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Abstract. We construct the q-analogue of a certain class of group cohomology and
introduce the action of Hecke operators on such cohomology. We also show that
such an action determines a representation of a Hecke ring in each of the associated
group cohomology spaces.
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1. Introduction

Hecke operators play an important role in number theory, especially in connection with the
theory of automorphic forms. More specifically, Hecke operators arise usually as endomor-
phisms of the space of certain automorphic forms and are used as a tool for the investigation
of multiplicative properties of Fourier coefficients of such automorphic forms. On the other
hand, it is well-known that various types of automorphic forms are closely connected with
the cohomology of the corresponding arithmetic groups. A classic example is the Eichler-
Shimura isomorphism (cf. [1], [7]) which provides a correspondence between holomorphic
modular forms and elements of the parabolic cohomology space of the associated Fuchsian
group. Because of such intimate connections, it would be natural to study the Hecke oper-
ators on the cohomology of arithmetic groups associated to automorphic forms as was done
in a number of papers (see e.g. [3], [5], [4], [9]). Hecke operators on the cohomology of more
general groups were also investigated by Rhie and Whaples in [6].
Various objects that are studied in the theory of quantum groups can be obtained from

more traditional mathematical objects using quantizations or deformations. One way of
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achieving this is by constructing the q-analogue of a known mathematical object, which will
reduce to the original object when q assumes a specific value. In [2], Kapranov introduced
the q-analogue of homological algebra. Among other things, he introduced the homology of
complexes that is associated to an N -th root of unity q 6= 1 for some positive integer N and
whose boundary map d satisfies dN = 0 instead of the usual d2 = 0. His homology reduces
to the usual one when N = 2 and q = −1.
In this paper we follow the method of Kapranov to construct the q-analogue of the

cohomology of groups with coefficients in complex vector spaces and introduce the action of
Hecke operators on such cohomology spaces. We then show that such an action determines
a representation of a Hecke ring in the associated group cohomology space.

2. Group cohomology

In this section we construct the q-analogue of group cohomology associated to group repre-
sentations in complex vector spaces following closely the approach of Kapranov [2] used for
the construction of his q-analogue of homology.
Let Γ be a group, and letM be a complex vector space that is a Γ-module. ThusM is

a representation space of Γ, and for each γ ∈ Γ the map v 7→ γ · v is a C-linear map. We
denote by Cp(Γ,M) the vector space over C consisting of all maps c : Γp+1 →M that satisfy

c(γγ0, γγ1, . . . , γγp) = γ · c(γ0, γ1, . . . , γp) (2.1)

for all γ, γ0, . . . , γp ∈ Γ. Let N be a positive integer, and let q ∈ C be an N -th root of unity
with q 6= 1 . Given a function f : Γp+1 →M and an integer k with 0 ≤ k ≤ p+1, we denote
by δkf the function δkf : Γ

p+2 →M given by

(δkf)(γ0, γ1, . . . , γp+1) = f(γ0, . . . , γ̂k, . . . , γp+1), (2.2)

where γ̂k means suppressing the component γk. Thus we obtain the maps δk : C
p(Γ,M) →

Cp+1(Γ,M) satisfying the relation

δj ◦ δk = δk−1 ◦ δj. (2.3)

for 0 ≤ j < k ≤ p+ 1. We now define the map dq : Cp(Γ,M)→ Cp+1(Γ,M) by

dqc =

p+1∑

k=0

qk(δkc) (2.4)

for all c ∈ Cp(Γ,M), so that we have

(dqc)(γ0, γ1, . . . , γp+1) =

p+1∑

k=0

qk · c(γ0, . . . , γ̂k, . . . , γp+1),

and the map dq reduces to the coboundary map for the usual group cohomology if q = −1
and N = 2 (cf. [5, §1.2]).
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If ν is a positive integer, we set

[ν]q =
1− qν

1− q
= 1 + q + · · ·+ qν−1,

[ν]q! = [ν]q[ν − 1]q · · · [2]q[1]q.

Lemma 2.1. Given an element c ∈ Cp(Γ,M), we have

(dq)
mc = [m]q! ·

∑

i1≤···≤im

qi1+···+imδim · · · δi1c, (2.5)

for each positive integer m.

