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1. Introduction

LetMn be a Kähler manifold of complex dimension n. Denote by J the complex structure
on Kähler manifolds. For each plane section π ⊂ TxM, x ∈ M , we denote by K(π) the
sectional curvature of the plane section π. Let e1, . . . , en, e1∗ = Je1, . . . , en∗ = Jen be a
field of orthonormal frames on M . Then the scalar curvature τ of M is defined by

(1.1) τ =
∑

i<j

K(ei, ej), i, j = 1, . . . , n, 1
∗, . . . , n∗,

where K(ei, ej) is the sectional curvature of the section spanned by ei and ej .
A plane section π ⊂ TxM is called totally real if Jπ is perpendicular to π. For each real

number k we define an invariant δrk by

(1.2) δrk(x) = τ(x)− k inf K
r(x), x ∈M,
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where infKr(x) = infπr{K(πr)} and πr runs over all totally real plane sections in TxM .
(This type of invariants is similar to the invariants introduced in [3,4,5]. For some recent
results involving this type of invariants, see for instance [6,8,9,12]).

A Kähler manifold M̃m(4c) of constant holomorphic sectional curvature 4c is called a
complex space form. There are three types of complex space forms: elliptic, hyperbolic, or
flat according as the holomorphic sectional curvature is positive, negative, or zero.
Let CPm(4c) be a complex projective m-space endowed with the Fubini-Study metric

of constant holomorphic sectional curvature 4c. Then CPm(4c) is a complete and simply-
connected elliptic complex space form.
Complex Euclidean space Cm endowed with the usual Hermitian metric is a complete

and simply-connected flat complex space form.
Let Dm be the open unit ball in C

m endowed with the natural complex structure and
the Bergman metric of constant holomorphic sectional curvature 4c, c < 0. Then Dm is a
complete and simply-connected hyperbolic complex space form.
By a Kähler submanifold of a Kähler manifold we mean a complex submanifold with

the induced Kähler structure [7,10]. For a Kähler submanifold Mn of a Kähler manifold

M̃n+p we denote by h and A the second fundamental form and the shape operator of
Mn in M̃n+p, respectively. For the Kähler submanifold we consider an orthonormal frame
e1, . . . , en, e1∗ = Je1, . . . , en∗ = Jen of the tangent bundle and an orthonormal frame
ξ1, . . . , ξp, ξ1∗ = Jξ1, . . . , ξp∗ = Jξp of the normal bundle.
With respect to such an orthonormal frame, the complex structure J on M is given by

(1.3) J =




0 −In

In 0



 ,

where In denotes an identity matrix of degree n.
For a Kähler submanifold Mn in M̃n+p the shape operator of Mn satisfies

(1.4) AJξr = JAr, JAr = −ArJ, for r = 1, . . . , n, 1
∗, . . . , p∗,

where Ar = Aξr . From (1.3) and (1.4) it follows that the shape operator of M
n takes the

form:

(1.5) Aα =




A′α A′′α

A′′α −A′α



 , Aα∗ =




−A′′α A′α

A′α A′′α



 , α = 1, . . . , p,

where A′α and A
′′
α are n×nmatrices. Condition (1.5) implies that every Kähler submanifold

Mn is minimal, i.e., traceAα = traceAα∗ = 0, α = 1, . . . , p.
Now we introduce the notion of strongly minimal Kähler submanifolds.

Definition 1. A Kähler submanifold Mn of a Kähler manifold M̃n+p is called strongly
minimal if it satisfies

trace A′α = trace A
′′
α = 0, for α = 1, . . . , p,

with respect to some orthonormal frame: e1, . . . , en, e1∗=Je1, . . . , en∗=Jen, ξ1, . . . , ξp,
ξ1∗=Jξ1, . . . , ξp∗ = Jξp.

The main purpose of this paper is to prove the following.
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Theorem 1. For any Kähler submanifold Mn of complex dimension n ≥ 2 in a complex
space form M̃n+p(4c), we have

(1.6) inf Kr ≤ c.

