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Abstract. A *-band is an algebra consisting of a band (idempotent semigroup)
on which an involution * is defined satisfying an extra condition; in summary

(xy)" =y'z*, 27 =z, z=zz'z, (2y)z2=12(yz), z°==zx.
The lattice of all *-band varieties was determined by Adair who also provided
a basis for the identities of each variety. Another system of bases was devised
by Petrich. Defining certain operators on the free involutorial semigroup F' on
a nonempty set X, we construct a system of fully invariant congruences on F
which is in bijection with the set of all proper *-band varieties, with the exception
of normal *-band varieties which require a different treatment. The proof of this
result is based on those evoked above and is broken into a long sequence of lemmas.

MSC 2000: 20M05, 20M07

1. Introduction and summary

Varieties of bands (idempotent semigroups) have attracted considerable attention and with
good reason. Their lattice has been determined representing a prime example of mathematical
ingenuity and success. The varieties themselves admit copious characterizations and their
members convenient structure theorems. For example, free objects in these varieties have
been described in several ways exhibiting a relatively transparent structure.
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As a variant of a general semigroup and inspired by ring theory, emerged a *-semigroup,
which is an algebra consisting of a semigroup on which an involution is defined. As a natural
special case, we have a *-band as a band and a *-semigroup with the involution satisfying an
additional “regularity” condition. All together, we have a mapping x — x* of a semigroup S
into itself satisfying the following axioms:

(xy)" =y*'z*, 2=z, z=zz"z, z°==zx. (1)

The lattice of *-band varieties was determined by Adair [1] based on the approach of
Fennemore [2] in describing the lattice of band varieties. Adair also provided a system
of bases for identities for each *-band variety. As proved in [5], the system of identities
devised in [4] for join irreducible band varieties can be used also for *-band varieties. As a
consequence, we have that *-band varieties admit bases for their identities consisting of star-
free identities. Even though *-band varieties (as well as varieties of band monoids) are treated
as an afterthought of band varieties, the deliberations involved turn out quite nontrivial and
intrinsically interesting.

Yamada [8] characterized finitely generated free *-bands using an inductive process. The
purpose of this paper is to construct free objects in every *-band variety on any nonempty set
X by solving the corresponding word problem on the free involutorial semigroup. Section 2
contains a minimum of needed notation and terminology. For varieties different from B,
the variety of all *-bands, and varieties of normal *-bands, our treatment consists of three
stages. In the first stage, Section 3, we introduce operators h,, and i,, on the free involutorial
semigroup F' on X and establish some of their properties. In the second stage, Section
4, we use these operators to introduce operators ;, with ¢ € {h,i} and n > 3 and prove a
number of their properties which culminate in the fact that they induce fully invariant *-band
congruences on F. The third stage, Section 5, consists in identifying the *-band varieties
which correspond to these congruences. In Section 6 the main theorem provides free objects
for all nontrivial *-band varieties.

2. Notation and terminology

For these, we follow the standard texts in semigroups and [4] with the following supplements.

If Y is a set, | Y | stands for the cardinality of Y. We fix a nonempty set X and consider
a bijection x — x* of X onto a disjoint copy X* of X. Let I = X U X* and F be the free
semigroup on I, which consists of all nonempty words over the alphabet I. We may view F'
as an involutory semigroup by defining

(z%)" =, Wi yn) =vn -yl
forallz € X, n>2and vy, ... ,y, € I. We denote by F! the free monoid on I, obtained
by adjoining the empty word 1 to F.

For emphasis, we refer to a homomorphism of *-semigroups as a *-homomorphism and
the induced congruence as a *-congruence. In this terminology, the terms homomorphism
and congruence refer to multiplication alone. We denote

End(F) — the set of all *-endomorphisms of F'.
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For an identity u = v on *-bands, we denote by [u = v] the variety of *-bands determined
by v = v. We omit the covering identities (1).

In the treatment of relatively free bands in [6], we have used a number of invariants
and operators on the set of words over a nonempty set X, c¢(w) for content of w, f(w) for
cardinality of c(w), s(w), o(w), e(w), e(w). In the context of *-bands when we are concerned
with I = X U X* rather than with X alone, we must make suitable adjustments in the
definitions of these functions relative to the occurrence of some starred letters. It is natural
then to denote the new function by p* if it represents a modification of the previously used
symbol p relative to X. For typographical, as well as esthetical, reasons we shall use the
same notation p as for X but in the context of *-bands. This should cause no confusion as to
the meaning of the symbol p since it will be precisely defined and the original ones relative
to X will not be used.

