
Beiträge zur Algebra und Geometrie
Contributions to Algebra and Geometry
Volume 42 (2001), No. 1, 235-250.

The Classification of S2×R Space Groups∗

J. Z. Farkas

Budapest University of Technology and Economics
Institute of Mathematics, Department of Geometry
Budapest XI. Egry J. str. 1 H1521, Hungary

e-mail: farkas@math.bme.hu

Abstract. The geometrization of 3-manifolds plays an important role in various
topological investigations and in the geometry as well. Thurston classified the eight
simply connected 3-dimensional maximal homogeneous Riemannian geometries [7],
[8]. One of these is S2×R, i.e. the direct product of the spherical plane S2 and
the real line R. Our purpose is the classification of the space groups of S2×R, i.e.
discrete transformation groups which act on S2×R with a lattice on R (see Section
3), analogously to that of the classical Euclidean geometry E3.

1. Introduction

The theory of plane and space groups goes back to the 19th century to H. Poincaré, to
E. S. Fedorov, and A. Schoenflies. Schoenflies and Fedorov parallelly classified the three-
dimensional Euclidean crystallographic groups. We are interested in the analogous problem
in other homogeneous geometries, now in S2×R, but the problem is unsolved in the rest of
3-dimensional Thurston-geometries (except E3 and S3, of course; because of crystallographic
applications), and does not seem to be easy.
The well known solutions of the analogous problem in the spherical plane is the following:
the series of the cyclic and dihedral rotation groups, and the rotation subgroups of the five
Platonic solids will be normal subgroups of index 2 in the “full” reflection groups: Cq×I,Dq×
I, A4× I, S4× I, A5× I, and the so-called mixed groups C2qCq, DqCq, D2qDq, S4A4 come up,
too. Here we apply Weyl’s notation, which is compared with the Macbeath signatures and
other denotations in the following table:
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Table 1.

Macbeath signature H. Weyl Schoen-
flies

Coxeter-
Moser

Conway

1q (+, 0; [q, q]; {}) q ≥ 1 Cq Cq [q]+ q, q

2q (+, 0; [ ]; {(q, q)}) q ≥ 2 DqCq Cqv [q] ∗q, q
3q (+, 0; [2, 2, q]; {}) q ≥ 2 Dq Dq [2,q]+ 2, 2, q
4qo (+, 0; [ ]; {(2, 2, q)}) q ≥ 3 D2qDq Dqh [2,q] ∗2, 2, q
4qe (+, 0; [ ]; {(2, 2, q)}) q ≥ 2 Dq × I Dqh [2,q] ∗2, 2, q
5qo (+, 0; [q]; {(1)}) q ≥ 1 C2qCq Cqh [2,q +] q∗
5qe (+, 0; [q]; {(1)}) q ≥ 2 Cq × I Cqh [2,q +] q∗
6qo (+, 0; [2]; {(q)}) q ≥ 3 Dq × I Dqd [2+,2q] 2 ∗ q
6qe (+, 0; [2]; {(q)}) q ≥ 2 D2qDq Dqd [2+,2q] 2 ∗ q
7qo (−, 1; [q]; {}) q ≥ 1 Cq × I S2q [2+,2q+] q⊗
7qe (−, 1; [q]; {}) q ≥ 2 C2qCq S2q [2+,2q+] q⊗
8 (+, 0; [2, 3, 3]; {}) A4 T [3,3]+ 2, 3, 3
9 (+, 0; [2, 3, 4]; {}) S4 O [3,4]+ 2, 3, 4
10 (+, 0; [2, 3, 5]; {}) A5 I [3,5]+ 2, 3, 5
11 (+, 0; [ ]; {(2, 3, 3)}) S4A4 Td [3,3] ∗2, 3, 3
12 (+, 0; [ ]; {(2, 3, 4)}) S4 × I Oh [3,4] ∗2, 3, 4
13 (+, 0; [ ]; {(2, 3, 5)}) A5 × I Ih [3,5] ∗2, 3, 5
14 (+, 0; [3]; {(2)}) A4 × I Th [3+,4] 3 ∗ 2

We see the disadvantage of H. Weyl’s denotation system: it can differ for odd (o) and
even (e) parameter q. But it emphasizes the essential role of the central inversion I (or
antipodal map) in spherical transformations; namely, I commutes with each isometry of S2.
In 1967–69 Macbeath completed the classification of hyperbolic crystallographic plane groups,
(for short NEC groups) [4]. He considered isometries containing orientation-preserving and
-reversing transformations as well in the Bolyai-Lobachevskian hyperbolic plane. His paper
deals with NEC groups, but with the Macbeath-signature we can very economically char-
acterize the Euclidean and spherical plane groups, too. We recall the signature of a plane
group

(±, g; [m1,m2, . . . ,mr]; {(n11, . . . , n1s1), . . . , (nk1, . . . , nksk)}) (1)

and, with the same notations, the combinatorial measure T of the fundamental polygon:

Tκ = π{
r∑

l=1

(
2

ml
− 2) +

k∑

i=1

(−2 +
si∑

j=s1

(−1 +
1

nij
)) + 2χ} (2)

where χ = 2 − αg (α = 1 for −, α = 2 for + orientability) is the Euler characteristic of
the surface with genus g, and κ is the Gaussian curvature of the plane which realizes the
signature, and is identical with S2, E2 or H2, whenever κ > 0, = 0 or < 0, respectively.
The sign ±, the genus g, the proper periods ml of rotation centres and the period-cycles
(ni1, ni2, . . . , nisi) of dihedral corners together, with a marked polygon (treated in [3], e.g.)
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and with a corresponding group presentation determine a plane group up to isomorphism for
E2 and H2. These are described by Macbeath in [4].
Conway’s (orbifold) notation provides only nicer typographic simplifications: with handles
© . . .© at the beginning (if occur), with cross caps ⊗ . . .⊗ at the end of the symbol; *
introduces a boundary component, then may come numbers for its dihedral corners. Only
simple numbers before the boundary components (iff occur) denote the orders of rotational
centres (cone points).
For S2, and in general, the equivariance is the relevant concept of equivalence(see Section 3).
There are 4 series of signatures where T > 0, but the corresponding plane groups cannot be
realized in S2, see e.g. in [3]. These are the bad 2-orbifolds.