The equality case of (1.6) holds identically if and only if Mn is a totally geodesic Kähler
submanifold.

Theorem 2. For any Kähler submanifold Mn of complex dimension n ≥ 2 in a complex
space form M̃n+p(4c), the following statements hold.

(1) For each k ∈ (−∞, 4 ], δrk satisfies

(1.7) δrk ≤ (2n
2 + 2n− k)c.

(2) Inequality (1.7) fails for every k > 4.
(3) δrk = (2n

2 + 2n − k)c holds identically for some k ∈ (−∞, 4) if and only if Mn is
a totally geodesic Kähler submanifold of M̃n+p(4c).

(4) The Kähler submanifold Mn satisfies δr4 = (2n
2 + 2n − 4)c at a point x ∈ Mn if

and only if there exists an orthonormal basis

e1, . . . , en, e1∗ = Je1, . . . , en∗ = Jen, ξ1, . . . , ξp, ξ1∗ = Jξ1, . . . , ξp∗ = Jξp

of TxM̃
n+p(4c) such that, with respect to this basis, the shape operator of Mn takes

the following form:

Aα =




A′α A′′α

A′′α −A′α



 , Aα∗ =




−A′′α A′α

A′α A′′α



 ,(1.8)

A′α =




aα bα
bα −aα

0

0 0



 , A′′α =




a∗α b∗α
b∗α −a

∗
α

0

0 0



(1.9)

for some n× n matrices A′α, A
′′
α, α = 1, . . . , p.

Theorem 3. A complete Kähler submanifold Mn (n ≥ 2) in CPn+p(4c) satisfies

(1.10) δr4 = 2(n
2 + n− 2)c

identically if and only if

(1) Mn is a totally geodesic Kähler submanifold, or
(2) n = 2 and M2 is a strongly minimal Kähler surface in CP 2+p(c).
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Theorem 4. A complete Kähler submanifold Mn (n ≥ 2) of Cn+p satisfies δr4 = 0
identically if and only if

(1) Mn is a complex n-plane of Cn+p, or
(2) Mn is a complex cylinder over a strongly minimal Kähler surface M2 in Cn+p

( i.e., M is the product submanifold of a strongly minimal Kähler surface M2 in
Cp+2 and the identity map of the complex Euclidean (n− 2)-space Cn−2 ).

In Section 5 we provide some nontrivial examples of strongly minimal Kähler submanifolds
in complex space forms. In the last section we show that every strongly minimal Kähler
surface in complex space form is framed-Einstein.

2. Proof of Theorem 1

For each nonzero tangent vector X of Mn we denote by H(X) the holomorphic sectional
curvature of X, that is, H(X) is the sectional curvature of the plane section spanned by X
and JX. From the definitions of sectional and holomorphic sectional curvatures, we have
(see [2, p.517])

(2.1)
K(X,Y ) +K(X, JY ) =

1

4

{
H(X + JY ) +H(X − JY )

+H(X + Y ) +H(X − Y )−H(X)−H(Y )
}
,

for orthonormal vectors X and Y with g(X, JY ) = 0.
Let T 1Mn denote the unit sphere bundle of M consisting of all unit tangent vectors on

M . For each x ∈Mn, we put

(2.2) Wx =
{
(X,Y ) : X,Y ∈ T 1xM

n such that g(X,Y ) = g(X, JY ) = 0
}
.

Then Wx is a closed subset of T
1
xM

n × T 1xM
n. It is easy to verify that if {X,Y } spans

a totally real plane section, then both {X + JY,X − JY } and {X + Y,X − Y } also span
totally real plane sections.
We define a function Ĥ :Wx → R by

(2.3) Ĥ(X,Y ) = H(X) +H(Y ), (X,Y ) ∈Wx.

Suppose that (Xm, Ym) is a point in Wx such that Ĥ attains an absolute maximum value,
say mx, at (Xm, Ym). Then (2.1) implies

(2.4) K(Xm, Ym) +K(Xm, JYm) ≤
1

4
Ĥ(Xm, Ym).