Now let w € F'; then

c(w) — the set of all letters z € X such that either x or z* occurs in w, ¢(1) =0 (in [3],
the notation cx (w) is used),

fw) = | c(w) |,

u — a prefiz of w if w = uwv for some v € F*!,

w — the word obtained from w by reversing the order of letters, that is if w = x129 ... x,,
then W =2, ... 921, 1 =1,

s(w) and o(w) — there is a unique factorization w = uyv with u,v € F', y € I and
c(u) C c(uy) = ¢(w); we write s(w) = u and o(w) = y (in [3], the notation sx(w) and ox (w)
is used),

e(w) — the left-right dual of s(w),

g(w) — the left-right dual of o(w).

For any operator ¢t on F, set t(1) = 1 thereby extending it to F'', and define operators #
and t* on F' by

t(w) = t(w), t"(w) = (t(w"))".

For any w € F', we have w = w** = w and thus = ¢** = t. We shall need the following
simple result.

Lemma 2.1. We haves = s* =€, = 0* = ¢ and o(w) = ¢(w), e(w) = o(w) for allx € F.

Proof. Let w € F. Then there exist u,v € F' and y € I such that w = uyv and c¢(v) C
c(yv) = ¢(w). Hence

and the proof for star is the same.
The last assertions of the lemma are obvious. O

Besides the results in Lemma 2.1, we shall see in the next section that ¢ = ¢* for the operators
t which are of central importance in our deliberations. We thus could either use ¢ or ¢*
throughout; our choice is ¢ for typographical reasons.
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3. Operators h,, and 1,,

This section consists of lemmas which will be used in the next section. We start by introducing
the needed notation. Let w € F'

If w=yz with y € I and z € F', we write hy(w) = y. The operator i, is defined on F
inductively on f(w) by the formula

ia(w) = igs(w) o(w).

Hence iy(w) is the word obtained from w retaining only the first occurrence of each letter
regarding x and z* as the same letter.
The next set of operators is also defined on F' inductively: for ¢t € {h,i} and n > 2, let

tn(w) = tns(w) o (w) tn1(w). (2)

It is important to note that this formula harbors two inductions: one is on n and the other
is on #(w). For $s(w) = f(w) — 1 unless w = 1. The proofs will generally be by (the main)
induction on n and occasionally, for the first and/or the inductive step, also by induction on

f(w).

In several proofs by induction, the following notation will come in handy:
il(w) =1 (’U) € F)a Xn = hn—}—l (n > 1)' (3)

This device will make it possible to start the induction process at n = 1. The case x; = ho
is generally easy to check while the instance 7; usually holds trivially. Observe that the
inductive formula (2) remains valid for operators x, and i, for n > 1.

In this section ¢ € {x,1}.

Lemma 3.1. Forn > 2 and w € F, we have

to(w) =ty 1(w) e(w) the(w).

Proof. Direct application of definitions yields

tn(w) =tp (W) = tys(W) o(W) t_1 (W) = t,_1 (W) o(W) t,s(w)

=ty 1(w) 7(w) trs(W) = th_1(w) e(w) the(w). O
Lemma 3.2. Forn > 2, we have ct, = ¢, st, = t,s, ot, = 0.

Proof. We use induction on n. Let n > 2 and assume that the lemma holds for ¢,, whenever
2 < m < n. We use a secondary induction on f(w), where w € F''.

All equalities hold trivially for w = 1. Let w € F' and assume the equalities hold for ¢,
and z € F' whenever #(z) < f(w). Recall formula (2). By induction hypothesis on f(w), we
have

ctns(w) = cs(w) (4)
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and thus
c(tns(w) o(w)) = ¢(s(w) o(w)) = c(w). ()
If n =2, then ct,_1(w) C ¢(w) follows from the definition of ¢;. Otherwise, we get
cty 1 (w) = c(t, 1(W)) = ety 1(W) = (W) = c(w)
by induction on n. Either way, it follows that ct,(w) = ¢(w) and so ct, = ¢. From (4) and
(5) we deduce that st,(w) = t,s(w) and ot,(w) = o(w). O

Lemma 3.3. Forn > 2 and w = uyv where u,v € F', y € I and c(y) Nc(u) = 0, we have
tn(w) € tn(u) yF*.

Proof. The argument is by induction on f(w). Assume that the lemma holds for all ¢ € F
such that 1 < #(q) < f(w). If u = s(w), then y = o(w) and so
to(w) = tys(w) o(w) t,_1(w) € t,(u) yF* .

