fk#(σ) have exactly one illegal turn in Hs, then fL#(σ)
contains ρ′s as an unoriented subpath.

Proof. After subdividing if necessary, we may assume that each ρ ∈ Ps
has endpoints at vertices.

Suppose that for each k ≥ 1 there are paths σk ⊂ Gs such that both σk and
fk#(σk) have exactly one illegal turn in Hs. Decompose σk as a concatenation
σk = αkβk of s-legal subpaths. If the edge lengths of the αk’s are unbounded,
then after passing to a subsequence, we may assume that the ᾱk’s converge to
an infinite ray ᾱ∗, in the sense that the length of the maximal common initial
segment of ᾱk and ᾱ∗ goes to infinity as k goes to infinity. If the length of
the αk’s is bounded, then after passing to a subsequence, we may assume that
each ᾱk ⊂ ᾱk+1; in this case, let ᾱ∗ = ∪∞k=1ᾱk. Define β∗ similarly and let
ρ = ᾱ∗β∗. Then fk#(ρ) has one illegal turn in Hs for all k so Lemma 4.2.6
implies that ρ contains an element of Ps.

The first item follows immediately. The second item follows from this
construction and the fact that if L is the cardinality of Ps, then fL#(ρ) = ρs
for each ρ ∈ Ps.

Proof of Proposition 6.0.8 in the nongeometric case. There is no loss in
assuming that G = Gs. After passing to an iterate if necessary, we may assume
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that there is an improved relative train track map and filtration representing
O−1 such that F(Gs−1) is realized by a filtration element. If Ps 6= ∅, then we
may assume that the endpoints of ρs are vertices.

The first step in the proof is to show that γ loses illegal turns in Hs at an
exponential rate under the action of the f#. This will be made explicit during
the course of the proof.

If Ps = ∅, let K1 be the constant of the first item of Lemma 6.0.9 and let
L = 0. If Ps 6= ∅, let ρ′s be a subpath of ρs that contains all but a proper initial
segment of the first edge of ρs and a proper terminal segment of the last edge
of ρs and let L and K1 be the constants of the second item of Lemma 6.0.9.
By Lemma 4.2.2 and Corollary 4.2.4, there exists K ≥ K1 so that for any
edge E in Hs, every path in G that contains fK−L# (E) as a subpath is weakly
attracted to Λ+.

Suppose that γ0 is a finite subpath of γ such that fK# (γ0) is a subpath of
fK# (γ). We claim that if γ0 contains m illegal turns in Hs, then fK# (γ0) contains
at most m− [m3 ] illegal turns in Hs. Let l be the number of illegal turns that
fK# (γ0) has in Hs. Write γ0 as a concatenation of subpaths γ0 = α1α2 · · ·αl
where fK# (γ0) = fK# (α1)fK# (α2) . . . fK# (αl) and where each fK# (αi) contains
one illegal turn in Hs. Each αi must contain at least one illegal turn in Hs

since the image of an s-legal path is s-legal. It therefore suffices to show that
αi−1αiαi+1 contains at least four illegal turns in Hs for each 2 ≤ i ≤ l− 1. By
Lemma 6.0.9, we may assume that Ps 6= ∅ and hence that ρ̂s = ρs.

Let βi = fL#(αi). If αi−1αiαi+1 contains exactly three illegal turns in
Hs, then βi−1βiβi+1 contains exactly three illegal turns in Hs. Lemma 6.0.9
implies that, with the possible exception of short initial and terminal segments,
βi−1βiβi+1 contains a subpath of the form ρ1σ1ρ

2σ2ρ
3, where each ρi is ρs or

ρ̄s. Moreover, all of the Hs edges that are canceled when fK−L(βi−1βiβi+1) is
tightened to fK# (αi−1αiαi+1) are contained in ρ1, ρ2 and ρ3. Lemma 5.1.7 and
eg-(ii) imply that the endpoints of ρs are distinct and not both contained in
noncontractible components of Gs−1. Since these endpoints are fixed points,
they cannot be contained in contractible components of Gs−1. It follows that at
least one of σ1 or σ2 must contain an edge E of Hs. But then fK# (αi−1αiαi+1)
and hence fK# (γ) contains fK−L# (E) and so is weakly attracted to Λ+

s . This
contradiction verifies our claim and completes the first step in the proof.

The second step in the proof is to show that for any finite subpath γ1 of
γ there exists τ ⊂ G with a uniformly bounded (i.e. bounded independently
of γ and γ1) number of Hs edges such that γ1 is a subpath of O−k# (τ) in G for
some k ≥ 0. If Gs−1 = ∅, then τ will be a circuit; if Gs−1 6= ∅, then τ will be
a bi-infinite path with both ends in Gs−1.

After extending γ1 to a larger subpath of γ if necessary, we may assume
that fK# (γ1) is a subpath of γ′ = fK# (γ). For future reference, note that if C ′ is
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a positive integer so that no path with edge length greater than C ′ has trivial
fK# -image, then at most C ′ initial and C ′ terminal edges need to be added to
γ1 to arrange this property. Let C be the bounded cancellation constant for
fK and let γ′2 be the subpath of γ′ that is obtained from fK# (γ1) by adding 2C
initial edges and 2C terminal edges. We claim that fK# (N(γ1)) ⊃ N(γ′2).