On the other hand, it is known that every holomorphic sectional curvature H(X) of a

Kähler submanifold Mn in complex space form M̃n+p(4c) satisfies H(X) ≤ 4c (cf. [10]).
Thus, we obtain from (2.4) that

K(Xm, Ym) +K(Xm, JYm) ≤ 2c,



Bang-Yen Chen: A Series of Kählerian Invariants. . . 169

which implies inequality (1.6).

Now, suppose that the equality case of (1.6) holds identically on Mn. Then (2.1) gives

(2.5)
H(X + JY )+H(X − JY ) +H(X + Y ) +H(X − Y )

−H(X)−H(Y ) ≥ 8c,

for any orthonormal vectors X,Y with g(X, JY ) = 0. Put

H1 = H(X + JY )+H(X − JY ), H2 = H(X + Y ) +H(X − Y ),

H3 = H(X) +H(Y ).

Case (a). H3 ≥ H1,H2.
In this case, (2.5) implies

(2.6) H(X + Y ) +H(X − Y ) ≥ 8c.

Combining this with H ≤ 4c, we obtain

(2.7) H(X + Y ) = H(X − Y ) = 4c,

for any orthonormal vectors X,Y with g(X, JY ) = 0. Since every tangent vector of a
Kähler manifold Mn with n ≥ 2 must lie in a totally real 2-plane, every nonzero vector in
TxM

n can be expressed as the sum of two orthonormal vectors X,Y with g(X, JY ) = 0.
Therefore, from (2.7) we conclude that Mn has constant holomorphic sectional curvature

4c. Therefore, Mn is a totally geodesic Kähler submanifold in M̃n+p(4c).

Case (b). H2 ≥ H1,H3.
In this case, after replacing X and Y by (X + Y )/2 and (X − Y )/2 respectively, we

obtain from (2.5) that

(2.8) H(X + Y + JX + JY ) +H(X + Y − JX − JY ) +H3 −H2 ≥ 8c,

Since H2 ≥ H3 and H ≤ 4c, we obtain

(2.9) 8c ≥ H(X + Y + JX + JY ) +H(X + Y − JX − JY ) ≥ 8c.

Consequently, we have

H(X + Y + JX + JY ) = H(X + Y − JX − JY ) = 4c

for any orthonormal vectors X,Y with g(X, JY ) = 0. Since every nonzero tangent vector
can be expressed as X+Y +J(X+Y ) for some orthonormal vectors X,Y with g(X, JY ) =
0, we conclude that Mn has constant holomorphic sectional curvature 4c. Hence, the
immersion of Mn is totally geodesic, too.
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Case (c). H1 ≥ H2,H3.
This case can be proved in the same way as case (b).

Consequently, in all of three cases, the equality of (1.6) implies thatMn is a totally geodesic
Kähler submanifold.

Conversely, if Mn is a totally geodesic Kähler submanifold of M̃n+p(4c), then Mn has
constant holomorphic sectional curvature 4c; and thus it has constant totally real sectional
curvature c. In particular, we have infKr = c. �

3. Proof of Theorem 2

Let Mn be a Kähler submanifold of complex dimension n in a complex space form
M̃n+p(4c). Let R denote the Riemann curvature tensor of M . Then, by Gauss equa-
tion, we have

(3.1)

〈R(X,Y )Z,W 〉 = 〈h(X,W ), h(Y, Z)〉 − 〈h(X,Z), h(Y,W )〉

+c {〈X,W 〉 〈Y,Z〉 − 〈X,Z〉 〈Y,W 〉+ 〈JY, Z〉 〈JX,W 〉

− 〈JX,Z〉 〈JY,W 〉+ 2 〈X, JY 〉 〈JZ,W 〉}.