Proof. We shall use induction on m. Since (2.5) obviously holds for m = 1, we begin the
induction process by assuming that it is true for m > 1. Then, for each c ∈ Cp(Γ,M), we
have

(dq)
m+1c = [m]q! ·

∑

i1≤···≤im

qi1+···+im ·
∑

j

qjδj · δim · · · δi1c

= [m]q! ·
∑

i1≤···≤im

qi1+···+im ·

(∑

j<i1

+
∑

i1≤j<i2

+ · · ·

· · ·+
∑

im−1≤j<im

+
∑

im≤j

)
qj · δjδim · · · δi1c.

However, replacing j by im+1, we have

∑

i1≤···≤im

qi1+···+im ·
∑

im≤j

qj · δjδim · · · δi1c

=
∑

i1≤···≤im≤im+1

qi1+···+im+im+1 · δim+1δim · · · δi1c.

On the other hand, using (2.3), we obtain

∑

i1≤···≤im

qi1+···+im ·
∑

im−1≤j<im

qj · δjδim · · · δi1c

=
∑

i1≤···≤im

qi1+···+im ·
∑

im−1≤j<im

qj · δim−1δj · · · δi1c.

Replacing im by im+1 + 1 and j by im, we see that the right hand side of the above equation
reduces to

q ·
∑

i1≤···≤im≤im+1

qi1+···+im+im+1 · δim+1δim · · · δi1c.
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Similarly, we obtain

∑

i1≤···≤im

qi1+···+im ·
∑

im−2≤j<im−1

qj · δjδim · · · δi1c

=
∑

i1≤···≤im

qi1+···+im ·
∑

im−2≤j<im−1

qj · δim−1δim−1−1δj · · · δi1c

= q2 ·
∑

i1≤···≤im≤im+1

qi1+···+im+im+1 · δim+1δim · · · δi1c

by replacing im by im+1 + 1, im−1 by im + 1, and j by im−1. Treating the other summations
similarly, we see that

(dq)
m+1c = [m]q! · (1 + q + · · ·+ q

m) ·
∑

i1≤···≤im≤im+1

qi1+···+im+im+1 · δim+1δim · · · δi1c.

Now (2.5) follows from the fact that

[m]q! · (1 + q + · · ·+ q
m) = [m]q! · [m+ 1]q = [m+ 1]q!,

and hence the induction is complete.

Remark 2.2. Lemma 2.1 is essentially the same as Lemma 0.3 in [2] which was given without
proof.

Corollary 2.3. For each integer p the composite

(dq)
N = dq ◦ · · · ◦ dq : C

p(Γ,M)→ Cp+N(Γ,M)

of the N maps

Cp(Γ,M)
dq
−→ Cp+1(Γ,M)

dq
−→ · · ·

dq
−→ Cp+N(Γ,M)

is equal to zero.

Proof. This follows immediately from Lemma 2.1 and the relation [N ]q! = [N ]q · [N − 1]q!
with [N ]q = (1− qN)/(1− q).

For 1 ≤ k ≤ N consider the maps

(dq)
k : Cp(Γ,M)→ Cp+k(Γ,M), (dq)

N−k : Cp−N+k(Γ,M)→ Cp(Γ,M),

where we assume that Cν(Γ,M) = {0} and dq = 0 on Cν(Γ,M) for ν < 0. Then we have

(dq)
k ◦ (dq)

N−k = (dq)
N = 0,

and hence it follows that Im (dq)
N−k ⊂ Ker (dq)k. This allows us to define the q-analogue of

the cohomology of the group Γ with coefficients inM as follows.
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Definition 2.4. Given an integer p, the p-th q-cohomology of Γ with coefficients inM con-
sists of the N complex vector spaces

1H
p(Γ,M), 2H

p(Γ,M), . . . ,NH
p(Γ,M),

where

kH
p(Γ,M) =

Ker[(dq)
k : Cp(Γ,M)→ Cp+k(Γ,M)]

Im[(dq)N−k : Cp−N+k(Γ,M)→ Cp(Γ,M)]
(2.6)

for k = 1, . . . , N .

3. Hecke operators

In this section, we discuss Hecke operators acting on the q-cohomology spaces of a group
associated to its representation in a complex vector space. First, we shall review the definition
of Hecke rings (see e.g. [3], [8] for details). Let G be a fixed group, and let Γ and Γ′ be
subgroups of G. Γ and Γ′ are said to be commensurable if Γ ∩ Γ′ has finite index in both Γ
and Γ′, in which case we write Γ ∼ Γ′. We denote by Γ̃ the commensurability subgroup of
Γ, that is,

Γ̃ = {α ∈ G | αΓα−1 ∼ Γ}.