2. The geometry of S2×R

S2×R is a Seifert fibre space whose point set is (X, x), where X ∈ S2, x ∈ R. (X, x) describes
a fibre if X ∈ S2 is fixed and x ∈ R varies, and it is a base if X varies with fixed x. In
this paper we assume the analytic and synthetic models of S2×R, the components will be
S2 and R with the usual geometric concepts. The projective-inversive spatial model (e.g. in
[2], [5]) is very clear but the sphere inversions for R-reflections and the central similarities
for R-translations are rather cumbersome in that model.
It is well-known that Isom(S2×R):=Isom(S2)×Isom(R), for the isometry group of S2×R,
where Isom(S2):={A ∈ O(3) : S2 7→ S2 : (X, x) 7→ (XA, x)}, identical with the 3-
dimensional orthogonal group, Isom(R):={ρ : (X, x) 7→ (X,±x + r)}, here the minus sign
− provides a reflection in the point r

2
∈ R, by the + sign we get a translation, which is a

composition of two reflections whereby the distance of the two reflection points is equal to
r
2
. (For further details see [5], [6], [7], [8].)
Now we recall the classification of the isometries of S2×R. These are products of at most
five reflections: three of the S2-component and two of the R-component. S2iRj denotes
the set of isometries which are products of i spherical reflections and j R-reflections, where
i = 0, . . . , 3, j = 0, . . . , 2, respectively.

3. Space groups and their equivalence

We search for any group of S2×R in the form

Γ := {(A1 × ρ1), . . . , (An × ρn)} (3)

where (Ai × ρi) := Ai × (Ri, ri) := (gi, ri) (:= (gi, τi) see later), Ri is either the identity map
1R of R or the point reflection 1R : x 7→ −x; Ai ∈ Isom(S2), gi = (Ai × Ri) is the linear
part of a transformation.
By definition we speak about a space group Γ if the linear parts form a finite group Γ0

called the point group of Γ, moreover, the translation parts to the identity of this point group
Γ0, namely to e := 1S2 × 1R, are required to form a one-dimensional lattice LΓ. Then our
definition corresponds to Euclidean crystallographic space groups.
So {. . . , (gi, τi), . . . , (e, τ)} generate the space group Γ, where the gi are the generators of

the point group Γ0, however, the presentation is not uniquely determined. The multiplication
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formula
(A1 ×R1, r1) ◦ (A2 ×R2, r2) = (A1A2 ×R1R2, r1R2 + r2) (4)

shows that Γ0 is a homomorphic image of Γ, therefore, Γ0 is nothing but the factor group
Γ/LΓ.
We emphasize that in this conception the point group of a space group is finite by

definition and a space group contains a one-dimensional lattice. This is a classical point of
view, and in this case we have a compact fundamental domain for Γ. Then we can give the
following definition of equivalence of space groups:

Definition. Two space groups Γ1 and Γ2 are geometrically equivalent, called equivariant, if
there exists a similarity Σ := S × σ of S2×R, i.e. S ∈ Isom(S2), σ ∈ Sim(R), such that
Γ2 = Σ

−1Γ1Σ.

The similarity Σ maps the lattice LΓ1 onto LΓ2 by σ, while S maps the spherical parts of the
group Γ1 to those of Γ2. So Σ is a bijective correspondence between the Γ1 and Γ2 orbits,
and it transforms the action of Γ1 onto that of Γ2.
This definition of geometric isomorphism of space groups is very natural. The structure of
the space group remain invariant under a similarity in the R-direction, and the spherical part
is uniquely determined up to an isometry of S2. Thus if Γ and Γ′ are equivariant groups,
then the equivariance of Γ/LΓ and Γ

′/LΓ′ are also guaranteed.
Macbeath’s definition of geometric isomorphism of NEC groups is the following: Γ and Γ′ are
called geometrically isomorphic if there is a homeomorphism t ofH2, and a group isomorphism
ϕ : Γ 7→ Γ′, such that

g 7→ g′ := gϕ = t−1gt, Γ′ = t−1Γt, (5)

so the groups Γ and Γ′ are conjugate in the group of all homeomorphisms of H2.
With this we get a general definition of equivariance for space groups at least in any classical
space of any dimension: two space groups Γ and Γ′ are equivariant, so lie in the same
equivariance class, if they satisfy (5). Now our equivariant space groups of S2×R are conjugate
in the group of all similarities of S2×R, which is the proper subgroup of all homeomorphisms
of S2×R.
Obviously, if Γ′ = t−1Γt as above, then there exists an isomorphism ϕ such that Γϕ = Γ′.
Macbeath proved the converse for NEC groups: if there exists an isomorphism ϕ : Γ 7→ Γ′,
then this can be realized geometrically, so there is a homeomorphism t : H2 → H2 such that
(5) holds. The famous analogous result in En was proved by Frobenius and Bieberbach: then
an affine transform t : En → En involves the isomorphism ϕ of space groups Γ and Γ′ as in
(5).
We can see that this theorem cannot be extended to the space groups of S2×R. There
are isomorphic space groups Γ and Γ′ = Γϕ of S2×R such that ϕ cannot geometrically be
realized. This is because the centre subgroup of Isom(S2) contains the central inversion.
However the extension of this theorem for space groups of other Thurston spaces, thus the
existence of geometric realization of group isomorphisms, seems to be still open.

Remarks. We emphasize, that equivariance by diffeomorphism may yield less classes than
those by similarities; namely, for fixed point free groups [8] Γ which lead to space forms
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S2×R/Γ by factorization onto Γ-orbits. We shall illustrate this phenomenon at the end of
the last section.

4. Point groups

Analogously to the “Euclidean method”, first we determine the possible point groups of the
space groups:

Theorem 1. Any point group Γ0 to a space group Γ of S
2×R belongs to one of the following

three types:
I. GS2 × 1R, where GS2 is a finite group of spherical isometries, 1R : x 7→ x is the
identity of R.

II. GS2 × 〈1R〉, where 〈1R〉 = {x 7→ x, x 7→ −x} is the special linear group of R.

III. If the spherical group G′(= G′S2) contains a normal subgroup G of index two, then
G′G := {G× 1R} ∪ {(G′ \G)× 1R} forms a point group, too.

Proof. Types I and II come up, and they are not equivariant with each other. Equivariance
of the spherical group components would be necessary, but then type I would be a normal
subgroup in type II of index two, and this excludes the possibility of equivariance.
The groups of the type III must be compared with the groups of type II. To this we write
both groups in the following form:

GS2 × 〈1R〉 = {GS2 × 1R} ∪ {GS2 × 1R}, G
′G := {G× 1R} ∪ {(G

′ \G)× 1R}

The equivariance of the two components would be necessary, but this is impossible.
Existence of further groups is excluded: if only 1R comes to the R-component then we
obtain type I. When the R-component of the point group Γ0 includes the reflection 1R, then
(Ai × 1R)(Aj × 1R) = (AiAj × 1R) shows, that the elements gk = (Ak × 1R) of Γ0 form a
normal subgroup of index two, consequently Γ0 lies in type II or in type III. �

With this we get 52 classes of point groups (Table 4), 14-14 lie in Type I and in Type II,
and the remaining 24 in Type III as we shall see later. Some classes contain infinite series,
depending on a natural number q.