Since every Kähler submanifold of a Kähler manifold is minimal, Gauss’s equation implies
that the scalar curvature of Mn satisfies

(3.2) 2τ = 4n(n+ 1)c− ||h||2,

where ||h||2 is the squared norm of the second fundamental form. From (3.2) we obtain

(3.3) τ ≤ (2n2 + 2n)c,

with the equality holding if and only if Mn is a totally geodesic Kähler submanifold.
Now, suppose that π is a given totally real plane section π ⊂ TxM . We choose an or-

thonormal basis e1, . . . , en, e1∗ , . . . , en∗ , ξ1, . . . , ξp, ξ1∗ , . . . , ξp∗ such that π=Span {e1, e2}.
With respect to such a basis, we have

(3.4) Aα =




A′α A

′′

α

A
′′

α −A
′

α



 , Aα∗ =




−A′′α A

′

α

A
′

α A
′′

α



 , α = 1, . . . , p,

where A
′

α and A
′′

α are n× n matrices. Applying (3.1), (3.2) and (3.4) we have

(3.5)

4n(n+ 1)c− 2τ = 4
p∑

α=1

{
||A′α||

2 + ||A′′α||
2
}

≥ 4
p∑

α=1

{
(hα11)

2 + (hα22)
2 + 2(hα12)

2 + (hα
∗

11 )
2 + (hα

∗

22 )
2 + 2(hα

∗

12 )
2
}

≥ −8
p∑

α=1

{
hα11h

α
22 − (h

α
12)
2 + hα

∗

11 h
α∗

22 − (h
α∗

12 )
2
}

= −8K(π) + 8c.
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From (3.5) we obtain

(3.6) τ − 4K(π) ≤ (2n2 + 2n− 4)c.

Since inequality (3.6) holds for any totally real plane sections, we get

(3.7) τ − 4 infKr ≤ (2n2 + 2n− 4)c.

From (3.2) and (3.7) we obtain, for any positive number p, that

(3.8) (p+ 1)τ − 4 inf Kr ≤
{
(p+ 1)(2n2 + 2n)− 4

}
c.

Therefore, we obtain

(3.9) δrk ≤ (2n
2 + 2n− k)c,

for any k ∈ (0, 4). Combining (3.3), (3.7) and (3.9) we obtain inequality (1.7) for k ∈ [0, 4].
Inequality (1.7) with k < 0 follows from (3.3) and Theorem 1.

For statement (2), we consider the complex quadric Q2 in CP
3(4c) defined by

(3.10) Q2 =
{
(z0, z1, z2, z3) ∈ CP

3(4c) : z20 + z
2
1 + z

2
2 + z

2
3 = 0

}
,

where {z0, z1, z2} is a homogeneous coordinate system of CP 3(4c). It is well-known that
the scalar curvature τ and inf Kr of Q2 are given by τ = 8c, inf K

r = 0. Thus we have

(3.11) δrk = 8c

for any k. Since (2n2+2n− k)c = (12− k)c for n = 2, (3.10) implies δrk > (2n
2+2n− k)c

for k > 4. Hence, inequality (1.7) fails for each k > 4.

In order to prove statement (3), let us assumeMn is a Kähler submanifold of M̃n+p(4c)
satisfying δrk = (2n

2+2n− k)c identically for some k ∈ (−∞, 4). We divide the proof into
three cases:
If δr0 = (2n

2 + 2n)c, then (3.2) implies that Mn is totally geodesic.
If δrk = (2n

2 + 2n− k)c for some k ∈ (0, 4), then (1.7) and the definition of δrk yield

(3.12) (2n2 + 2n− k)c =
(
1−
k

4

)
δr0 +

k

4
δr4 ≤ (2n

2 + 2n− k)c,

which implies in particular that δr0 = (2n
2 + 2n)c. Therefore, M is a totally geodesic

Kähler submanifold.
If δrk = (2n

2 + 2n− k)c for some k ∈ (−∞, 0), then, (3.3), together with the definition
of δrk, and Theorem 1 imply

(3.13) (2n2 + 2n− k)c = τ − k infKr ≤ (2n2 + 2n− k)c.
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In particular, this gives δr0 = (2n
2 + 2n)c. Therefore, M is totally geodesic.

Conversely, it is easy to verify that every totally geodesic Kähler submanifold of M̃n+p(4c)
satisfies δrk = (2n

2 + 2n− k)c identically for any k.