~° 0

~¾ 0

~̄0

( )~°1
~f#
K

~° 0
2

To see this, it is convenient to work in the universal cover Γ. Choose lifts
f̃K : Γ→ Γ, γ̃1 ⊂ γ̃ and f̃K# (γ̃1) ⊂ γ̃′2 ⊂ γ̃′ = f̃K# (γ̃). Given β′ ∈ N(γ′2), choose
a lift β̃′ that contains γ̃′2. There is a unique bi-infinite path β̃ ⊂ Γ such that
f̃K# (β̃) = β̃′. Let σ̃ ⊂ Γ be the bi-infinite path connecting the forward end of γ̃
to the forward end of β̃. Then σ̃′ = f̃K# (σ̃) is the bi- infinite path connecting
the forward end of γ̃′ to the forward end of β̃′. In particular, σ̃′ is disjoint from
γ̃′2. The bounded cancellation lemma therefore implies that f̃K(σ̃) is disjoint
from f̃K(γ̃1) and hence that σ̃ is disjoint from γ̃1. A symmetric argument on
the backward ends implies that β̃ ⊂ N(γ1) as claimed.

After increasing the number of edges in γ′2 ⊂ γ′ by at most 2C ′, we may
assume that fK# (γ′2) is a subpath of fK# (γ′).

The difference between the number of illegal turns of fK# (γ1) in Hs and
the number of illegal turns of γ′2 in Hs is at most 4C + 2C ′. If γ1 contains m
illegal turns in Hs and m is sufficiently large, say m > M , then by the first
step, γ′2 contains fewer than m illegal turns in Hs. Iterating this, we conclude
that for any γ1, there exist k and a finite subpath γ̂2 ⊂ γ̂ = fk#(γ) such that
fk#(N(γ1)) ⊃ N(γ̂2) and such that γ̂2 contains at most M illegal turns in Hs.
Lemma 4.2.2 and Corollary 4.2.4 imply that the number of Hs-edges in γ̂2 is
bounded independently of γ and γ1. If Gs−1 = ∅, then extend γ̂2 to a circuit
τ that crosses each edge at most one more time than γ̂2 does. If Gs−1 6= ∅,
then extend γ̂2 to a bi-infinite path τ that crosses an Hs edge at most two
more times than γ̂2 does. Since fk#(N(γ1)) = Ok#(N(γ1)), we have shown that
O−k# (τ) ∈ O−k# (N(γ̂2)) ⊂ N(γ1). This completes the second step.

Let f ′ : G′ → G′ be an improved relative train track map represent-
ing O−1 such that F(Gs−1) is realized by a filtration element. For the final
step, we consider first the case that Gs−1 6= ∅. Since F(Λ−) = F(Λ+) is not
carried by F(Gs−1) and since there are no O−1-invariant free factor systems
between F(Gs−1) and {[[Fn]]}, Λ−s is associated to the highest stratum H ′s′
and F(G′s′−1) = F(Gs−1). Choose a homotopy equivalence h : G → G′ that
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respects the markings and so induces the natural identification of B(G) with
B(G′). Since F(G′s′−1) = F(Gs−1), the bounded cancellation lemma implies
that the number of H ′s′ edges in h#(α) is bounded independently of the path
α ⊂ Gs−1. Let γ′ = h#(γ) ⊂ G′. Given a finite subpath γ′1 ⊂ γ′, choose a
finite subpath γ1 ⊂ γ such that h#(N(γ1)) ⊂ N(γ′1). By the second step, there
exist τ and k for γ1 as above so that O−k# (τ) ⊂ N(γ1). Let τ ′ = h#(τ). Then
(f ′)k#(τ ′) = O−k# h#(τ) = h#O−k# (τ) ∈ N(γ′1), or equivalently γ′1 is a subpath
of (f ′)k#(τ ′). There is a positive integer M ′, independent of γ and γ1, such
that τ ′ contains fewer than M ′ edges in H ′s′ .

Let δ′0 ⊂ γ′ be any finite subpath that crosses an edge in H ′s′ . Choose a
finite subpath γ′1 ⊂ γ′ that contains at least M ′ + 1 copies of δ′0 and let k and
τ ′ be as in the preceding paragraph. At least one of the copies of δ′0 must be
contained in (f ′)k(E′) where E′ is a single edge of H ′s′ in τ ′. This implies that
δ′0 is contained in every generic line of Λ−. Since δ′0 was arbitrary, γ′ is a line
of Λ−. Since γ′ is birecurrent and is not contained in G′s′−1, Lemma 3.1.15
implies that γ′ is a generic line of Λ−s . Since γ ⊂ G and γ′ ⊂ G′ determine the
same line in B, γ is a generic line of Λ−s .

It remains to consider the case that Gs−1 = ∅. As there are only finitely
many possibilities for τ , we may assume that τ is independent of γ1. Choose
h : G→ G′ that respects the markings, let γ′ = h#(γ), let τ ′ = h#(τ) and let
M ′ be the number of edges in τ ′. For any finite subpath δ′0 ⊂ γ′, there is a
finite subpath γ′1 ⊂ γ′ that contains at least 2M ′ + 1 copies of δ′0.