Assume that u # s(w). Since f(u) < #(w), we may write s(w) = uyr for some r € F!. By
our induction hypothesis, we have t,s(w) = t,(u) yz for some z € F! and thus

t(w) = tus(w) o (W) tumi(w) = ta(u) yz o (w) tami(w) € to(u) yF. O

Lemma 3.4. Forn > 1, we have t,, = t:.

Proof. We use induction on n. Let w € F.
Let n = 1. The case t = ¢ being trivial, we assume that t = x. If w = zy with y € I and
z € F', then
xi(w) = x1(@) = x1(yz) =y = ()" = (xa(y"2")" = (xa(w"))" = xi (w).
Let n > 1 and assume that the result holds for n — 1.

We use secondary induction on f(w). Assume that #(w) > 0 and ¢,(z) = t(z) whenever
#(z) < t(w). Hence

to(w) =t,_1(w) e(w) tre(w) by Lemma 3.1
=t,_1(w)e(w) tie(w) by induction on #(w)
=t,_1(w) o*(w) tks*(w) by Lemma 2.1
= tn1(w) o™ (w) 1,((s(w"))") = (£, (w"))" (o (w"))" (tas(w™))*
= (tas(w") o(w*) 7, (w"))”
= (tps(w*) o(w*) ty_1(w*))* by induction on n
= (ta(w"))" = 13 (w) =
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Lemma 3.5. Forn > 1, we have X1 = X1Xn = X1 Xn+1-

Proof. Since
Xnr1(w) = Xn(w) &(w) Xnire(w)

by Lemma 3.1, it is enough to show that xix,(w) = x1(w) for all n > 1 and w € F. This

follows from Lemma 3.3 by taking v = 1.

Lemma 3.6. Form >n > 1 and u,v,w € F', we have

to(ut,(v) w) =ty (ut,r(v) w) =ty (vvw).

[l

Proof. We use induction on n. Let n = 1. Since the case t = 7 is trivial, we may assume
that t = x. Without loss of generality, we may assume that v = 1 and v # 1. It follows from

Lemma 3.5 that
X1(u Xm (v) W) = X1Xm (V) = x1(v) = x1(uvw)

and the equality x1(u Xmi1(v) w) = x1(uvw) is obtained similarly.
Now let n > 1 and assume that the lemma holds for n — 1. First we show that

ta1(utm(v) w) =t 1 (Utme1 (V) w) = 1 (uvw)

for all m > n and u,v,w € F'. Indeed,

tao1(utm(v) w) =tp_ 1 (uty(v) w) =ty 1 (Wty,(v) )

=t, 1(Wt,(V)TW) = t, 1(WTT) by induction on n

and the equality ¢, 1(ut,1(v) w) = t, 1(uvw) is proved similarly.
Next we show that
tn(Uty,(v) = th(utmi1(v)) = tp(uv)

for all m > n and u,v € F' by a secondary induction on d = | ¢(v) \ ¢(u) |.
Let d = 0, that is, ¢(v) C ¢(u). Then

tn(utn(v)) =tys(utn,(v) o(utn(v)) tn 1(ut,(v))
=tps(u)o(u) t—1(utn,(v)) since d = 0
=tns(u) o(u) tp—1(uv) by (6)
=t,s(uv) o(uv) t,—1 (uv) since d = 0

= t,(uv)

and the equality ¢, (u tyme1(v)) = t,(uv) is proved similarly.
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Now let d > 0 and assume that (7) holds for all values smaller than d. We can write
v = zyr with uz = s(uv) and y = o(uv). By Lemma 3.3, we have t,,(v) € t,,(z) yF' and so
Lemma 3.2 yields

s(utn(v)) = uty(2), o(uty(v)) =y. (8)
Thus L
tn(Utm(v)) =tns(utm(v) o(utm(v)) tao1(ut,(v))
=tn(utin(2)) Yy ta-1(utn(v)) by (8)
=ty (u2) ytp_1(uty(v)) by induction on d
=tys(uv) o(uv) t,_1(uv) by (6)
=t (uv).

Since by Lemma 3.1 we have

~

tmt1(V) = tm(v) (V) tngre(v),

Lemma 3.2 yields that

s(Utni1(v)) = s(utm(v)),  o(utm1(v)) = o(utm(v))

and so the equality t,(uty,1(v)) = tn(uv) follows easily from the above. Thus (7) holds.
We now show that
tn(uty(v) w) = t, (vvw) 9)

for all m > n and u,v,w € F' by induction on e = | ¢(w) \ c(uv) |. Let m > n, u,v,w € F!
and r = ut,(v) w.
Let e = 0, that is, ¢(w) C ¢(uv). Then

to(r) =tns(r) o(r) t,_1(r)

=tpS(uty,(v)) o(uty(v)) ta_i(r) since e = 0
= Stp (Ut (v)) oty (Ut (v)) tho1(r) by Lemma 3.2
= sty (uv) oty (uv) th_1(7) by (7)
=tps(uv) o(uv) t,_1(r) by Lemma 3.2
= tps(uvw) o(vvw) t,_1(r) since e = 0
= tps(uvw) o(vvw) t,_1(vvw) by (6)
= tp(uvw)

The equality t,(ut,11(v)w) = t,(uvvw) is proved similarly and so the lemma holds when
e=0.