For the proof of statement (4), we assume Mn is a Kähler submanifold satisfying δr4 =
(2n2 + 2n − 4)c. From the proof of statement (1), we know that the inequalities in (3.5)
become equalities. Thus, the second fundamental form of Mn must satisfy

hr11 + h
r
22 = 0, h

r
1j = h

r
2j = h

r
jk = 0,

r = 1, . . . , p, 1∗, . . . , p∗, j, k = 3, . . . , n.

From this we conclude that the shape operator of Mn takes the form (1.8 - 1.9), with
respect to some orthonormal basis e1, . . . , en, Je1, . . . , Jen, ξ1, . . . , ξp, Jξ1, . . . , Jξp.
Conversely, suppose the shape operator at a point x ∈Mn takes the form (1.8-1.9) with

respect to some orthonormal basis e1, . . . , em, Je1, . . . , Jen, ξ1, . . . , ξp, Jξ1, . . . , Jξp. Then
the equation of Gauss implies infKr = K(e1, e2). Moreover, from (1.8-1.9) and (3.2), we
also have

4n(n+ 1)c− 2τ = 8
p∑

α=1

{
a2α + b

2
α + a

∗
α
2 + b∗α

2
}
= −8K(e1, e2) + 8c.

Therefore, we obtain δr4 = (2n
2 + 2n− 4)c. �

4. Proofs of Theorems 3 and 4

Assume Mn (n ≥ 2) is a complete Kähler submanifold of CPn+p(4c) which satisfies
δr4 = 2(n

2 + n − 2)c identically. Then from Theorem 2 we know that the shape oper-
ator ofMn in CPn+p(4c) takes the form (1.8-1.9) with respect to some orthonormal frame
e1, . . . , en, Je1, . . . , Jen, ξ1, . . . , ξp, Jξ1, . . . , Jξp.
Recall that the relative nullity space RNx of M

n is defined by

(4.1) RNx = {X ∈ TxM
n : h(X,Y ) = 0, for all Y ∈ TxM

n}.

The dimension µ(x) of RNx is called the nullity at x. The subset G of M
n where µ(x)

assumes the minimum, say µ, is open in Mn. The scalar µ is called the index of relative
nullity of Mn. From (1.8-1.9) we obtain µ ≥ 2n − 4. Hence, Corollary 5 of [1, p.436]
implies that Mn is a totally geodesic Kähler submanifold unless n = 2.
When n = 2, the shape operator of M2 in CP 2+p(4c) takes the form:

(4.2) Aα =




A′α A′′α

A′′α −A′α



 , Aα∗ =




−A′′α A′α

A′α A′′α



 ,

where

(4.3) A′α =

(
aα bα
bα −aα

)
, A′′α =

(
a∗α b∗α
b∗α −a

∗
α

)
.
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for some functions aα, bα, a
∗
α, b

∗
α, α = 1, . . . , p. This implies thatM

2 is a strongly minimal
Kähler surface.
Conversely, let us assume that Mn is either totally geodesic in CPn+p(4c) or a strongly

minimal Kähler surface in CP 2+p(4c).
If Mn is totally geodesic, then Mn is a CPn(4c). In this case, we have τ = (2n2+2n)c

and infKr = c. Thus, δr4 = 2(n
2 + n− 2)c.

If Mn is a strongly minimal Kähler surface with n = 2, then statement (4) of Theorem
2 implies that M2 satisfies (1.10) identically.

For the proof of Theorem 4, we assume Mn is a complete Kähler submanifold of
Cn+p satisfying δr4 = 0 identically. Then Theorem 2 implies that the shape opera-
tor of Mn in CPn+p(4c) takes the form (1.7-1.8) with respect to some orthonormal
frame e1, . . . , em, Je1, . . . , Jen, ξ1, . . . , ξp, Jξ1, . . . , Jξp. Using (1.7-1.8) we obtain µ ≥
2n − 4, (n ≥ 2). Hence, by Theorem 7 of [1, p.439], Mn is a complex cylinder over a
strongly minimal Kähler surface, unless Mn is totally geodesic.
The converse is easy to verify. �

5. Examples of strongly minimal Kähler submanifolds

Every totally geodesic Kähler submanifold of a complex space form is trivially strongly
minimal. In this section we provide some nontrivial examples of strongly minimal Kähler
submanifolds.
Consider the complex quadric Q2 in CP

3(4c) defined by (3.9). It is known that the
scalar curvature τ of Q2 equals to 8c and infK

r = 0. Thus, we obtain δr4 = 8c. Thus, Q2
is a non-totally geodesic Kähler submanifold which satisfies (1.10) with n = 2. Therefore,
according to Theorem 2, Q2 is a strongly minimal Kähler surface in CP

3(4c).
On the other hand, it is also well-known that Q2 is an Einstein-Kähler surface with

Ricci tensor S = 4cg, where g is the metric tensor of Q2. Thus, the equation of Gauss and
(1.5) yield

(5.1) g(A21X,Y ) = cg(X,Y ), X, Y ∈ TQ2.

Hence, with respect to a suitable choice of e1, e2, Je1, Je2, ξ1, Jξ1, we have

(5.2) A1 =




A′1 A′′1

A′′1 −A′1



 , A1∗ =




−A′′1 A′1

A′1 A′′1



 ,

where

(5.3) A′1 =

( √
c 0
0 −
√
c

)
, A′′1 =

(
0 0
0 0

)
.

This also shows that Q2 is strongly minimal in CP
3(4c).

The following proposition provides a nontrivial example of strongly minimal Kähler surface
in C3.
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Proposition 5. Let N2 be the complex surface in C3 defined by

(5.4) N2 = {z ∈ C3 : z21 + z
2
2 + z

2
3 = 1}.

Then M is a strongly minimal Kähler surface in C3.

Proof. Put f(z) = z21 + z
2
2 + z

2
3 − 1. Then

∂f
∂z
=
(
∂f
∂z1
, ∂f
∂z2
, ∂f
∂z3

)
never vanishes on N2. By

differentiating f(z) = 0, we get ∂f
∂z
(x)·Z = 0 for Z ∈ TxN2, x ∈ N2. Thus, ξ = (1/||

∂f
∂z
||)∂f
∂z

is a unit normal vector field on N2. Hence, we get

(5.5) g
(
Z, ∂f
∂z

)
= g
(
Z, i∂f

∂z

)
= 0,

for Z ∈ TxN2, x ∈ N2. At x = (a1 + ib1, a2 + ib2, a3 + ib3) ∈ N2, we have

(5.6) ∂f
∂z
(x) = 2(a1 − ib1, a2 − ib2, a3 − ib3).

From these we see that the tangent space TxN
2 is given by

(5.7)

Tx(N
2) =

{
Z = (u1 + iv1, u2 + iv2, u3 + iv3) :

3∑

j=1

(ajuj − bjvj) = 0

and
3∑

j=1

(bjuj + ajvj) = 0
}
.

If we put a = (a1, a2, a3), b = (b1, b2, b3), u = (u1, u2, u3) and v = (v1, v2, v3), then (5.7)
is equivalent to

(5.8) TxN
2 = {Z = u+ iv ∈ R3 ⊕ iR3 : 〈a, u〉 = 〈b, v〉 , 〈b, u〉+ 〈a, v〉 = 0},

where 〈 , 〉 denotes the Euclidean inner product on R3. Clearly, the condition x ∈ N2 is
equivalent to

(5.9) |a|2 − |b|2 = 1, 〈a, b〉 = 0.