If O−k# (τ ′) takes on only finitely many values, then γ is the periodic bi-
infinite path determined by an O-invariant circuit. This contradicts the first
step in the proof and we conclude that the number of edges in the circuit
O−k# (τ ′) tends to ∞ as k tends to ∞. It follows that for sufficiently large k,
γ′1 is a subpath of the bi-infinite path determined by O−k# (τ ′) that intersects
at most two fundamental domains. In particular γ′1 is contained in a subpath
that is a concatenation of at most 2M ′ segments, each of which is a subset of
(f ′)k(E′) for a single edge E′ of G′. The proof now concludes as in the previous
case.

The following corollary will be strengthened at the end of the section after
we complete the proof of Theorem 6.0.1. This partial result is used to prove
Theorem 6.0.1.

Corollary 6.0.10. Suppose that f : G→ G is an improved relative train
track map representing O, that Λ+ ∈ L(O) is associated to the exponentially-
growing stratum Hs and that Λ− ∈ L(O−1) is paired with Λ+. If γ ⊂ Gs is a
bi -infinite path that is not a generic line of either Λ+ or Λ−, then γ is weakly
attracted to Λ+ under the action of O if and only if γ is weakly attracted to
Λ− under the action of O−1.
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Proof. We may assume that G = Gs, and, after passing to an iterate if
necessary, that there is an improved relative train track map f ′ : G′ → G′ for
O−1 such that F(Gs−1) is realized by a filtration element. Since F(Λ−) =
F(Λ+) is not carried by F(Gs−1) and since there are no O−1-invariant free
factor systems between F(Gs−1) and {[[Fn]]}, Λ− is associated to the highest
stratum H ′s′ and F(G′s′−1) = F(Gs−1). If γ is carried by F(Gs−1) = F(G′s′−1)
or if γ is an O-invariant circuit, then γ is not weakly attracted to either Λ+ or
Λ−. In all other cases, Proposition 6.0.8 implies that γ is weakly attracted to
both Λ+ and Λ−.

Corollary 6.0.11. If Λ− ∈ L(O−1) is paired with a topmost lamination
Λ+ ∈ L(O), then Λ− is topmost.

Proof. Choose an improved relative train track map f : G → G rep-
resenting an iterate of O, let Hr be the exponentially-growing stratum that
determines Λ+ and let Z be the subgraph of Proposition 6.0.4. Suppose that
Λ+
s and Λ−s are paired laminations associated to an exponentially-growing stra-

tum Hs with s > r. Conditions (2) and (3) of Proposition 6.0.4 imply that
each generic line γ of Λ+

s is contained in 〈Z ∩ Gs, ρ̂r〉. Choose an Hs-edge E
that occurs infinitely often (counting orientation) in γ. A subpath of γ that
starts at an occurrence of E and ends just before an occurrence of E defines
an s-legal circuit γ0 that is contained in 〈Z ∩Gs, ρ̂r〉 (because the endpoints of
γ0 are cutting vertices as defined in the proof of Lemma 6.0.5). Lemma 4.2.1
and Corollary 4.2.4 imply that γ0 is weakly attracted to Λ+

s under the action
of O. Lemma 3.1.16 and Corollary 6.0.10 therefore imply that γ0 is weakly
attracted to Λ−s under the action of O−1. Corollary 6.0.7 implies that the set
of bi-infinite paths in 〈Z ∩ Gs, ρ̂r〉 is O−1-invariant. Lemma 6.0.5 therefore
implies that each generic line of Λ−s is contained in 〈Z, ρ̂r〉. On the other hand,
the bi-infinite paths of 〈Z ∩Gr, ρ̂r〉 differ from the bi-infinite paths of Gr−1 in
at most a circuit, so that 〈Z, ρ̂r〉 does not contain any generic lines of Λ−. We
conclude that a generic line of Λ− is not contained in the closure of a generic
line of Λ−s and hence that Λ− is topmost.

Proof of Theorem 6.0.1. Let f : G → G, O, Hr and Z be as in Proposi-
tion 6.0.4.

If a generic line of Λ− is weakly attracted to Λ+, then Λ− (being closed
and O-invariant) would contain Λ+. Lemma 3.1.15 implies that a birecurrent
line of Λ− is either carried by a strictly smaller free factor system than F(Λ−)
or is generic. Since F(Λ+) = F(Λ−), each generic line of Λ+ would be a generic
line of Λ− and so Λ+ = Λ−. This contradicts Proposition 3.3.3 and thereby
shows that (1) and (3) are mutually exclusive. Since the bi-infinite paths of
〈Gr−1, ρ̂r〉 and the bi-infinite paths of Gr−1 differ by at most a peripheral curve,
(1) and (2) are mutually exclusive. If γ ∈ 〈Z, ρ̂r〉, then Ok#(γ) ∈ 〈Z, ρ̂r〉 for all
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k > 0. Since there is a uniform bound to the number of Hr-edges in an r-legal
path in 〈Z, ρ̂r〉, γ is not weakly attracted to Λ+. We have now shown that (1),
(2) and (3) are mutually exclusive.