Let e > 0 and assume that (9) holds for all values smaller than e. Let m > n. Since
c(w) € c(uv), we may write w = zyq with uvz = s(uvw) and y = o(uvw). In particular, we
have | ¢(z) \ c¢(uv) | <|e(w) \ ¢(uv) |. By Lemma 3.2, we have ct,,(v) = ¢(v) and hence
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tn(r) = tns(r) o(r) tna(r) = tn(wtm(v) 2) yn1(r)

=ty (uvz) ytn_1(r) by induction on e
= tps(uvw) o(vvw) t,_1 (vvw) by (6)
= t,, (vvw).

This proves relation (9). The equality t,(u ty1(v) w) = t,(uvw) is proved similarly.
Lemma 3.7. Let ¢ € End(F). Then g € End(F).

Proof. For all u,v € F', we have

P(uw) = p(wv) = p(vu) = ¢(v) p(u) = ¢(@) ¢(v) = P(u) P(v).

Since w* = w* for every w € F, we also obtain

B(w") = p(w*) = p@") = (p(W))* = p(w) = (F(w))"

and so p € End(F).

Lemma 3.8. Letn > 1, u,v,w,z € F' and ¢ € End(F) be such that t,(u) = t,(v).

tn(w p(u) 2) = tn(w 9(v) 2).

[l

Then

Proof. We use induction on n. Let n = 1. Since the case t = i is trivial, we may assume that
t = x. Without loss of generality, we may assume that w = 1 and u,v # 1. By hypothesis,

we have x;(u) = x1(v) =y for some y € I. Thus

x1(w(u) 2) = xae(u) = x19(y) = xie(v) = x1(we(v) 2)

and the lemma holds for n = 1.

Assume now that » > 1 and that the lemma holds for n — 1. Note that t,(u) = t,(v)

implies
tn1 (@) = tn_1t, (1) by Lemma 3.6

= tn—ltn(u) = tn—ltn(v) = tn—la(g) = tn—l(g)-

For all u,v,w,z € F!, we get

tn1(w p(u) 2) = tns (w p(u) 2) = ta1(Z ¢ (u) W)
=1 (20() W) = 1,1 (29(v) W)

by the above, Lemma 3.7 and induction on n

=tn1(Z9(v) W) = tn1(w (V) 2) = tns (W p(v) 2).
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It follows that
ta-1(wp(u) 2) = ta1(w p(v) 2). (10)

We use secondary induction on f(u). The case §(u) = 0 being trivial, let #(u) > 0 and
assume that t,(w p(u') 2) = t,(w ¢(v') z) whenever t,(u') = t,(v') and f(u') < §(u).

Now we introduce tertiary induction on d = | ¢(2) \ c(w ¢(u)) |.

Let d = 0, that is, ¢(z) C c(w p(u)). Write r = w ¢(u) 2. If cp(u) C ¢(w), then

=tps(w)o(w) t,_1(r) since cp(u) C c(w)
=tns(w)o(w) th—1(we(v) 2) by (10)
=t,(wp(v) 2) by symmetry.

Therefore we assume that cp(u) € ¢(w). Then we can write u = u'yu” and ¢(y) = gzq’ so
that

s(wo(u) z) = we(u) g, o(wep(u)z) = . (11)

Similarly, we have a factorization v = v'yv" such that
c(we(v')) Ce(we('y)) = c(wep(u) 2).
It follows easily from Lemma 3.3 that ist,(a) = iz(a) for every a € F!. Since t,(u) = t,(v),
we get
ZQ(’U,) = thn(U,) = 22tn(v) = iQ(U).

This yields that ¢ = y. In particular, we have

s(we(v) 2) =we(v)q, o(we(v)z) = .
By Lemma 3.3, we obtain

to(u) € t,(u') yF*, ta(v) € t,(v") yF* .