Remarks. The central inversion I := 1S2 ∈ S
2
3 commutes with any isometry of S

2, and so
does 1R with any similarity of R, fixing zero. So the centre subgroup of Γ0 may consist of 4
elements forming a Kleinian group.
We know that the discrete groups of S2 can be listed analogously as in our Theorem 1:
Type 1: groups which contain only rotations: Cq, Dq, A4, S4, A5.
Type 2: the direct products of the rotation groups with the central inversion: Cq × I,Dq ×
I, A4 × I, S4 × I, A5 × I.
Type 3: the mixed groups: C2qCq, DqCq, D2qDq, S4A4, with Weyl’s notations. E.g. C2qCq :=
{Cq} ∪ {(C2q \ Cq)× I}. See our Table 1 in the introduction.
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5. Translation parts

As previously mentioned, we require a one-dimensional lattice in the R-direction, and assume
the point group Γ0 to be finite. For the possible translation parts belonging to the elements
of the point group Γ0 of any S

2×R space group Γ, (analogously to the Euclidean space
groups) we have to solve the so-called Frobenius congruences (mod LΓ), where LΓ is a fixed
one-dimensional lattice in R. For this we give the generators and relations of Γ0 in the
sense of a minimal presentation which can be obtained from the Macbeath-signature. The
translation parts to the identity: e := 1S2 × 1R of Γ0 form just the lattice LΓ := {kτ, k ∈ Z}
generated by a minimal translation τ . The possible translation parts to the generators of
Γ0 will be determined from the multiplication formula (4), consequently from the defining
relations of the point group Γ0. Thus, we obtain the Frobenius congruences to be solved for
the translation parts of the generators of Γ0. Then we select these possible solutions (mod 1)
into equivariance classes by the definition in Section 3. At the end we get the equivariance
classes Γ of S2×R space groups.

6. The three types of space groups

In each type of point groups we shall discuss in details one example in the finite cases 8–14
and that in the infinite series 1–7 as well, the others can similarly be discussed. We shall
give the complete list of all non-equivariant space groups at the next section in Table 2.

6.1. Type I

In this case the point group Γ0 determines a spherical group, characterized by the Macbeath
signature. The generators of Γ0 will be denoted by g1, g2, . . . ∈ Isom(S2), and (g1, τ1), (g2, τ2),
. . . with (e, τ) generate the space group Γ, where τi denotes a translation corresponding to gi,
and τ generates the lattice LΓ. For a fundamental domain of any S

2×R space group we can
combine a fundamental domain of the spherical group with a part of the real line segment
τ (of unit length), but the fundamental domain is not uniquely determined. The cases 1q.I
and 12.I are presented in this subsection.
• 1q.I. (+, 0; [ q, q]; {})× 1R (see Table 1 of the introduction)
The point group

Γ0 := (g1 − g
q
1)

is generated by the rotation g1 ∈ S22 (see Section 2).
(g1, τ1)

q = (gq1, qτ1) = (e, qτ1) ≡ 0 (mod τ). We can choose τ = 1, because for different
values of τ we get the same equivariance classes of space groups. So the solutions are:
1. (0); 2. (k

q
) where k := 1, . . . , b q

2
c (the lower integer part of q

2
). This is because

for every k = q−l
q
where l ≤ b q

2
c with Σ := (1R, 0) (Definition in Section 3) we get

(1R, 0)(g1,
q−l
q
)(1R, 0) = (g1,

q−l
q
)(1R, 0) = (g1,−

q−l
q
) ≡ (g1,

l
q
) (mod 1).

The geometric presentation of Γ1q.I.2 depends on k and q, of course.
We remark that iff the greatest common divisor(g.c.d.) (k, q) = 1, then Γ will be fixed
point free and the factor space S2×R/Γ will be a compact orientable manifold (space
form). Otherwise (k, q)(6= q) provides the order of both rotation axes of (g1, τ1).
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 g

g
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t             -1

               

                                          -1
        1

         1

Figure 1: The fundamental domain (by Schlegel diagram) for
the presentation Γ1q.I.1 = (g1, t− g

q
1,g1tg

−1
1 t

−1).
Here the translation τ = t : ft−1 7→ ft and the
rotation g1 = g1 : fg−11 7→ fg1 are the generators.
Later on, the face symbol f will be omitted, as in
the figures.

• 12.I. (+, 0; [ ]; {(2, 3, 4)})× 1R

Γ0 := (g1, g2, g3 − g
2
1, g

2
2, g

2
3, (g1g2)

2, (g1g3)
3, (g2g3)

4)

is the full symmetry group of the usual cube surface, generated by the three reflections:
gi ∈ S21 i = 1, 2, 3.
From the congruence relations we obtain the conditions:
0 ≡ 2τ1 ≡ 2τ2 ≡ 2τ3 ≡ 2(τ1 + τ2) ≡ 3(τ1 + τ3) ≡ 4(τ2 + τ3) (mod 1)
and the solutions: 1. (τ1, τ2, τ3) ≡ (0, 0, 0); 2. (0,

1
2
, 0); 3. (1

2
, 0, 1

2
); 4.(1

2
, 1
2
, 1
2
), and they

are not equivariant with each other.

6.2. Type II

Now the point group Γ0 := GS2 × 〈1R〉 is a direct product, the generators of GS2 will be
denoted by g1, g2, . . ., and g denotes the R-reflection 1R. We will discuss the cases 4q.II and
8.II in details, and give the complete list of the groups in the next section. For a fundamental
domain of a space group – as previously – we can combine a fundamental domain of the
spherical group with a part of a real line segment τ

2
. Now, in this case we have a point group

of double order, so it is clear that the “volume” of the fundamental domain will be the half
of the corresponding previous one.
• 4q.II.(+, 0; [], {(2, 2, q)})× 1R =: (+, 0; [], {(2, 2, q)})
The point group

Γ0 := (g1, g2, g3, g − g
2
1, g

2
2, g

2
3, g

2, (g1g3)
2, (g2g3)

2, (g1g2)
q, (g1g)

2, (g2g)
2, (g3g)

2)

generated by four reflections , three ones of the S2-component: gi ∈ S21 and g ∈ R1
(g1, τ1)(g1, τ1) = (g

2
1, 2τ1) ≡ (e, 0) (mod 1)

(g2, τ2)(g2, τ2) = (g
2
2, 2τ2) ≡ (e, 0) (mod 1)