Let s be the smallest positive value for which γ ⊂ Gs. Since Gr−1 ⊂ Z

we may assume that s ≥ r. The s = r case is proved by Proposition 6.0.8.
Suppose that s > r. If γ splits into finite paths whose endpoints are fixed

by f , then Proposition 6.0.4 completes the proof. We may therefore assume
(Lemma 4.1.4) that Hs is exponentially growing and that γ 6∈ 〈Gs−1, ρ̂s〉. Let
Λ+
s and Λ−s be the lamination pair associated to Hs. During the proof of Corol-

lary 6.0.11 we showed that each generic line of Λ−s is contained in 〈Z, ρ̂r〉. We
may therefore assume that γ is not a generic line of Λ−s and hence, by Propo-
sition 6.0.8, is weakly attracted to Λ+

s . As in the proof of Proposition 6.0.4,
Corollary 6.0.7 allows us to replace γ by any fk#(γ). We may therefore assume
that γ contains subpaths of a generic line λ of Λ+

s with arbitrarily many Hs-
edges. Since f maps the set of endpoints of edges inHs into itself, at least one of
the vertices is the image of a vertex and is therefore a fixed point. Lemma 4.2.2
and birecurrence imply that γ has a splitting into finite paths whose endpoints
are fixed by f and again Proposition 6.0.4 completes the proof.

Corollary 6.0.12. If Λ+ ∈ L(O) and Λ− ∈ L(O−1) are paired topmost
expanding laminations and γ is a bi -recurrent path that is not a generic line
of either Λ+ or Λ−, then γ is weakly attracted to Λ+ under the action of O if
and only if γ is weakly attracted to Λ− under the action of O−1.

Proof. Choose an improved relative train track map f : G → G rep-
resenting an iterate of O, let Hr be the exponentially-growing stratum that
determines Λ+ and let Z be as in Proposition 6.0.1. If γ is not weakly at-
tracted to Λ+ under the action of O, then the same is true for all O−k# (γ) and
so O−k# (γ) ∈ 〈Z, ρ̂r〉 for all k ≥ 0. Lemma 6.0.5 and the fact that generic leaves
of Λ− are not contained in 〈Z, ρ̂r〉 imply that γ is not weakly attracted to Λ−

under the action of O−1. The symmetric argument with the roles of Λ+ and
Λ− reversed completes the proof.

7. Reduction to UPG(Fn)

In this section we reduce the Tits alternative for Out(Fn) to Theorem 1.0.2.
More precisely, we prove the following theorem.

Theorem 7.0.1. Suppose that H is a subgroup of Out(Fn) that does not
contain a free subgroup of rank 2. Then there are a finite index subgroup H0 of
H, a finitely generated free abelian group A, and a map Φ : H0 → A such that
Ker(Φ) is UPG.
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We begin by using the weak attraction theorem and Corollary 3.4.3 to
analyze the stabilizers of topmost laminations.

Proposition 7.0.2. Suppose that H is a subgroup of Out(Fn) and that
Λ+ ∈ L(O) and Λ− ∈ L(O−1) are paired topmost laminations for some O ∈ H.
Then either H contains a free subgroup of rank two, or at least one of the
subgroups, StabH(Λ+) or StabH(Λ−), has finite index.

The proof of Proposition 7.0.2 reduces to the following technical lemma.
Before proving the lemma, we use it to prove the proposition.

Lemma 7.0.3. Suppose that H is a subgroup of Out(Fn), that Λ+ ∈
L(O) and Λ− ∈ L(O−1) are paired topmost laminations for O ∈ H and that
f : G→ G is an improved relative train track map representing O such that (see
Definition 3.2.3) {F (Λ+)} = {F (Λ−)} = F(Gr) for some filtration element Gr.
Let Z and ρ̂r be as in Theorem 6.0.1 and let λ± be generic lines for Λ±. Then
H has a finite index subgroup H0 such that ψ(λ+), ψ(λ−) 6∈ 〈Z, ρ̂r〉 for each
ψ ∈ H0.

Proof of Proposition 7.0.2. By Theorem 5.1.5, there is an improved rela-
tive train track map f : G→ G and filtration representing an iterate of O such
that {F (Λ+)} = {F (Λ−)} = F(Gr) for some filtration element Gr. Let H0 be
the finite index subgroup of Lemma 7.0.3 and let ψ ∈ H0. Theorem 6.0.1 and
Corollary 6.0.12 imply that one of the following conditions is satisfied:

(i) ψ(λ+) is generic for Λ+ or for Λ−.

(ii) ψ(λ+) is weakly attracted to Λ+ under the action of O and to Λ− under
the action of O−1.

The same statement holds for ψ(λ−). Thus, each ψ ∈ H0 satisfies one of
the following two conditions.

1. The four laminations ψ(Λ+), ψ(Λ−),Λ+ and Λ− are not all distinct.

2. ψ(λ+) and ψ(λ−) are weakly attracted to Λ+ under the action of O and
to Λ− under the action of O−1

Condition 1 either holds for both ψ and ψ−1 or fails for both ψ and
ψ−1. Moreover, if condition 2 holds for both ψ and ψ−1, then ψ satisfies the
hypotheses of Corollary 3.4.3. Thus either condition 1 holds for all ψ ∈ H0, or
the hypotheses of Corollary 3.4.3 are satisfied for some ψ ∈ H0. In the former
case, Lemma 7.0.4 below implies that either StabH0(Λ+) or StabH0(Λ−) has
finite index. In the latter case, Corollary 3.4.3 implies that H contains a free
subgroup of rank two.
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Lemma 7.0.4. Suppose that a group H acts on a set Y and that there are
points x, y ∈ Y such that

(∗) {ψ(x), ψ(y)} ∩ {x, y} 6= ∅

holds for all ψ ∈ H. Then either StabH(x) or StabH(y) has finite index.