The covariant derivative of the unit normal vector ξ = (1/||∂f
∂z
||)∂f
∂z
with respect to a

tangent vector W is given by

(5.10) ∇̃W ξ = ||
∂f
∂z
||−1∇̃W

∂f
∂z
+
(
DW ||

∂f
∂z
||−1
)
∂f
∂z
,

where DW ||
∂f
∂z
||−1 is the directional derivative of ||∂f

∂z
||−1 with respect to vector W . Be-

cause

(5.11) ∇̃W
∂f
∂z
= W̄

(
∂2f
∂zj∂zk

)
,



Bang-Yen Chen: A Series of Kählerian Invariants. . . 175

and ∂f
∂z
is a normal vector field on N2, (5.10) implies that the shape operator Aξ of N

2 in

C3 satisfies (cf. for instance [11])

(5.12) Aξ(W ) = −||
∂f
∂z
||−1
{
W̄
(
∂2f
∂zj∂zk

)}tan
,

where {∗}tan is the tangential component of {∗}. Hence

(5.13) Aξ(W ) = −2 ||
∂f
∂z
||−1W̄ tan, W ∈ TxN

2.

Let X = α + iβ and Y = γ + iδ be vectors in TxN
2. Then g(X,Y ) = g(X, iY ) = 0

holds if and only if

(5.14) 〈α, γ〉+ 〈β, δ〉 = 0, 〈α, δ〉 = 〈β, γ〉 .

On the other hand, (5.13) implies that g(AξX,X) + g(AξY, Y ) = 0 if and only if
g(X̄,X) + g(Ȳ , Y ) = 0. From these it follows that X and Y satisfy the conditions
g(AξX,X) + g(AξY, Y ) = 0 and g(X,X) = g(Y, Y ) if and only if α, β, γ, δ satisfy

(5.15) ||α|| = ||δ||, ||β|| = ||γ||.

Moreover, it follows from (1.4) and (5.13) that the X and Y also satisfy g(AJξX,X) +
g(AJξY, Y ) = 0 if and only if α, β, γ, δ satisfy 〈α, β〉+ 〈γ, δ〉 = 0.
Consequently, in order to show that there exist two vectors X,Y ∈ TxN2 which satisfy

g(X,Y )=g(X, iY )=0, g(X,X)=g(Y, Y ), g(AξX,X) + g(AξY, Y ) = 0 and g(AJξX,X) +
g(AJξY, Y ) = 0, it is sufficient to show that there exist four vectors α, β, γ, δ ∈R3 satisfying
the system:

〈a, α〉 = 〈b, β〉 , 〈a, γ〉 = 〈b, δ〉 ,(5.16)

〈b, α〉+ 〈a, β〉 = 〈b, γ〉+ 〈a, δ〉 = 0,(5.17)

〈α, γ〉+ 〈β, δ〉 = 0, 〈α, δ〉 = 〈β, γ〉 , 〈α, β〉+ 〈γ, δ〉 = 0,(5.18)

||α|| = ||δ||, ||β|| = ||γ||,(5.19)

where a, b are vectors in R3 satisfying |a|2 − |b|2 = 1 and 〈a, b〉 = 0.
Given two vectors a, b ∈ R3 with |a|2 − |b|2 = 1 and 〈a, b〉 = 0, (5.16)–(5.19) is an

underdetermined system which admits some nontrivial solutions α, β, γ, δ ∈ R3. If we
choose a Euclidean coordinate system on R3 such that a = (a1, 0, 0) and b = (0, b2, 0) with
a21 = b

2
2 + 1 and put

α = (α1, α2, α3), β = (β1, β2, β3), γ = (γ1, γ2, γ3), δ = (δ1, δ2, δ3),

then conditions (5.16) and (5.17) are equivalent to

(5.20) α1 =
b2β2

a1
, β1 = −

b2α2

a1
, γ1 =

b2δ2

a1
, δ1 = −

b2γ2

a1
.
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Thus we get

(5.21)

α =
(b2β2
a1
, α2, α3

)
, β =

(
−
b2α2

a1
, β2, β3

)
,

γ =
(b2δ2
a1
, γ2, γ3

)
, δ =

(
−
b2γ2

a1
, δ2, δ3

)
.