Since t,(u) = t,(v) and y ¢ c(u') U c(v'), we must have

ta(t) = 1a(v)). (12
Therefore
to(r) =tps(r) o(r)t, 1(r)
= tn(w o(u') q) & tn1(r) by (11)
=t(wep(')q)xt,_1(r) by (12) and induction on #(u)
=tn(w (V') q) 1 (wep(v) 2) by (10)
=t (wep(v) 2) by symmetry,

proving the case d = 0.
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Finally, assume that d > 0 and ¢,(w ¢(u) 2') = t,(w ¢(v) 2’) whenever |c(z')\c(w ¢(u))|< d.
Then we can write z = qyq’ with w¢(u) ¢ = s(w ¢(u) z) and y = o(w ¢(u) z). Since t,(u) =
tn(v), Lemma 3.2 yields that cp(u) = cp(v) and so also we(v)q = s(we(v)z) and y =
o(wp(v) z). Thus

tn(r) = tns(r) o(r) tna(r) = tn(w @(u) @) y tn1(r)

=ty (w () q) yt, 1(r) by induction on d
=t,s(w p((v) 2) o(w p(v) 2) t, 1 (wp(v) 2) by (10)
=tn(we(v) 2)

completing the inductive step for all three inductions. O

4. Operators v,

The purpose of this section is to construct a family of fully invariant *-band congruences on
F. We start by introducing the needed notation. For ¢t € {x,i} and n > 3, we define an
operator vy, on I’ by

Y., (W) = tp_18(w) o(w) e(w) £, _1e(w).
Also let
I'=A{mn, [te{x,i},n=>3}

Note that the operator -y, is similar to the operator 6, introduced in ([7], Section 3)
with the important difference that v, is defined by means of ¢,,_; and not by ¢,.

Lemma 4.1. For v € ', we have y =7 = v* =+~

Proof. Let v =y, and w € F'. Then

th—1e(w) by Lemma 2.1

so that 7 = ; the argument for the star is the same. Next
7 (W) = ta-157(w) oy (w) ey(w) ta-rey(w)
=tp_1tp_18(w) o(w)e(w) ty,_1t,_1e(w)
=ty 15(w) o(w) e(w) th_1e(w) by Lemma, 3.6
=7(w)
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and thus also 2 = 7. O

Lemma 4.2. Fort e {x,i}, 1 <n<m>3 and u,v,w € F', we have

tn(uy, (V) w) = t, (uvw).

Proof. We use induction on n.
Let n = 1. Without loss of generality, we may assume that t = y, u =1 and v # 1. It
follows that
X1 (Y, (0) w) = X1 (hm—15(v) ()
=x1(s(v) o(v)) by Lemma 3.6
= x1(uvw).
Now let n > 1 and assume that the lemma holds for all values smaller than n. We use
secondary induction on #(uvw). The case §(uvw) = 0 being trivial, let f(uvw) = k > 0 and

1,0,/ 1,0 ,,,1

assume that t,(u' v, (v') w') = t,(u'v'w") whenever §(u'v'w') < k. We have

tn1 (U' Yim (U) ’U)) =1n 1

(
=tp_1 (W, (V) ) by Lemma 4.1
=t, (WoT) by induction on n
=t, 1(uvw) = (uvw)

and thus

Now we consider two cases.

Case: f(uv) < k. Let uvz = s(uvw), y = o(uvw) and r = uy,, (v) w. Then

tn(r) =tns(r) o(r) ta_1(r)

(
(v

=tn (U Y2, (V) 2) Y tna (1) since ¢y, (v) = c(v)
=tn(uwvz) yt,_1(r by induction on f(uvw)
=tps(vvw) o(vvw) t,—1 (vvw) by (13)
=t (vvw).

Case: f(uv) = k. By Lemma 3.6, we have
ta(utm_15(v) o(v)) = tu(us(v) o(v)).

Write p = uty,_15(v) o(v) and ¢ = u s(v) o(v). By considering the shortest prefix with the
same content, we obtain
tns(p) o(p) = tns(q) o(q)- (14)
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Writing r = u 1y, (v) w, we obtain

since f(uv) = k
by (14)
since f(uv) = k

by (13)

Lemma 4.3. Fort € {x,i}, 3<n<m and u,v,w € F', we have

Vi (U Yt (V) W) = Y, (W0W).

Proof. By definition of 7;,, we only need to show that

1w, (v) w) = N(uow)

for n € {tn_18,0,e,tp,_1e}. Writing r = u~y,, (v) w, by Lemma 4.1 we have

We obtain

by Lemma 3.2
by Lemma 4.2
by Lemma 3.2,
by Lemma 3.2
by Lemma 4.2
by Lemma 3.2,
by (15)

by the above

by (15)
by the above

=tp_18(uvw) = ty_1(e(uvw)) = t,_re(uvw).