Proof. If StabH(x) does not have finite index, then there exist hi ∈ H,
i ≥ 1, such that the hi(x)’s are all distinct; we may assume without loss of
generality that hi(x) 6∈ {x, y}. Condition (∗) implies that each hi(y) is either
x or y. Passing to a subsequence, we may assume that either each hi(y) = x

or each hi(y) = y. In the former case, each h1hi(y) 6∈ {x, y} and there are at
most two values of i for which h1hi(x) ∈ {x, y}. This contradicts (∗) and we
conclude that each hi(y) = y.

By a completely symmetric argument, we conclude that if StabH(y) does
not have finite index, then there exist gj ∈ H, j ≥ 1, such that the gj(y)’s are
distinct elements of X \ {x, y} and such that each gj(x) = x.

But then each g1hi(y) = g1(y) 6∈ {x, y} and there are at most two values of
i for which g1hi(x) ∈ {x, y}. This contradicts (∗) and completes the proof.

The proof of Lemma 7.0.3 divides into the geometric and nongeometric
cases. We consider the nongeometric case first, using the fact (Lemma 5.1.7)
that 〈Z, ρ̂r〉 carries the same bi-infinite paths as a free factor system. The
proof is particularly simple when Rank(H1(Gr)) > Rank(H1(Gr−1)) + 1 and
the reader may wish to focus on this case first. For the general case, we pass
to finite covers via Lemma 7.0.5 below (which holds trivially with k = 1 in the
case that Rank(H1(Gr)) > Rank(H1(Gr−1)) + 1).

If G̃ is a cover of G and X is a subgraph of G, then we denote the full
pre-image of X by X̃. We denote the Euler characteristic by χ.

Lemma 7.0.5. Suppose that f : G → G is an improved relative train
track map, that Hr is an exponentially-growing stratum and that Gr is con-
nected. Then there exist k > 0 and a regular connected k-fold cover G̃ such
that Rank(H1(G̃r)) > Rank(H1(G̃r−1)) + k. Moreover , we can arrange that
every outer automorphism of Fn ∼= π1(G) lifts to an outer automorphism of
π1(G̃).

Proof. If Gr−1 has contractible components then Hr−1 is a zero stratum
and is the union of the contractible components of Gr−1. In that case, redefine
the filtration by declaring each edge of Hr−1 to be an edge of Hr. This may
destroy the relative train track property but f : G → G is still a topological
representative with respect to this new shortened filtration. We may therefore
assume that f : G→ G is a topological representative and that each component
of Gr−1 is noncontractible.
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We may also assume that Rank(H1(Gr)) ≤ Rank(H1(Gr−1)) + 1 for
otherwise the lemma is trivially satisfied with k = 1 and G̃ = G. Let
m = Rank(H0(Gr−1)) be the number of components in Gr−1. Corollary 3.2.2
implies that either m ≥ 3 or Rank(H1(Gr)) = Rank(H1(Gr−1))+1 and m = 2.

Choose k1 > m and connected k1-fold covering spaces for each component
of Gr−1. Extend this to a k1-fold covering space Ĝ of G. The key point here is
that, independently of k1, the full pre-image Ĝr−1 of Gr−1 has m components.

Since Fn has only finitely many subgroups of index k1, the intersection
N of all such subgroups is a normal subgroup of finite index. Let k be the
index of N , let G̃ be the regular connected k-fold cover of G corresponding
to N , and let k2 be the integer k

k1
. Then G̃ is a k2-fold cover of Ĝ and G̃r−1

has at most k2m components. It is easy to see that for all O ∈ Out(Fn), N is
invariant under the action induced by O on normal subgroups. In particular,
every outer automorphism of π1(G) lifts to an outer automorphism of π1(G̃).
We say that N is characteristic.

To verify the conclusions of the lemma, note that

Rank(H1(G̃i)) = k × Rank(H1(Gi))− k × Rank(H0(Gi)) + Rank(H0(G̃i)).

(This follows from χ = Rank(H0)−Rank(H1) and χ(G̃i) = k× χ(Gi)). Thus,

Rank(H1(G̃r))− Rank(H1(G̃r−1))

= k × [Rank(H1(Gr))− Rank(H1(Gr−1))]

+ k × [Rank(H0(Gr−1))− Rank(H0(Gr))]

+ [Rank(H0(G̃r))− Rank(H0(G̃r−1))]

≥ k × [Rank(H1(Gr))− Rank(H1(Gr−1))] + k(m− 1) + (1−mk2)

= k × [Rank(H1(Gr))− Rank(H1(Gr−1))] + k[m− 1 +
1
k
− m

k1
].

Since m ≥ 2 and k1 > m, both terms are nonnegative. If m ≥ 3, then the
second term is strictly larger than k. If m = 2, then the first term equals k
and the second term is positive.

Proof of Lemma 7.0.3 in the nongeometric case. Since {F (Λ+)} =
{F (Λ−)} = F(Gr), Hr is exponentially growing and Gr is connected. Let
G̃ be a k-fold cover of G as in Lemma 7.0.5; if ρ̂r = ρr, let ρ̃1

r , . . . , ρ̃
k
r ⊂ G̃

be the lifts of ρr. Define H0 ⊂ H to be the finite index subgroup of elements
whose lifts to π1(G̃) act by the identity on H1(G̃;Z2). Suppose β is a circuit
in 〈Gr−1, ρ̂r〉 that lifts to a circuit β̃ in G̃. If ρ̂r is trivial, then β̃ ⊂ G̃r−1;
otherwise, β̃ can be decomposed into subpaths that are either single edges in
G̃r−1, some ρ̃ir or the inverse of some ρ̃ir. In either case, the Z2-homology
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classes generated by all such β̃ are contained in a subspace of H1(G̃r;Z2) of
dimension at most Rank(H1(G̃r−1)) + k. Lemma 7.0.5 implies that there is
a circuit α̃ ⊂ G̃r whose Z2-homology class is not represented by a lift of a
circuit in 〈Gr−1, ρ̂r〉. Since Z̃ ∩ G̃r = G̃r−1, the Z2-homology class of α̃ is
not represented by a lift of a circuit in 〈Z, ρ̂r〉. Let α ⊂ Gr be the projected
image of α̃. For each ψ ∈ H0, the Z2-homology class determined by ψ̃#(α̃)
cannot be represented by the lift of a circuit in 〈Z, ρ̂r〉, and so ψ#(α) 6∈ 〈Z, ρ̂r〉.
Since ψ#(F(Gr)) = {F (ψ#(Λ+))} = {F (ψ#(Λ−))}, every free factor system
that contains ψ#(λ+) or ψ#(λ−) must contain ψ#(α) for every circuit α ⊂ Gr.
Lemma 5.1.7 therefore implies that ψ#(λ+) 6∈ 〈Z, ρ̂r〉 and ψ#(λ−) 6∈ 〈Z, ρ̂r〉.

We now turn to the proof of Lemma 7.0.3 in the case Hr is a geometric
stratum. The main difference between the cases is that we can no longer use
Lemma 5.1.7 to conclude that if ψ#(λ+) ∈ 〈Z, ρ̂r〉 or if ψ#(λ−) ∈ 〈Z, ρ̂r〉 then
ψ#(α) ∈ 〈Z, ρ̂r〉 for every circuit α ⊂ Gr. We replace this with Corollary 7.0.8
below.

Suppose that µ ⊂ G is a bi-infinite path and that α ⊂ G is a circuit.
Choose a lift α̃ of α in the universal cover Γ of G and let T : Γ → Γ be the
indivisible covering translation with axis equal to α̃. We say that α is in the
span of µ if for all positive integers L, there are lifts µ̃i of µ, 0 ≤ i ≤ m − 1,
such that

(Sp) µ̃0∩ µ̃1, µ̃1∩ µ̃2, . . . , µ̃m−2∩ µ̃m−1 and µ̃m−1∩T (µ̃0) each contain at least
L edges.

Lemma 7.0.6. Suppose that f : G → G , Z and ρ̂r are as in Theo-
rem 6.0.1. If µ ∈ 〈Z, ρ̂r〉 and α ⊂ G is in the span of µ, then α ∈ 〈Z, ρ̂r〉.

Proof. The lemma is obvious if µ ∈ Z so we may assume that ρ̂r = ρr.
Write µ̃ = . . . b̃−1b̃0b̃1 . . . where each bj is either a single edge of Z or is equal to
ρr or ρ̄r. We do not assume a priori that this is a decomposition into subpaths,
but there is no loss in assuming that bj 6= b̄j . Since the initial edges of ρr and
of ρ̄r lie in Hr and are distinct, no cancellation can occur at the juncture of b̃j
and b̃j+1; we conclude that the b̃j ’s are subpaths of µ̃.

Let M be the number of edges in ρr. Choose µ̃i satisfying (Sp) with
L = M ; denote T (µ̃0) by µ̃m. Since µ̃i−1 ∩ µ̃i, 1 ≤ i ≤ m, contains at least
M edges, there is a vertex pi ∈ µ̃i−1 ∩ µ̃i that is a cutting vertex (see the
proof of Lemma 6.0.5) for both µ̃i−1 and µ̃i. For 1 ≤ i ≤ m− 1, let γ̃i be the
subpath of µ̃i that is bounded by p̃i and p̃i+1. Let γ̃m be the subpath of µ̃m
that is bounded by p̃m and T (p̃1). Then each γi ⊂ 〈Z, ρr〉 and α is the circuit
obtained by tightening γ1 · . . . · γm.
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~¹3 ~¹0¿=~¹2~¹0 ~¹1

~p1

~°1

~p2

~p3

Let φ : S → S and Φ : Y → Gr be as in the definition of geometric
stratum. For each closed geodesic curve αS ⊂ S, we say that Φ#(αS) ⊂ Gr is
an Hr-geometric circuit.

Lemma 7.0.7. If Hr is a geometric stratum with generic lines λ±, then
every Hr-geometric circuit in Gr is in the span of λ+ and in the span of λ−.

Proof. It suffices to consider λ+. Suppose that an Hr-geometric circuit
α and length L are given. Let λ+

S and αS be the geodesics is S such that
Φ#(λ+

S ) = λ+ and Φ#(αS) = α+. We showed during the proof of Proposi-
tion 6.0.8 that λ+

S is a leaf of the expanding lamination Λ+
S for φ. There exists

ε > 0 and a length LS so that if a pair of lifts of λ+
S to the universal cover

of S contain ε-parallel subintervals of length LS , then their Φ#-images in the
universal cover Γ of G have a common subinterval containing at least L edges.
There exists δ > 0 so that any two lifts of λ+

S that have points within δ of
each other, have ε-parallel subintervals of length LS . The lemma now follows
from the well-known fact that αS is freely homotopic to a closed curve of the
form u0 · s0 · u1 · s1 · . . . · uk−1 · sk−1 where each ui is an interval in λ+

S and
where each si has length at most δ. (To prove this well-known fact, note that
for sufficiently small δ, the complement S \ Nδ(Λ+

S ) of the δ neighborhood of
the expanding lamination Λ+

S in S is a finite disjoint union of contractible or
peripheral sets. The circuit αS can therefore be homotoped into Nδ(Λ+

S ) and
then further homotoped to have the desired decomposition into subpaths.)