(g3, τ3)(g3, τ3) = (g
2
3, 2τ3) ≡ (e, 0) (mod 1)

(g, τ4)(g, τ4) = (g
2, 0) = (e, 0)
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(g1, τ1)(g, τ4)(g1, τ1)(g, τ4) = · · · = (e, 0), so we may choose τ4 ≡ 0, . . . etc.
The solutions are: 1. (τ1, τ2, τ3, τ4) ≡ (0, 0, 0, 0); 2. (0, 0,

1
2
, 0); 3. (1

2
, 1
2
, 0, 0); 4. (1

2
, 1
2
, 1
2
, 0)

for every q. If q is even, then 5. (0, 1
2
, 0, 0) 6. (0, 1

2
, 1
2
, 0) also come up. The solutions:

5’. (1
2
, 0, 0, 0) and 6’. (1

2
, 0, 1

2
, 0) are equivariant to 5. and 6., respectively with Σ := S×σ

in the Definition (Section 3), where S := r is a reflection in the plane that halves the
(smaller) angle of the g1, g2 reflection planes and σ := (e, 0). Thus (r

−1, 0)(g1,
1
2
)(r, 0) =

(g2,
1
2
) and (r−1, 0)(g2, 0)(r, 0) = (g1, 0), and (g3, 0), (g3,

1
2
) are (mod 1) invariant under

this transformation, since the reflection plane of g3 is orthogonal to the r-plane (Fig.2).

m

m

r

r

r            
           ’

                   

                  2

             

               3

               1

Figure 2: Γ4q.II.4 = (m,m
′, r1, r2, r3 − r21, r

2
2, r

2
3, (r2r3)

2, (r1r3)
2,

(r1r2)
q,m2, (m′)2,mr1m

′r1,mr2m
′r2,mr3m

′r3)
Here m = (g, 1), m′ = (g, 0), ri = (g, 0)(gi,

1
2
), i = 1, 2, 3.

• 8.II. (+, 0; [2, 3, 3]; {})

Γ0 := (g1, g2, g − g
2
1, g

3
2, g

2, (g1g2)
3, (g1gg1g), (g2gg

−1
2 g))

generated by two rotations g1, g2 ∈ S22 and again g ∈ R1.
The relations:
0 ≡ 2τ1 ≡ 3τ2 ≡ 3τ1 + 3τ2 ≡ 2τ2 (mod 1)
we have only one equivariance class by 1. (0,0,0) the trivial solution. This is because
the congruences above, and τ3 ≡ 0 to g can be achieved by changing the origin of R.

6.3. Type III

G′G := {G× 1R} ∪ {(G′ \G)× 1R}
First we must find the possible pairs of spherical groups, so that the larger group contains
the smaller one of index two. We have finitely many types of candidates, and this makes our
work easier.
In the finite cases 8-14, we consider the fundamental domains of the spherical groups G′

and G such that a domain of G′ is the half part of a domain of G selected by an additional
generator of G′. Then we combine this generator with the R-reflection to obtain the group
G′G and its fundamental domain. The possible pairs of groups: 9-8, 11-8, 12-9, 12-11, 12-14,
13-10 and 14-8 (see Table 1).
In the series 1q-7q the parity of q plays an important role. The possible group pairs are the
following:
1qe-1 q

2
; 2q-1q, 2qe-2 q

2
; 3q-1q, 3qe-3 q

2
; 4q-2q, 4q-3q, 4q-5q, 4qe-4 q

2
, 4qe-6 q

2
; 5q-1q, 5qe-5 q

2
,
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5qe-7 q
2
; 6q-2q, 6q-3q, 6q-7q; 7q-1q. (See our Table 1 in the Introduction.) Considering the

Macbeath signature and the equation (2) in the Introduction, for S2 it is easy to calculate
that the larger group always has a half combinatorial measure as the smaller one, and in
general this is a necessary condition for pairs of groups in Type III. We discuss in details the
cases 5q.III and 13.III.
• 5q.III.a. (+, 0; [q]; {(1)})′(+, 0; [q]; {})
This point group

Γ0 := (g1, g2 − g
q
1, g

2
2, (g1g2g

−1
1 g2))

is generated by the rotation g1 ∈ S22 of order q and by g2 ∈ S
2
1R1.

The conditions for (g1, τ1):
0 ≡ qτ1 ≡ 2τ1 (mod 1), to (g2, τ2) we may choose τ2 ≡ 0 (mod 1).
We get the trivial solution for every q: 1. (τ1, τ2) ≡ (0, 0); and for even q 2. (

1
2
, 0).

                                                

 
                            ’ s

r

r

               

                       

                             

                                   

s

            -1

                                                            

Figure 3: Γ5qe.III.a.2 = (r, r
′, s− r2, (r′)2, (ss)

q
2 , rsr′s−1, rs−1r′s)

Here s = (g2, 0)(g1,
1
2
), s−1 = (g−11 ,−

1
2
)(g2, 0),

r = (g2, , 0), r
′ = (g2, 1).

• 5qe.III.b. (+, 0; [q]; {(1)})′(+, 0; [ q
2
]; {(1)})

The point group
Γ0 := (g1, g2 − g

2
1, (g2g2)

q
2 , (g−12 g1g2g1))

is generated by the rotatory-reflection g2 ∈ S
2
2R1 of order q and by g1 ∈ S

2
1.

The congruences are:
0 ≡ 2τ1 ≡ 2τ2 (mod 1).
The solutions: 1. (τ1, τ2) ≡ (0, 0); 1.’ (0,

1
2
), 2. (1

2
, 0); 2.’ (1

2
, 1
2
) come up, but 1-1’ and

2-2’ lie in the same equivariance class by the translation ϕ = (e,−1
4
) : ϕ−1(g2,

1
2
)ϕ =

(g2,
1
4
)(e,−1

4
) = (g2, 0), and in the same way 2-2’.

• 5qe.III.c. (+, 0; [q]; {(1)})′(−, 1; [ q
2
]; {})

Our point group
Γ0 := (g1, g2 − (g1g1)

q
2 , g22, g2g

−1
1 g2g1)
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is generated by g1 ∈ S23 of order q and by g2 ∈ S
2
1R1.

We obtain the following congruences:
0 ≡ qτ1 ≡ 2τ1 (mod 1), to (g2, τ2) we may choose τ2 ≡ 0.
The solutions: 1. (τ1, τ2) ≡ (0, 0), 2. (

1
2
, 0).

• 13.III.(+, 0; [ ]; {(2, 3, 5)})′(+, 0; [2, 3, 5]; {})
This point group

Γ0 := (g1, g2, g3 − g
2
1, g

3
2, g

2
3, (g1g2)

5, (g1g3)
2, (g2g3)

2)

is generated by the rotations g1, g2 ∈ S22 and by g3 ∈ S
2
1R1.