Lemma 4.4. For vy €T and u,v € F', we have y(y(u) y(v)) = v(uv).

(15)
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Proof. Apply Lemma 4.3 twice.

Lemma 4.5. For v €T and w € F*, we have

The equality y(w) = y(ww*w) is proved similarly.

Lemma 4.6. Let v € T, u,v € F' and ¢ € End(F) be such that y(u) = 7(v).

Yo(u) = yp(v).

281

O

Then

Proof. We need to show that no(u) = ne(v) for n € {t,-1s,0,¢,t,_1€}. Since t,_1v, = tn—1

by Lemma 4.2, 7, (u) = 7, (v) yields that ¢, 1(u) =t, 1(v). Thus

tn180(u) = st, 1p(u) by Lemma 3.2
= stp_19(v) by Lemma 3.8
=tn_150(v) by Lemma 3.2,

op(u) =oty_1p(u) by Lemma 3.2
= otp_10(v) by Lemma 3.8
=op(v) by Lemma 3.2.

By Lemma 4.1, we also have

’Ytn (ﬂ) = ’Ytn (U/) = ’Ytn (’U) = ,Ytn (5)
Since ¥ € End(F) by Lemma 3.7, it follows that

™
A
—
£
I
q
—~
S
IN
=
I
q
A
—
el
SN—
|
q
S
—~~
o
<
o+
=
[¢]
Qo
o
)
=
[¢]

We now collect some important properties of the operator 7.
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Lemma 4.7. Let v € T’ and denote by 7 the equivalence relation on F induced by vy, i.e. 7
is the kernel of v. Then 7 is a fully invariant *-band congruence on F.

Proof. For any u,v,w,z € F, we have

uYv, WYz = uwyvz by Lemma 4.4
uyv = u*yv* by Lemma 4.1
wy w? by Lemma 4.5
w Ay ww*w by Lemma 4.5
uyv = p(u)ye(v) by Lemma 4.6
for any *-endomorphism ¢ of F. U

We define a multiplication on y(F) by uxv = y(uv). In view of Lemma 4.1, the unary *-
operation on F' maps y(F') into itself. Hence we may keep the unary operation of F' restricted
to v(F). It now follows from Lemmas 4.4 and 4.1 that y is a *-homomorphism of F' onto
v(F) with modified operations, and thus y(F) = F/7. By Lemma 4.7, 7 is a fully invariant
*-band congruence and hence v(F) is a V-free *-band on X for some *-band variety V. Our
task in the next section is to identify the variety V by studying the identities in our diagram
of the lattice of *-band varieties.

5. Identification of varieties

We have concluded the preceding section with the collection {¥ | v € T'} of fully invariant
*_band congruences on F. Our purpose now is to identify the variety ¥ which corresponds to
a given 7 in the usual antiisomorphism of the lattice of *-band varieties and fully invariant
*_band congruences on F' by means of our diagram of the former lattice. In this way, we shall
include most of the diagram.

The following system of words was introduced in [4]:

Gy = 1274, Hy = 1y, I = o170
and for n > 2, defined inductively
Gp =2,Gp 1, T, =Gz, T, (T € {H,I}).

We assume that t = h or t = x if and only if 7' = H and ¢t =7 if and only if T'= 1.
The lattice of all *-band varieties was determined in [1]. That the bases for these varieties
are as shown in the diagram was proved in [5].
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[z - 2]
[Ga = 1]
Gy = Hi
[Gs = 1]

[z = y]
The lattice of *-band varieties

Lemma 5.1. Fort € {h,i} and m > n > 2, we have

tn(Gm) = tn(Tm)a tn(m) = tn(m)

Proof. We use induction on n.

Let n = 2. The equality t3(G,,) = t2(T},) follows from the definitions. Since G, =
GmZmy1 and Ty = Tpp®mi1Gmg1, We obtain the second equality from the first.

Now let n > 2 and assume that the lemma holds for all values smaller than n. Then we
have

tn8(T) = tn8(GrmTmn—1) = tns(Gp) since ¢(Gp,) = ¢(Th),
o(Tp) = 0(GramTm—1) = 0(Gm) since ¢(Gp,) = ¢(Th),
tn 1(T) =ty 1(Tr) =t 1(G) by induction on n
=tn—1(Gm)
and so t,(Gy,) = t,(T),). Also
tn8(Thni1) = tn8(TnZmi1 Gms1) = tn(T) = ta(Gr) by the above

= tnS(Gm$m+1) = tnS(Gm+1)’

U(Tm-l—l) = U(Tm$m+1Gm+1) = Tk+1 = U(Gmxm-l—l) = U(Gm+1)a

tn—l(Tm—i—l) = tn—l(Tm—H) = tn—l(Gm—H) by induction on n
- tn——l(Gm—I—l):
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and hence t,,(Gp11) = th(Tins1)- O
Lemma 5.2. For {p,q} = {x,i} and n > 2, we have p,(G,) # pn(Qn).