Corollary 7.0.8. Suppose that f : G → G , Z and ρ̂r are as in The-
orem 6.0.1, that Hr is a geometric stratum with generic lines λ± and that
ψ ∈ Out(Fn). If ψ#(λ+) ∈ 〈Z, ρr〉 or ψ#(λ−) ∈ 〈Z, ρr〉, then ψ#(α) ∈ 〈Z, ρr〉
for each Hr-geometric circuit α ⊂ Gr.

Proof. Let h̃ : Γ → Γ be a lift of a topological representative h : G → G

representing ψ. For all L, there exists L1 so that if β̃ ⊂ Γ is a path with edge
length at least L1, then h̃#(β̃) is a path with edge length at least L. If C is
the constant of the bounded cancellation lemma applied to h̃ : Γ → Γ, and if
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µ̃1 and µ̃2 are bi-infinite paths such that µ̃1 ∩ µ̃2 has edge length at least L1,
then h̃#(µ̃1) ∩ h̃#(µ̃2) has edge length at least L− 2C.

By Lemma 7.0.7, α is in the span of λ+ and in the span of λ−. The
preceding argument shows that ψ#(α) is in the span of ψ#(λ+) and in the
span of ψ#(λ−). Lemma 7.0.6 now completes the proof.

The following lemma is a modification of Lemma 7.0.5. We use the nota-
tion of Definition 5.1.4. Let ∂AS be the union of the components α∗1, . . . , α

∗
m of

∂S. Every regular cover G̃ of G determines a regular cover S̃ of S; we denote
the full pre-image of ∂AS by ∂AS̃.

Lemma 7.0.9. If Hr is a geometric stratum, then there is a regular con-
nected k-fold cover G̃ such that the induced cover S̃ of S satisfies

Rank(H1(S̃))− Rank(H1(∂AS̃)) > k.

Moreover, every outer automorphism of Fn ∼= π1(G) lifts to an outer automor-
phism of π1(G̃).

Proof. If S is S2 with m+ 1 disks removed, then

Rank(H1(S))− Rank(H1(∂AS)) = 0.

If S is a Mobius band with m disks removed, then

Rank(H1(S))− Rank(H1(∂AS)) = 1.

In all other cases, Rank(H1(S)) − Rank(H1(∂AS)) ≥ 2 and we may choose
k = 1 and G̃ = G. Since S supports a pseudo-Anosov homeomorphism, m ≥ 2
and m = 2 only if S is a Mobius band with 2 disks removed. (This last fact
is well-known; it follows from Lemma 3.2.2 and the fact that if S is S2 with
three disks removed or if S is the Mobius band with one disk removed, then S
deformation retracts to a one complex made up of ∂AS and one edge.)

Choose elements ci ∈ π1(G), 1 ≤ i ≤ m, whose associated circuit is αi. For
j ≥ 1, denote the concatenation of j copies of ci by cji . Since Fn is residually
finite, there is a finite index normal subgroup N that does not contain cji for
1 ≤ i ≤ m and 1 ≤ j ≤ 4, and therefore does not contain any element conjugate
to such cji . If G̃ is the regular connected finite cover of G corresponding to N
and if the closed path that goes k times around αi lifts to a closed circuit in
G̃, then k ≥ 5. Thus, if q : S̃ → S is the covering space of S induced by G̃,
then the restriction of q to any component of ∂AS̃ is at least a five fold cover.
It follows that Rank(H0(∂AS̃)) ≤ k

5 Rank(H0(∂AS)). As noted in the proof of
Lemma 7.0.5, after passing to a further cover if necessary, we may assume that
N is characteristic.



     

620 MLADEN BESTVINA, MARK FEIGHN, AND MICHAEL HANDEL

Let m = Rank(H0(∂AS)) be the number of components of ∂AS; since S
is connected, RankH0(S) = 1. As in the proof of Lemma 7.0.5,

Rank(H1(S̃))− Rank(H1(∂AS̃))

= k × [Rank(H1(S))− Rank(H1(∂AS))]

+ k × [Rank(H0(∂AS))− Rank(H0(S))]

+ [Rank(H0(S̃))− Rank(H0(∂AS̃))]

≥ k × [Rank(H1(S))− Rank(H1(∂AS))] + k(m− 1) + (1− mk

5
)

= k × [Rank(H1(S))− Rank(H1(∂AS))] + k[m− 1 +
1
k
− m

5
].

Both terms are nonnegative. If m ≥ 3, then the second term is strictly
larger than k. If m = 2, then the first term equals k and the second term is
positive.