Given α ∈ Γ̃, the double coset ΓαΓ has a decomposition of the form

ΓαΓ =
∐

1≤i≤d

Γαi (3.1)

for some elements α1, . . . , αd ∈ Γ̃, where
∐
denotes the disjoint union. Given a semigroup

∆ with Γ ⊂ ∆ ⊂ Γ̃, we denote by R(Γ,∆) the free Z-module generated by the double cosets
ΓαΓ with α ∈ ∆. Then R(Γ,∆) has a ring structure with multiplication defined as follows.
Let α, β ∈ ∆ ⊂ Γ̃, and suppose we have decompositions of the form

ΓαΓ =
∐

1≤i≤d

Γαi, ΓβΓ =
∐

1≤i≤e

Γβi

with αi, βj ∈ Γ̃. If {Γε1Γ, . . . ,ΓεrΓ} is the set of all distinct double cosets contained in
ΓαΓβΓ, then we define the product (ΓαΓ) · (ΓβΓ) by

(ΓαΓ) · (ΓβΓ) =
r∑

k=1

m(ΓαΓ,ΓβΓ; ΓεkΓ) · (ΓεkΓ),

where m(ΓαΓ,ΓβΓ; ΓεkΓ) denotes the number of elements in the set

{(i, j) | Γαiβj = Γεk}

for 1 ≤ k ≤ r.
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Now for each γ ∈ Γ we have ΓαΓγ = ΓαΓ, and therefore it follows that

ΓαΓ =
∐

1≤i≤d

Γαi =
∐

1≤i≤d

Γαiγ.

Thus for 1 ≤ i ≤ d, we see that

αiγ = ξi(γ) · αi(γ) (3.2)

for some element ξi(γ) ∈ Γ, where (α1(γ), . . . , αd(γ)) is a permutation of (α1, . . . , αd).

Lemma 3.1. For 1 ≤ i ≤ d, we have

i(γγ′) = i(γ)(γ′), ξi(γγ
′) = ξi(γ) · ξi(γ)(γ

′) (3.3)

for all γ, γ′ ∈ Γ.

Proof. For each i and γ, γ′ ∈ Γ we see that

(αiγ)γ
′ = ξi(γ) · αi(γ)γ

′

= ξi(γ) · ξi(γ)(γ
′) · αi(γ)(γ′).

Therefore the lemma follows by comparing this with αi(γγ
′) = ξi(γγ

′)αi(γγ′).

Given a nonnegative integer p and a Γ-moduleM, let Cp(Γ,M) be the complex vector space
described in Section 2. For an element c ∈ Cp(Γ,M) and a double coset ΓαΓ with α ∈ Γ̃
that has a decomposition as in (3.1), we consider the map c′ : Γp+1 →M given by

c′(γ0, . . . , γp) =
d∑

i=1

α−1i · c(ξi(γ0), . . . , ξi(γp)),

where the maps ξi : Γ→ Γ are determined by (3.2).

Lemma 3.2. The map c′ is an element of Cp(Γ,M).

Proof. It suffices to show that c′ satisfies the condition (2.1). Using (3.3) and the fact that
c satisfies (2.1), we obtain

c′(γγ0, . . . , γγp) =
d∑

i=1

α−1i · c(ξi(γγ0), . . . , ξi(γγp))

=
d∑

i=1

α−1i · c(ξi(γ)ξi(γ)(γ0), . . . , ξi(γ)ξi(γ)(γp))

=
d∑

i=1

α−1i · ξi(γ) · c(ξi(γ)(γ0), . . . , ξi(γ)(γp))
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for γ, γ0, . . . , γp ∈ Γ. Since we have α
−1
i · ξi(γ) = γ · α

−1
i(γ) by (3.2), we see that

c′(γγ0, . . . , γγp) = γ ·
d∑

i=1

α−1i(γ) · c(ξi(γ)(γ0), . . . , ξi(γ)(γp))

= γ · c′(γ0, . . . , γp);

hence the lemma follows.

By Lemma 3.2 each double coset ΓαΓ with α ∈ Γ̃ determines the C-linear map

TΓαΓ : C
p(Γ,M)→ Cp(Γ,M)

defined by

TΓαΓ(c)(γ0, . . . , γp) =
d∑

i=1

α−1i · c(ξi(γ0), . . . , ξi(γp))

for c ∈ Cp(Γ,M), where ΓαΓ =
∐
1≤i≤d Γαi and each ξi is as in (3.2).