Proof. We use induction on n. Let n = 2. Since

X1(I2) = 22 # 21 = X1(G2),

it follows that x2(l2) # x2(Ge). Clearly, is(Hs) = x9 # 2911 = ia(Ga).
Now let n > 2 and assume that the lemma holds for n — 1. We consider first the case
p=1and n =3. If i3(H;) = i3(G3), then

in(H3) = igi3(H3) by Lemma 3.6
= 7/2(7/3(H3)) = ZQ(Zg(Gg)) = ’LQ(G_g) by symmetry.

However,

ZQ(Fs) = i2($2$3$2$1$3) = T2X3T1 75 ToX1T3 = i2(332~’131$3) = iQ(Gs)

and so Z3(H3) 7é ’Lg(Gg)
Assume now that p = x or n > 3. If p,(Q,) = pr(G,), then

pn—l(Qn—l) = pn—ls(Qn—lan_n) = pn—ls(@)

= 5pp_1(Qn) by Lemma 3.2
= 5Pp_1Pn(Qn) by Lemma 3.6
= Spnfl(pn (Qn)) - Spnfl(pn (Gn))

= Pu-15(Gn) by symmetry

= pnfls(anlxn) = pnfl(anl)7
contradicting the induction hypothesis. Therefore p,,(Q,) # pn(Gr)- O

Lemma 5.3. Letn > 3. o o
(i) Txn (Gny1) = Yxn (Hp1), _7xn (Gn)i')/xn (In)-
(11) Yin (Gn) = Yin (In)’ Yin (Gn) 7é Yin (Hn)

Proof. (i) We show that n(H,11) = n(Gny1) for n € {xn_18,0,&, Xn_1¢}. Indeed,

S

Xn—lS( = Xn— 18( n+1$n+1Fn) = Xn—lS(Gn—H)a

(
n+1)
0(Hp1) = 0(Grir@n1Hy) = 0(Grya),
e(Hnt1) = &(Gri@nt1 Hy) = Tny1 = (20 11Gr) = &(Gnpa),
X 1€(Hn11) = Xn 16(Gni18n i1 Hn) = Xa 1 (Hn) = Xn—1(Hn)

= Xn-1(Gn) by Lemma 5.1
=Xn-1(Gn) = Xn-16(2n+1Gn) = Xn—16(Gny1).
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Now suppose that ,, (G) = 7y, (I) for some n > 3. Then we would have

anl(Infl) = anls(Inflan_n) = anls(ln) = Yxn (I_n)

= 5(Vyn (In)) by Lemma 4.1
= 5(Yxn (Gn)) by hypothesis
= Xn-15(Gh) by symmetry

= Xn—18(Gn—1iUn) = Xn—l(Gn—l)a

contradicting Lemma 5.2. Therefore 7, (Gy) # 7Yy, (In) for every n > 3.
(ii) Similar. O

6. Main result

In order to collect all the information we need, we first introduce some notation. Let X be
a nonempty set.
Let RB = [x = zyz|. Define a mapping ¢rp on F by

Yrs 1 w = ho(w) ha(w).

On the set ¢Yrp(F) define a multiplication by zy * wz = zz and a unary operation by
Let S = [Gy = I,]. Assume that X is totally ordered and define a mapping s on F by

Ys: W — T1Tg ... Tp

where c(w) = {z1,%2, ..., 2.} and 71 < 22 < ... < . On the set Ys(F) define a
multiplication by

T1X2 -+ Ty %X Y1Y2 ... Yp = 2122 ... 2k

where
{T1,22, oo Ty Y1, Y2y <« s Yn} = {21,225 c o 2k}, 21 <20 < ... < Z (16)

and identity mapping as unary operation.
Let NB = [G3 = Hj]. Define a mapping ¥x5 on F' by

a1 w = ho(w) s (w) ha(w).
On the set Y p(F) define a multiplication by
1X1T - .. Tn] * PY1Y2 -« . YnQ = 12122 ... 2kq
in the notation (16) and a unary operation by

. -\ % E 3 e 3
(i1To .. X)) = 7120 - .. Tyi".
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For v € ', say v = m,, t € {h, i}, let Yg,—1,] = 7. On the set y(F') define a multiplica-
tion by u x v = y(uv) and consider the unary operation on F' restricted to y(F).
Define an operator b on F' inductively on §(w) by

b(w) = bs(w) o(w) [bs(w*) o(w*)]* (17)

(this is taken from [3], Section 4, where b, s and o are denoted by b*, sx and ox, respectively).
Let B be the variety of *-bands. Define a mapping 15 on F' by

g 1w — b(w).