Proof of Lemma 7.0.3 in the geometric case. The proof is now essentially
the same as in the nongeometric case. Let G̃ be a covering space of G as in
Lemma 7.0.9 and let H0 be the finite index subgroup of H whose lifts to π1(G̃)
act by the identity on H1(G̃;Z2). Since ∂S = ∂AS ∪ ρ∗, there are at most k
components in ∂S̃ \ ∂AS̃. It is therefore possible to choose a circuit α̃S in S̃

whose Z2-homology class is not represented by peripheral curves. There are
induced covering spaces Ỹ , Q̃ and S̃ and there is an induced homotopy equiva-
lence Φ̃ : Y → G̃. The peripheral homology H1(∂AS̃;Z2) is a direct summand
of the homology H1(S̃;Z2); H1(Ỹ ;Z2) is formed from H1(S̃;Z2)

⊕
H1(Q̃;Z2)

by identification of H1(∂AS̃;Z2) with its image in H1(Q̃;Z2). It follows that
α̃ = Φ̃#(α̃S) determines a nonzero element of H1(G̃r;Z2) that is not repre-
sented by a lift of a circuit in 〈Gr−1, ρr〉 and hence is not represented by a lift
of a circuit in 〈Z, ρr〉. If α is the projection of α̃, then ψ#(α) is not in 〈Z, ρr〉
and Corollary 7.0.8 completes the proof.

Lemma 7.0.10. Assume that H ⊂ Out(Fn) does not contain a free sub-
group of rank two. Then there are a finite collection L of attracting laminations
for elements of H and a finite index subgroup H0 of H that stabilizes each el-
ement of L with the following feature. If ψ ∈ H0 and if Λ+ ∈ L(ψ) and
Λ− ∈ L(ψ−1) are paired topmost laminations, then at least one of Λ+ and Λ−

is in L.

Proof. Among all free factor systems other than {[[Fn]]} that are invariant
under the action of a finite index subgroup of H, choose one, F1, of maximal
complexity (as defined in subsection 2.6). If H0 is a finite index subgroup of H
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that stabilizes F1, then, by induction applied to H0|F1, we may assume that
there is a finite collection L1 of attracting laminations carried by F1 and a
finite index subgroup (also called H0) that stabilizes each element of L1 with
the following feature. If ψ ∈ H0 and if Λ+ ∈ L(ψ) and Λ− ∈ L(ψ−1) are paired
topmost laminations carried by F1, then either Λ+ ∈ L1 or Λ− ∈ L1.

If every topmost lamination pair for elements of H0 is carried by F1,
then we are done. Otherwise, choose O ∈ H0 and a topmost lamination pair
Γ+ ∈ L(O) and Γ− ∈ L(O) that is not carried by F1. Proposition 7.0.2 implies,
after passing to a smaller finite index subgroup if necessary, that at least one
of Γ+ or Γ− is stabilized by H0. We assume without loss of generality that Γ+

is stabilized by H0; if possible, choose H0 to stabilize both Γ+ and Γ−. Define
L to be the union of L1 with Γ+ and with Γ− if it is stabilized by H0.

Choose an improved relative train track map f : G→ G for some iterate
of O such that F1 = F(Gl) for some filtration element Gl. Since F1 and Γ+

are both H0-invariant, so is the unique smallest free factor system containing
F1 and carrying Γ+. Our choice of F1 therefore guarantees that this smallest
free factor system is {[[Fn]]}. It follows that Γ+ is associated to the highest
stratum Gr = G.

Suppose that ψ ∈ H0 and that Λ+ ∈ L(ψ) and Λ− ∈ L(ψ−1) are paired
topmost laminations. If Λ± are carried by F1, then either Λ+ ∈ L1 ⊂ L or
Λ− ∈ L1 ⊂ L. Suppose then that Λ± are not carried by F1. Proposition 7.0.2
implies that either Λ+ or Λ−, say Λ−, is stabilized by a finite index subgroup
of H0. After replacing f by an iterate if necessary, f# stabilizes Λ−.

Let λ− be a generic line for Λ−. Since {[[Fn]]} is the only free factor
system that contains F1 and carries Λ−, we have λ− 6⊂ Gr−1. Theorem 6.0.1
and Remark 6.0.2 therefore imply that either λ− is Γ−-generic or λ− is weakly
attracted to Γ+ under the action of f#. In the former case, Λ− = Γ− ∈ L. In
the latter case, every subpath of a generic line γ+ of Γ+ is contained in some
line fm# (λ−) of Λ−, so that γ+ is a line in Λ−. By our previous arguments, ψ is
represented by an improved relative train track map in which Λ− is associated
to the highest stratum and in which the next highest stratum realizes F1. Since
γ+ is not carried by F1, Lemma 3.1.15 implies that γ+ is a generic line for Λ−

and hence that Γ+ = Λ− ∈ L.

Proof of Theorem 7.0.1. Let L = {Λ1, . . .Λk} andH0 be as in Lemma 7.0.10.
Define Φ =

⊕
PFΛ+

i
: H0 → Z

k where each PFΛ+
i

is as in Corollary 3.3.1.
By Corollary 5.7.6, it suffices to show that Ker(Φ) is contained in PG(Fn).
If ψ ∈ H0 is not in PG(Fn), then there exist paired, topmost laminations
Γ+ ∈ L(ψ) and Γ− ∈ L(ψ). Proposition 3.3.3 implies that neither PFΓ+(ψ)
nor PFΓ−(ψ) is zero so that Lemma 7.0.10 implies that ψ 6∈ Ker(Φ).
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