Lemma 3.3. The map TΓαΓ is independent of the choice of representatives of the coset de-
composition of ΓαΓ modulo Γ.

Proof. For α ∈ Γ̃ suppose that

ΓαΓ =
∐

1≤i≤d

Γαi =
∐

1≤i≤d

Γβi.

Then we may assume that βi = γ(αi)αi for each i with γ(αi) ∈ Γ. If ξi is as in (3.2), we have

βiγ = γ(αi)αiγ = γ(αi)ξi(γ) · αi(γ)

for all γ ∈ Γ. Hence, using (2.1), we see that

TΓβΓ(c)(γ0, . . . , γp) =
d∑

i=1

β−1i · c(γ(αi)ξi(γ0), . . . , γ(αi)ξi(γp))

=
d∑

i=1

α−1i · γ(αi)
−1 · c(γ(αi)ξi(γ0), . . . , γ(αi)ξi(γp))

=
d∑

i=1

α−1i · c(ξi(γ0), . . . , ξi(γp))

= TΓαΓ(c)(γγ1, . . . , γγp)

for c ∈ Cp(Γ,M) and (γ0, . . . , γp) ∈ Γp+1. Therefore it follows that TΓαΓ = TΓβΓ, and the
proof of the lemma is complete.
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Let q ∈ C be an N -th root of unity with q 6= 1 for some positive integer N , and let dq :
Cp(Γ,M)→ Cp+1(Γ,M) be the map defined by (2.4).

Proposition 3.4. Given a double coset ΓαΓ with α ∈ Γ̃, we have

TΓαΓ ◦ (dq)
k = (dq)

k ◦ TΓαΓ

for 1 ≤ k ≤ N .

Proof. It suffices to show that TΓαΓ commutes with dq for each double coset ΓαΓ. For
c ∈ Cp(Γ,M) and (γ0, . . . , γp) ∈ Γp+1, assuming that ΓαΓ has a decomposition as in (3.1)
we have

(dq ◦ TΓαΓ)(c)(γ0, . . . , γp) =
p+1∑

k=0

qk · δk(TΓαΓ(c))(γ0, . . . , γp)

=

p+1∑

k=0

qk · TΓαΓ(δkc)(γ0, . . . , γp)

=

p+1∑

k=0

d∑

i=1

qk · α−1i · (δkc)(ξi(γ0), . . . , ξi(γp)),

where δk is as in (2.2). On the other hand, we have

(TΓαΓ ◦ dq)(c)(γ0, . . . , γp) =
d∑

i=1

α−1i · dq(c)(ξi(γ0), . . . , ξi(γp))

=
d∑

i=1

p+1∑

k=0

α−1i · q
k · (δkc)(ξi(γ0), . . . , ξi(γp)).

Since α−1i commutes with q
k, we have TΓαΓ ◦dq = dq ◦TΓαΓ, and hence the lemma follows.

It follows from Proposition 3.4 that

TΓαΓ(Im(dq)
N−k) ⊂ Im(dq)

N−k

for 1 ≤ k ≤ N . Thus by (2.6) the map TΓαΓ : Cp(Γ,M) → Cp(Γ,M) induces the C-linear
map

kTΓαΓ : kH
p(Γ,M)→ kH

p(Γ,M)

on the p-th q-cohomology space kH
p(Γ,M) for each nonnegative integer p and k = 1, . . . , N .

Let ∆ be a semigroup with Γ ⊂ ∆ ⊂ Γ̃, and consider the associated Hecke ring R(Γ,∆)
described above. Since R(Γ,∆) is a free Z-module generated by {ΓαΓ | α ∈ ∆}, we can
extend the maps kTΓαΓ linearly to the entire R(Γ,∆). Thus an element X ∈ R(Γ,∆) of the
form X =

∑
mα · ΓαΓ with mα ∈ Z determines the endomorphism

TX =
∑
mα · kTΓαΓ

of kH
p(Γ,M).
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Theorem 3.5. For 1 ≤ k ≤ N and a nonnegative integer p, the operation of R(Γ,∆) on

kH
p(Γ,M) obtained by extending the maps

ΓαΓ 7→ kTΓαΓ

linearly to the entire R(Γ,∆) is a representation of the Hecke ring R(Γ,∆) on the right in
the p-th q-cohomology space kH

p(Γ,M) of Γ with coefficients inM.