On the set b(F') define a multiplication by u*v = b(uv) and consider the unary operation on
F restricted to b(F).
We are finally ready for the desired result.

Theorem 6.1. Let X be a nonempty set and V be a nontrivial *-band variety. Then 1y, is
a *~homomorphism of F' onto ¢, (F) which induces the least V-congruence on F. Therefore
Yy (F) is a V-free *-band on X.

Proof. The argument for the varieties RB, S and N B is straightforward and is omitted.

Let v = 7, with n > 4 and V = [G, = H,]. The remarks at the end of the pre-
ceding section show that 7 is a *-homomorphism of *-semigroups which induces the least
Wh-congruence on F' for some *-band variety YW. By Lemma 5.3(i), we have v(G,,) = v(H,).
By Lemma 4.6, it follows that v¢o(G,) = vp(H,,) for every ¢ € End(F'). Thus v(F') satisfies
the identity G, = H,, and so y(F') € V. Therefore W C V.

Since [G,,_1 = I, 1] is the variety lying immediately below V in the lattice of varieties of
*-bands and y(Gp_1) # ¥(In—1) by Lemma 5.3(i), it follows that v(F) ¢ [G,_1 = I,_1] and
so W [Gp_1 = Ip_1]. Thus W= V.

The case v = 7, is similar.

The case of B is essentially the content of ([3], Theorem 4.5). d

We now establish a few properties of the mappings 1y,. Let Q be the set of nontrivial *-band
varieties different from S and N'B. Note that € is a chain with least element RB and greatest
element B. The remaining elements are the varieties

H, =[G, = H,] for n > 4, Z,=[G,=1,] forn >3
with the order
Hn CH, &L, CIL,< m<n, Tn CHp e m<n,

Our first result concerns properties of individual )y,.

Proposition 6.2. Let V € Q and set ¢ = y. Then ¢ =) = ¢* = .
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Proof. The verification for V = RB is straightforward and is omitted. The case of V different
from RB and B was handled in Lemma 4.1 in terms of v € I'. For ¥V = B, we have to prove
the corresponding statements for b. For b = b, the proof of ([7], Lemma 6.1) remains valid
for *-bands. An obvious variant of this proof will show that also b* = b holds. For b? = b,
the proof of ([3], Lemma 2.2(iii)) remains valid in the case of *-bands as well. O

For V € {S,NB}, we have 13, = 1y, but by, # by and 1} # ¢y. This is not surprising in
view of the nonintrinsic nature of the definition of 15 and ¥ 5, for it depends on the choice
of the total order on X. When 3 = 1)y,, we have that 1, (F) coincides with the set of fixed
points of y.

The form of the inductive formula (17) is quite different from that of any v in I'. We can
modify that formula by observing that

b(w) = bs(w) o(w) [bs(w*) o(w*)]*
=bs(w) o(w) (o(w"))" (bs(w"))" = bs(w) o(w) o™ (w) bs™(w)
=bs(w) o(w) e(w) be(w) by Lemma 2.1

which is closer to the definition of v in T. We can get even closer by observing that b = b,
for then ~
b(w) = bs(w) o(w) e(w) be(w).

Next we compare two *-band varieties Y and V and the corresponding v, and vy.
Proposition 6.3. Let U,V be *-band varieties. Then U C V if and only if Yyy = y.

Proof. For a variety V of *-bands, let ~y, denote the least V-congruence on F. By Theorem
6.1, ~y is induced by vy. Let U,V be *-band varieties.

Assume that 4/ C V. Then ~y C ~y. Let w € F. By Proposition 6.2, we have
Yyhy(w) = Py(w) and so Py(w) ~y w. Since ~y, C ~y, it follows that ¥y (w) ~y w and so

Yuthy (w) = Yy (w). Hence Yyihy = y.
Conversely, assume that i1y = 1. Let w, z € F be such that w ~y z. Then ¢y (w) =
1y (z) and so

Yu(w) = Yuby (w) = Yuthy(2) = Yu(2).

Hence w ~y z and so ~y C ~y. Thus U C V. O
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