The conditions from the relations of the point group Γ0 are
0 ≡ 2τ1 ≡ 3τ2 ≡ 5τ1 + 5τ2 (mod 1), we may choose τ3 ≡ 0 to (g3, τ3).
We obtain only the trivial solution (τ1, τ2, τ3) ≡ (0, 0, 0).

7. List of space groups

In this section we give the complete list of all equivariance classes of space groups of S2×R
in a short form in Table 2. First we give the number of the point group and the symbol
of the Macbeath signature (see Table 1), then the point group Γ0 defined by the generators
and relations, the generators are represented by Section 2, and at the end follow the symbols
of the equivariance classes with the translation parts corresponding to the generators of Γ0,
here we follow a lexicographic order.

Table 2

1q.I (+, 0; [q, q]; {}), q ≥ 1
• Γ0 = (g1 − g

q
1), g1 ∈ S

2
2

• 1q.I.1(0); 1q.I.2(k
q
) k := 1, . . . , b q

2
c (i.e. lower integer part of q

2
)

Γ is fixed point free if for g.c.d. (k, q) = 1, then (S2×R)/Γ is an orientable compact manifold
(space form), for q = 1, k = 0 as well.

1q.II (+, 0; [ q, q]; {}), q ≥ 1
• Γ0 = (g1, g − g

q
1, g

2, (g−11 gg1g)), g1 ∈ S
2
2, g ∈ R1

• 1q.II.1(0, 0); ◦ if q is even 1qe.II.2(1
2
, 0)

1qe.III (+, 0; [q, q]; {})′(+, 0; [ q
2
, q
2
]{}), q ≥ 2

• Γ0 = (g1, g2 − g
q
2
1 , g2g2g

−1
1 ), g1 ∈ S

2
2, g2 ∈ S

2
2R1

• 1qe.III.1(0, 0)

2q.I (+, 0; [ ]{(q, q)}), q ≥ 2
• Γ0 = (g1, g2 − g21, g

2
2, (g1g2)

q), g1, g2 ∈ S21
• 2q.I.1(0, 0); 2q.I.2(1

2
, 1
2
); ◦ 2qe.I.3(0, 1

2
)

2q.II (+, 0; [ ]{(q, q)}), q ≥ 2
• Γ0 = (g1, g2, g − g21, g

2
2, g

2, (g1g2)
q, (g1g)

2, (g2g)
2), g1, g2 ∈ S21, g ∈ R1

• 2q.II.1(0, 0, 0); 2q.II.2(1
2
, 1
2
, 0); ◦ 2qe.II.3(0, 1

2
, 0)
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2q.III.a (+, 0; [ ]; {(q, q)})′(+, 0; [q, q]; {}), q ≥ 2
• Γ0 = (g1, g2 − g

2
1, g

q
2, (g2g1)

2), g1 ∈ S
2
1R1, g2 ∈ S

2
2

• 2q.III.a.1(0, 0); 2q.III.a.2(0, k
q
), k := 1, . . . , b q

2
c

2qe.III.b (+, 0; [ ]{(q, q)})′(+, 0; []; {( q
2
, q
2
)}), q ≥ 2

• Γ0 = (g1, g2 − g
2
1, g

2
2, (g2g1g2g1)

q
2 ), g1 ∈ S

2
1R1, g2 ∈ S

2
1

• 2qe.III.b.1(0, 0); 2qe.III.b.2(0, 1
2
)

3q.I (+, 0; [2, 2, q]; {}), q ≥ 2
• Γ0 = (g1, g2 − g21, g

2
2, (g1g2)

q), g1, g2 ∈ S22
• 3q.I.1(0, 0); 3q.I.2(1

2
, 1
2
); ◦ 3qe.I.3(0, 1

2
)

3q.II (+, 0; [2, 2, q]; {}), q ≥ 2
• Γ0 = (g1, g2, g − g21, g

2
2, g

2, (g1g2)
q, (g1g)

2, (g2g)
2), g1, g2 ∈ S22, g ∈ R1

• 3q.II.1(0, 0, 0); 3q.II.2(1
2
, 1
2
, 0); ◦ 3qe.II.3(0, 1

2
, 0)

3q.III.a (+, 0; [2, 2, q]; {})′(+, 0; [q, q]; {}), q ≥ 2
• Γ0 = (g1, g2 − g

q
1, g

2
2, (g1g2)

2), g1 ∈ S22, g2 ∈ S
2
2R1

• 3q.III.a.1(0, 0); 3q.III.a.2(k
q
, 0), k := 1, . . . , b q

2
c

3qe.III.b (+, 0; [2, 2, q]; {})′(+, 0; [2, 2, q
2
]; {}), q ≥ 2

• Γ0 = (g1, g2 − g
2
1, g

2
2, (g1g2g1g2)

q
2 ), g1 ∈ S22, g2 ∈ S

2
2R1

• 3qe.III.b.1(0, 0); 3qe.III.b.2(1
2
, 0)

4q.I (+, 0; []; {(2, 2, q)}), q ≥ 2
• Γ0 = (g1, g2, g3 − g21, g

2
2, g

2
3 − (g1g3)

2, (g2g3)
2, (g1g2)

q), g1, g2, g3 ∈ S21
• 4q.I.1(0, 0, 0); 4q.I.2(0, 0, 1

2
); 4q.I.3(1

2
, 1
2
, 0); 4q.I.4(1

2
, 1
2
, 1
2
);

◦ 4qe.I.5(0, 1
2
, 0); 4qe.I.6(0, 1

2
, 1
2
)

4q.II (+, 0; []; {(2, 2, q)}), q ≥ 2
• Γ0 = (g1, g2, g3, g− g21, g

2
2, g

2
3, g

2, (g1g3)
2, (g2g3)

2, (g1g2)
q, (g1g)

2, (g2, g)
2, (g3g)

2), g1, g2, g3 ∈
S21, g ∈ R1
• 4q.II.1(0, 0, 0, 0); 4q.II.2(0, 0, 1

2
, 0); 4q.II.3(1

2
, 1
2
, 0, 0); 4q.II.4(1

2
, 1
2
, 1
2
, 0);

◦ 4qe.II.5(0, 1
2
, 0, 0); 4qe.II.6(0, 1

2
, 1
2
, 0)

4q.III.a (+, 0; []; {(2, 2, q)})′(+, 0; []; {(q, q)}), q ≥ 2
• Γ0 = (g1, g2, g3 − g

2
1, g

2
2, g

2
3, (g1g2)

q, (g1g3)
2, (g2g3)

2), g1, g2 ∈ S21, g3 ∈ S
2
1R1

• 4q.III.a.1(0, 0, 0); 4q.III.a.2(1
2
, 1
2
, 0); ◦ 4qe.III.a.3(0, 1

2
, 0)

4q.III.b (+, 0; []; {(2, 2, q)})′(+, 0; [2, 2, q]; {}), q ≥ 2
• Γ0 = (g1, g2, g3 − g

2
1, g

2
2, g

2
3, (g1g2)

q, (g1g3)
2, (g2g3)

2), g1, g2 ∈ S22, g3 ∈ S
2
1R1

• 4q.III.b.1(0, 0, 0); 4q.III.b.2(1
2
, 1
2
, 0); ◦ 4qe.III.b.3(0, 1

2
, 0)

4q.III.c (+, 0; []; {(2, 2, q)})′(+, 0; [q]; {(1)}), q ≥ 2
• Γ0 = (g1, g2, g3 − g

2
1, g

q
2, g

2
3, g1g2g1g

−1
2 , (g1g3)

2, (g2g3)
2), g1 ∈ S21, g2 ∈ S

2
2, g3 ∈ S

2
1R1

• 4q.III.c.1(0, 0, 0); 4q.III.c.2(0, k
q
, 0) k := 1, . . . , b q

2
c; 4q.III.c.3(1

2
, 0, 0);

4q.III.c.4(1
2
, k
q
, 0), k := 1, . . . , b q

2
c
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4qe.III.d (+, 0; []; {(2, 2, q)})′(+, 0; []; {(2, 2, q
2
)}), q ≥ 2

• Γ0 = (g1, g2, g3 − g
2
1, g

2
2, g

2
3, (g1g2)

2, (g1g3)
2, (g2g3g2g3)

q
2 ), g1, g2 ∈ S21, g3 ∈ S

2
1R1

• 4qe.III.d.1(0, 0, 0), 4qe.III.d.2(0, 1
2
, 0); 4qe.III.d.3(1

2
, 0, 0); 4qe.III.d.4(1

2
, 1
2
, 0)

4qe.III.e (+, 0; []; {(2, 2, q)})′(+, 0; [2]; {( q
2
)}), q ≥ 2

• Γ0 = (g1, g2, g3 − g
2
1, g

2
2, g

2
3, (g1g2)

q
2 , (g1g3)

2, (g2g3)
2), g1 ∈ S21, g2 ∈ S

2
2, g3 ∈ S

2
1R1

• 4qe.III.e.1(0, 0, 0); 4qe.III.e.2(1
2
, 1
2
, 0);

◦ if q is divisible by four 4qf .III.e.3(0, 1
2
, 0); 4qf .III.e.4(1

2
, 0, 0).

5q.I (+, 0; [q]; {(1)}), q ≥ 1
• Γ0 = (g1, g2 − g21, g

q
2, (g1g2g1g

−1
2 ), g1 ∈ S

2
1, g2 ∈ S

2
2

• 5q.I.1(0, 0); 5q.I.2(0, k
q
), k := 1, . . . , b q

2
c; 5q.I.3(1

2
, 0); 5q.I.4(1

2
, k
q
), k := 1, . . . , b q

2
c.

This Γ is fixed point free iff (k, q) = 1, then S2×R/Γ is a nonorientable compact mani-
fold(space form).

5q.II (+, 0; [q]; {(1)}), q ≥ 1
• Γ0 = (g1, g2, g − g21, g

q
2, g

2, (g1g2g1g
−1
2 ), (g1g)

2, (g2gg
−1
2 g)), g1 ∈ S

2
1, g2 ∈ S

2
2, g ∈ R1

• 5q.II.1(0, 0, 0); 5q.II.2(1
2
, 0, 0); 5qe.II.3(0, 1

2
, 0); 5qe.II.4(1

2
, 1
2
, 0)

5q.III.a (+, 0; [q]; {(1)})′(+, 0; [q]; {}), q ≥ 1
• Γ0 = (g1, g2 − g

q
1, g

2
2, (g1g2g

−1
1 g2)), g1 ∈ S

2
2, g2 ∈ S

2
1R1

• 5q.III.a.1(0, 0); ◦ 5qe.III.a.2(1
2
, 0)

5qe.III.b (+, 0; [q]; {(1)})′(+, 0; [ q
2
]; {(1)}), q ≥ 2

• Γ0 = (g1, g2 − g
2
1, (g2g2)

q
2 , (g−12 g1g2g1)), g1 ∈ S

2
1, g2 ∈ S

2
2R1

• 5qe.III.b.1(0, 0); ◦ 5qe.III.b.2(1
2
, 0)

5qe.III.c (+, 0; [q]; {(1)})′(−, 1; [ q
2
]; {}), q ≥ 2

• Γ0 = (g1, g2 − (g1g1)
q
2 , g22, (g2g

−1
1 g2g1)), g1 ∈ S

2
3, g2 ∈ S

2
1R1

• 5qe.III.c.1(0, 0); 5qe.III.c.2(1
2
, 0)

6q.I (+, 0; [2]; {(q)}), q ≥ 2
• Γ0 = (g1, g2 − g21, g

2
2, (g1g2g1g2)

q), g1 ∈ S21, g2 ∈ S
2
2

• 6q.I.1(0, 0); 6q.I.2(0, 1
2
); 6q.I.3(1

2
, 0); 6q.I.4(1

2
, 1
2
)

6q.II (+, 0; [2]; {(q)}), q ≥ 2
• Γ0 = (g1, g2, g − g21, g

2
2, g

2, (g1g2g1g2)
q, (g1g)

2, (g2g)
2), g1 ∈ S21, g2 ∈ S

2
2, g ∈ R1

• 6q.II.1(0, 0, 0); 6q.II.2(0, 1
2
, 0); 6q.II.3(1

2
, 0, 0); 6q.II.4(1

2
, 1
2
, 0)

6q.III.a (+, 0; [2]; {(q)})′(+, 0; []; {(q, q)}), q ≥ 2
• Γ0 = (g1, g2 − g

2
1, g

2
2, (g1g2g1g2)

q), g1 ∈ S21, g2 ∈ S
2
2R1

• 6q.III.a.1(0, 0); 6q.III.a.2(1
2
, 0)

6q.III.b (+, 0; [2]; {(q)})′(+, 0; [2, 2, q]; {}), q ≥ 2
• Γ0 = (g1, g2 − g

2
1, g

2
2, (g1g2g1g2)

q), g1 ∈ S22, g2 ∈ S
2
1R1

• 6q.III.b.1(0, 0); 6q.III.b.2(1
2
, 0)

6q.III.c (+, 0; [2]; {(q)})′(−, 1; [q]; {}), q ≥ 2
• Γ0 = (g1, g2 − (g1g1)

q, g22, (g1g2)
2), g1 ∈ S23, g2 ∈ S

2
1R1

• 6q.III.c.1(0, 0); 6q.III.c.2( k
2q
, 0), k := 1, . . . , b q

2
c
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7q.I (−, 0; [q]; {}), q ≥ 1
• Γ0 = (g1 − (g1g1)q), g1 ∈ S23
• 7q.I.1(0);7q.I.2(1

2
);7q.I.3( k

2q
), q ≥ 2, k := 1, . . . , q−1. Γ is fixed point free iff (k, q) = 1,

e.g. q = 1, k = 0 and k = 1 as well, then S2×R/Γ is a nonorientable manifold (space form).

7q.II (−, 0; [q]; {}), q ≥ 1
• Γ0 = (g1, g − (g1g1)q, g2, (g1gg

−1
1 g2)), g1 ∈ S

2
3, g ∈ R1

• 7q.II.1(0, 0); 7q.II.2(1
2
, 0)

7q.III (−, 0; [q]; {})′(+, 0; [q]; {}), q ≥ 1
• Γ0 = (g1, g2 − g

q
1, (g2g2g

−1
1 ), g1 ∈ S

2
2, g2 ∈ S

2
3R1

• 7q.III.1(0, 0). Γ is fixed point free iff q = 1. Then S2×R/Γ is an orientable compact
manifold (space form).

8.I (+, 0; [2, 3, 3]; {})
• Γ0 = (g1, g2 − g21, g

3
2, (g1g2)

3), g1, g2 ∈ S22
• 8.I.1(0, 0); 8.I.2(0, 1

3
)

8.II (+, 0; [2, 3, 3]; {})
• Γ0 = (g1, g2, g − g21, g

3
2, (g1g2)

3, g2, (g1gg1g), (g2gg
−1
2 g)), g1, g2 ∈ S

2
2, g ∈ R1

• 8.II.1(0, 0, 0)

9.I (+, 0; [2, 3, 4]; {})
• Γ0 = (g1, g2 − g21, g

3
2, (g1g2)

4), g1, g2 ∈ S22
• 9.I.1(0, 0); 9.I.2(1

2
, 0)

9.II (+, 0; [2, 3, 4]; {})
• Γ0 = (g1, g2, g − g21, g

3
2, (g1g2)

4, g2, (g1gg
−1
1 g), (g2gg

−1
2 g)), g1, g2 ∈ S

2
2, g ∈ R1

• 9.II.1(0, 0, 0); 9.II.2(1
2
, 0, 0)

9.III (+, 0; [2, 3, 4]; {})′(+, 0; [2, 3, 3]; {})
• Γ0 = (g1, g2, g3,−g

2
1, g

3
2, (g1g2)

3, g43, (g1g
2
3), (g2g3)

2), g1, g2 ∈ S22, g3 ∈ S
2
2R1

• 9.III.1(0, 0, 0); 9.III.2(0, 1
3
, 0)

10.I (+, 0; [2, 3, 5]; {})
• Γ0 = (g1, g2 − g21, g

3
2, (g1g2)

5), g1, g2 ∈ S22
• 10.I.1(0, 0)

10.II (+, 0; [2, 3, 5]; {})
• Γ0 = (g1, g2, g − g21, g

3
2, (g1g2)

5, g2, (g1gg1g), (g2gg
−1
2 g)), g1, g2 ∈ S

2
2, g ∈ R1

• 10.II.1(0, 0, 0)

11.I (+, 0; []; {(2, 3, 3)})
• Γ0 = (g1, g2, g3 − g21, g

2
2, g

2
3, (g1g2)

2, (g1g3)
3, (g2g3)

3), g1, g2, g3 ∈ S21
• 11.I.1(0, 0, 0); 11.I.2(1

2
, 1
2
, 1
2
)

11.II (+, 0; []; {(2, 3, 3)})
• Γ0 = (g1, g2, g3, g − g21, g

2
2, g

2
3, (g1g2)

2, (g1g3)
3, (g2g3)

3, g2, (g1g)
2, (g2g)

2, (g3g)
2), g1, g2, g3 ∈
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S21, g ∈ R1
• 11.II.1(0, 0, 0, 0); 11.II.2(1

2
, 1
2
, 1
2
, 0)

11.III (+, 0; []; {(2, 3, 3)})′(+, 0; [2, 3, 3]; {})
• Γ0 = (g1, g2, g3 − g

2
1, g

3
2, (g1g2)

3, g23, (g1g3)
2, (g2g3)

2), g1, g2 ∈ S22, g3 ∈ S
2
1R1

• 11.III.1(0, 0, 0), 11.III.2(0, 1
3
, 0)

12.I (+, 0; []; {(2, 3, 4)})
• Γ0 = (g1, g2, g3 − g21, g

2
2, g

2
3, (g1g2)

2, (g1g3)
3, (g2g3)

4), g1, g2, g3 ∈ S21
• 12.I.1(0, 0, 0); 12.I.2(0, 1

2
, 0); 12.I.3(1

2
, 0, 1

2
); 12.I.4(1

2
, 1
2
, 1
2
)

12.II (+, 0; []; {(2, 3, 4)})
• Γ0 = (g1, g2, g3, g − g21, g

2
2, g

2
3, (g1g2)

2, (g1g3)
3, (g2g3)

4, g2, (g1g)
2, (g2g)

2, (g3g)
2), g1, g2, g3 ∈

S21, g ∈ R1
• 12.II.1(0, 0, 0, 0); 12.II.2(0, 1

2
, 0, 0); 12.II.3(1

2
, 0, 1

2
, 0); 12.II.4(1

2
, 1
2
, 1
2
, 0)

12.III.a (+, 0; []; {(2, 3, 4)})′(+, 0 : [2, 3, 4]; {})
• Γ0 = (g1, g2, g3 − g

2
1, g

3
2, (g1g2)

4, g23, (g1g3g1g3), (g2g3g2g3)), g1, g2 ∈ S
2
2, g3 ∈ S

2
1R1

• 12.III.a.1(0, 0, 0); 12.III.a.2(1
2
, 0, 0, 0)

12.III.b (+, 0; []; {(2, 3, 4)})′(+, 0; []; {(2, 3, 3)})
• Γ0 = (g1, g2, g3 − g

2
1, g

2
2, (g1g2)

3, g23, (g1g3)
2, (g2g3)

4), g1, g2 ∈ S21, g3 ∈ S
2
1R1

• 12.III.b.1(0, 0, 0); 12.III.b.2(1
2
, 1
2
, 0)

12.III.c (+, 0; []; {(2, 3, 4)})′(+, 0 : [3]; {(2)}) • Γ0 = (g1, g2, g3 − g
2
1, g

3
2, (g1g

−1
2 g1g2)

2,
g23, (g1g3)

2, (g2g3)
2), g1 ∈ S21, g2 ∈ S

2
2, g3 ∈ S

2
1R1 • 12.III.c.1(0, 0, 0);

12.III.c.2(0, 1
3
, 0);12.III.c.3(1

2
, 0, 0);12.III.c.4(1

2
, 1
3
, 0)

13.I (+, 0; []; {(2, 3, 5)})
• Γ0 = (g1, g2, g3 − g21, g

2
2, g

2
3, (g1g2)

2, (g1g3)
3, (g2g3)

5), g1, g2, g3 ∈ S21
• 13.I.1(0, 0, 0); 13.I.2(1

2
, 1
2
, 1
2
)

13.II (+, 0; []; {(2, 3, 5)})
• Γ0 = (g1, g2, g3, g − g21, g

2
2, g

2
3, (g1g2)

2, (g1g3)
3, (g2g3)

5, g2, (g1g)
2, (g2g)

2, (g3g)
2), g1, g2, g3 ∈

S21, g ∈ R1
• 13.II.1(0, 0, 0, 0); 13.II.2(1

2
, 1
2
, 1
2
, 0)

13.III (+, 0; []; {2, 3, 5})′(+, 0; [2, 3, 5]; {})
• Γ0 = (g1, g2, g3 − g

2
1, g

3
2, (g1g2)

5, g23, (g1g3)
2, (g2g3)

2), g1, g2 ∈ S22, g3 ∈ S
2
1R1

• 13.III.1(0, 0, 0)

14.I (+, 0; [3]; {(2)})
• Γ0 = (g1, g2 − g21, g

3
2, (g2g1g

−1
2 g1)

2), g1 ∈ S21, g2 ∈ S
2
2

• 14.I.1(0, 0); 14.I.2(0, 1
3
); 14.I.3(1

2
, 0); 14.I.4(1

2
, 1
3
)

14.II (+, 0; [3]; {(2)})
• Γ0 = (g1, g2, g − g21, g

3
2, (g2g1g

−1
2 g1)

2, g2, (g1g)
2, (g2gg

−1
2 g)), g1 ∈ S

2
1, g2 ∈ S

2
2, g ∈ R1

• 14.II.1(0, 0, 0); 14.II.2(1
2
, 0, 0)
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14.III (+, 0; [3]; {(2)})′(+, 0; [2, 3, 3]; {})
• Γ0 = (g1, g2, g3 − g

3
1, g

3
2, (g1g2)

2, g23, (g1g3g2g3), (g1g2g3)
2), g1, g2 ∈ S22, g3 ∈ S

2
1R1

• 14.III.1(0, 0, 0)

Now we can summarize our results:

Theorem 2. In S2×R there are infinitely many equivariance classes of space groups, all
listed in our Table 2 without repetition (hopely without human error). Our statistics can be
found in Table 3. Table 4 lists the S2×R space forms.

Table 3. Classes of S2×R point groups F space groups

Type infinite series 1-7 by q finite cases 8-14
I 1|1|1|1|1|1|1 F 2|3|3|6|4|4|3 1|1|1|1|1|1|1 F 2|2|1|2|4|2|4
II 1|1|1|1|1|1|1 F 2|3|3|6|4|4|2 1|1|1|1|1|1|1 F 1|2|1|2|4|2|2
III 1|2|2|5|3|3|1 F

1|2,2|2,2|3,3,4,4,4|2,2,2|2,2,2|1
0|1|0|1|3|1|1 F
0|2|0|2|2,2,4|1|1

sums by types 7+7+17 F 25+24+40 7+7+7 F 17+14+14
all 31 F 89 21 F 45

Table 4. Similarity classes of S2×R space forms

Symbol Condition Orientability

1q.I.(k
q
) (k, q) = 1, k ≤ b q

2
c orientable

5q.I.(1
2
, k
q
) (k, q) = 1, k ≤ b q

2
c nonorientable

7q.I.1(0) q = 1 nonorientable
7q.I.2(1

2
) q = 1 nonorientable

7q.I.3( k
2q
) q ≥ 2, (k, q) = 1 nonorientable

7q.III q = 1 orientable

Remarks. As we previously promised we give an example, which illustrates an other possible
definition of equivalence of space groups.
The class 1q.I.2(k

q
) with (k, q) = 1 are diffeomorphic with the class 1q.I.1(0) for q = 1. Now

we introduce the usual coordinates in the S2 factor: −π < ϕ ≤ π (mod 2π); −π
2
≤ ϑ ≤ π

2

(the ϕ = π longitude and the poles ϑ = π
2
, ϑ = −π

2
are considered obviously), and let

−∞ < y < ∞. Thus the points of S2×R will be expressed in the form: (ϕ, ϑ, y). Now
T (τ) τ > 0 : (ϕ, ϑ, y) 7→ (ϕ, ϑ, y+τ) generates the transformation group, which is equivariant
by an R-similarity to 1q.I.1(0) in case q = 1 with τ = 1; and the screw motion A(α, a);
0 < α < 2π, 0 < a : (ϕ, ϑ, y) 7→ (ϕ + α, ϑ, y + a) generates another group, in general. We
define the diffeomorphism Φ : (ϕ, ϑ, y) 7→ (ϕ + αy, ϑ, ya). Then Φ−1TΦ = A holds, because
(ϕ, ϑ, y) 7→ (ϕ− α

a
y, ϑ, y

a
) 7→ (ϕ− α

a
y, ϑ, y

a
+1) 7→ (ϕ− α

a
y+ αy

a
+α, ϑ, y+a) = (ϕ+α, ϑ, y+a).

That means, the isomorphism is geometrized by a diffeomorphism, and we obtain only 2
diffeomorphism classes of orientable space forms: the first is generated by T (τ = 1) above
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(with H1 = Z as first homology group and fundamental group as well), the second is by
7q.III q = 1 (with H1 = Z2 × Z2). Thurston’s statement in [8] that we have only one
diffeomorphism class of nonorientable space forms, seems to be erroneous. Our case 7q.I.1(0)
for q = 1 yields the homology group H1 = Z2 × Z, while 7q.I.2(

1
2
), q = 1 leads to H1 = Z.

The other nonorientable space forms in Table 4 will be diffeomorphic to one of these two,
similarly as in our last Remarks.
We with E.Molnár intend to come back to the diffeomorphism classification and to the

orbifold interpretation in a forthcoming paper. A figure collection will be available for special
request from the author.
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