Proof. Let ΓαΓ and ΓβΓ be elements of R(Γ,∆) with decompositions of the form

ΓαΓ =
∐

1≤i≤d

Γαi, ΓβΓ =
∐

1≤j≤e

Γβj,

and for each γ ∈ Γ denote by ξi(γ) and ξ′j(γ) the elements of Γ given by

αiγ = ξi(γ)αi(γ), βjγ = ξ
′
j(γ)βj(γ)

for 1 ≤ i ≤ d and 1 ≤ j ≤ e such that (α1(γ), . . . , αd(γ)) and (β1(γ), . . . , βe(γ)) are permutations
of (α1, . . . , αd) and (β1, . . . , βe), respectively. In order to prove the theorem it suffices to show
that

T(ΓαΓ)·(ΓβΓ)c = (TΓβΓ ◦ TΓαΓ)c

for all c ∈ Cp(Γ,M). Let Ω denote the set of elements of ∆ such that {ΓωΓ | ω ∈ Ω} is a
complete set of distinct double cosets contained in ΓαΓβΓ. Given ω ∈ Ω, we assume that
the corresponding double coset has a decomposition of the form

ΓωΓ =
∐

1≤k≤s

Γωk,

and denote by ξ′′k(γ) ∈ Γ the element given by ωkγ = ξ
′′
k(γ)ωk(γ) for γ ∈ Γ and 1 ≤ k ≤ s

with (ω1(γ), . . . , ωs(γ)) a permutation of (ω1, . . . , ωs). Then we have

(ΓαΓ) · (ΓβΓ) =
∑

ω∈Ω

m(ΓαΓ,ΓβΓ; ΓωΓ) · ΓωΓ,

with

m(ΓαΓ,ΓβΓ; ΓωΓ) = #{(i, j) | Γαiβj = Γωk},

where # denotes the number of elements. Thus, for c ∈ Cp(Γ,M) and (γ0, . . . , γp) ∈ Γp+1,
we have

T(ΓαΓ)·(ΓβΓ)(c)(γ0, . . . , γp) =
∑

ω∈Ω

m(ΓαΓ,ΓβΓ; ΓωΓ) · TΓωΓ(c)(γ0, . . . , γp)

=
∑

ω∈Ω

m(ΓαΓ,ΓβΓ; ΓωΓ) ·
s∑

k=1

ω−1k · c(ξ
′′
k(γ0), . . . , ξ

′′
k(γp)).
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Note, however, that there is an element µk ∈ Γ such that Γωk = Γωµk for each k ∈ {1, . . . , s}.
Thus, using the fact that

αiβjµk = αi · ξ
′
j(µk) · βj(µk) = ξi(ξ

′
j(µk)) · αi(ξ′j(µk)) · βj(µk),

we see that Γαiβj = Γω if and only if Γαi′βj′ = Γωk, where i
′ = i(ξ′j(µk)) and j

′ = j(µk).
Hence it follows that

m(ΓαΓ,ΓβΓ; ΓωΓ) = #{(i, j) | Γαiβj = Γωk}

for each k. Using this and the fact that

αiβjγ = ξi(ξ
′
j(γ)) · αi(ξ′j(γ)) · βj(γ)

for γ ∈ Γ, we obtain

T(ΓαΓ)·(ΓβΓ)(c)(γ0, . . . , γp) =
∑

ω∈Ω

s∑

k=1

m(ΓαΓ,ΓβΓ; ΓωkΓ) · ω
−1
k · c(ξ

′′
k(γ0), . . . , ξ

′′
k(γp))

=
d∑

i=1

e∑

j=1

(αiβj)
−1c(ξi(ξ

′
j(γ0)), . . . , ξi(ξ

′
j(γp)))

=
d∑

i=1

e∑

j=1

β−1j · α
−1
i · c(ξi(ξ

′
j(γ0)), . . . , ξi(ξ

′
j(γp)))

=
e∑

j=1

β−1j · TΓαΓ(c)(ξ
′
j(γ0), . . . , ξ

′
j(γp))

= (TΓβΓ ◦ TΓαΓ)(c)(γ0, . . . , γp).

Therefore, it follows that

T(ΓαΓ)·(ΓβΓ) = TΓβΓ ◦ TΓαΓ,

and the proof of the theorem is complete.
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