Substituting (5.21) into (5.18) and (5.19) we obtain

(
1 +
b22
a21

)
(β2δ2 + α2γ2) + α3γ3 + β3δ3 = 0,(5.22)

(
1 +
b22
a21

)
(α2δ2 − β2γ2) + α3δ3 + β3γ3 = 0,(5.23)

(
1−
b22
a21

)
(α2β2 + γ2δ2) + α3β3 + γ3δ3 = 0(5.24)

( b22
a21

)
β22 + α

2
2 + α

2
3 =
( b22
a21

)
γ22 + δ

2
2 + δ

2
3 ,(5.25)

( b22
a21

)
α22 + β

2
2 + β

2
3 =
( b22
a21

)
δ22 + γ

2
2 + γ

2
3 .(5.26)

It is easy to verify that

(5.27)

α =
( b2√
a21 + b

2
2

, 0, 1
)
, β =

(
0,

a1√
a21 + b

2
2

, 0
)
,

γ =
(
0,

a1√
a21 + b

2
2

, 0
)
, δ =

(
−

b2√
a21 + b

2
2

, 0, 1
)

satisfy system (5.22)–(5.26) (or equivalently (5.16)–(5.19)). Therefore, if we choose e1 =

(α+ iβ)/
√
2 and e2 = (γ + iδ)/

√
2, then e1, e2 form an orthonormal basis of a totally real

plane section such that the shape operator Aξ with respect to e1, e2, Je1, Je2 takes the
form:

(5.28) Aξ =




A′ξ A

′′

ξ

A
′′

ξ −A
′

ξ



 , AJξ =




−A′′ξ A

′

ξ

A
′

ξ A
′′

ξ



 ,

with trace A′ξ = trace A
′′
ξ = 0. �

6. An additional result

We now introduce the notion of framed-Einstein manifolds as follows:

Definition 2. A Riemannian n-manifold M is called framed-Einstein if there exist a
function γ and an orthonormal frame {e1, . . . , en} on M such that the Ricci tensor S of
M satisfies S(ei, ei) = γg(ei, ei) for i = 1, . . . , n.
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Recall that a Kähler surface M2 of a Kähler manifold M̃2+p is called strongly minimal if
the shape operator of M2 takes the form:

(6.1) Aα =




A′α A

′′

α

A
′′

α −A
′

α



 , Aα∗ =




−A′′α A

′

α

A
′

α A
′′

α



 , α = 1, . . . , p,

(6.2) A
′

α =

(
aα bα
bα −aα

)
, A

′′

α =

(
a∗α b∗α
b∗α −a

∗
α

)
,

with respect to some orthonormal frame e1, e2, Je1, Je2, ξ1, . . . , ξp, Jξ1, . . . , Jξp.
For strongly minimal surfaces in complex space forms, we have the following.

Proposition 6. Let M2 be a strongly minimal Kähler surface in a complex space form
M̃2+p(4c). Then

(1) M2 is a framed-Einstein Kähler surface.
(2) M2 is an Einstein-Kähler surface if and only if

∑p
α=1[A

′
α, A

′′
α] = 0.

Proof. IfM2 is a strongly minimal Kähler surface in a complex space form M̃2+p(c) whose
shape operator satisfies (6.1-6.2) with respect to some orthonormal frame e1, e2, Je1, Je2,
ξ1, . . . , ξp, Jξ1, . . . , Jξp, then

(6.3) A2α =





λα 0 0 µα
0 λα −µα 0
0 −µα λα 0
µα 0 0 λα



 ,

where λa = a
2
α + b

2
α + a

∗
α
2 + b∗α

2 and µα = 2a
2
αb
∗
α
2 − 2b2αa

∗
α
2.

On the other hand, from the equation of Gauss we have

(6.4) S(X,Y ) = 6 c g(X,Y )− 2
p∑

α=1

g(A2αX,Y ).

From (6.3) and (6.4) we obtain

(6.5) S(e1, e1) = S(e2, e2) = S(Je1, Je1) = S(Je2, Je2) = 6 c− 2
p∑

α=1

λα.

Thus, M2 is framed-Einstein. From (6.3) and (6.4) we also know that M2 is Einstein-
Kähler if and only if

∑p
α=1 µα = 0 holds. It is easy to verify that the later condition is

equivalent to the condition:
∑p
α=1[A

′
α, A

′′
α] = 0. �
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