Département de Mathématiques et d'Informatique, College militaire royal du Canada, boite postale 17000, STN Forces, Kingston ON K7K 7B4 Canada; Fachbereich Mathematik, Universität Rostock, Universitätsplatz 1, 18055 Rostock, Germany, e-mail: dietlinde.lau@mathematik.uni-rostock.de
Abstract: Let $k \ge 2$ and $ k$ be a $k$-element set. We study the pairwise intersections of all maximal partial clones of Slupecki type on $ k$. More precisely, we show that with one exception, if $M$ and $M'$ are two strong maximal partial clones of Slupecki type on $ k$, then $M \cap M'$ is covered by both $M$ and $M'$. We also show that the situation is quite different if the non-strong maximal partial clone on $ k$ is involved in the intersection.
Full text of the article: