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Abstract. In [14] we showed that for each locally finite unary (total) algebra of
finite type, its weak subalgebra lattice uniquely determines its (strong) subalgebra
lattice. Now we generalize this fact to algebras having also finitely many binary
operations (for example, groupoids, semigroups, semilattices). More precisely, we
generalize some ideas from [14] to prove: Let A be a locally finite (total) algebra
with m unary operations kA1 , . . . , k

A
m and n binary operations fA1 , . . . , f

A
n and letA

satisfy the following formula: for any x, y and 1 ≤ i ≤ n, x 6= y implies fi(x, y) 6= x
and fi(x, y) 6= y. Then for every partial algebra B with m unary and n binary
operations, if the weak subalgebra lattices of A and B are isomorphic, then their
(strong) subalgebra lattices are also isomorphic and moreover, B is total and locally
finite and satisfies the same formula.
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1. Introduction

The lattice of (total) subalgebras and connections between (total) algebras and their subal-
gebra lattices are an important part of universal algebra. For instance, characterizations of
subalgebra lattices for algebras in a given variety or of a given type are this kind of prob-
lems (see e.g. [10]). Several results (see e.g. [6], [11], [13], [17], [18]) describe algebras or
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varieties of algebras which have special subalgebra lattices (i.e. modular, distributive, etc.).
For example, it is proved in [6] that every subalgebra modular variety is Hamiltonian, so it
is Abelian by [11]. Some such results concern also classical algebras (see e.g. [12], [16] or [8],
[9]). More precisely, D. Sachs in [16] proved that any Boolean algebra uniquely determines
its subalgebra lattice. E. Lukács and P.P. Pálfy showed in [12] that the modularity of the
subgroup lattice of the direct square G×G of any group G implies that G is commutative.

The theory of partial algebras provides additional tools for such investigations, because
several different structures may be considered in this case (see e.g. [3] or [5]). In the present
paper, besides the usual subalgebras (which will here be called strong as opposed to other
kinds of partial subalgebras) and lattices of strong subalgebras, we consider only the weak
subalgebras and the lattices of weak subalgebras. It seems that the weak subalgebra lattice
alone, and also together with the strong subalgebra lattice, yields a lot of interesting infor-
mation on an algebra, also total. For example, [2] contains a characterization of monounary
partial algebras uniquely determined in the class of all monounary partial algebras of the
same type by their weak subalgebra lattices. In [14] it is shown that for a total and locally
finite unary algebra of finite type, its weak subalgebra lattice uniquely determines its strong
subalgebra lattice. A complete characterization of the weak subalgebra lattice is given in [1].

We introduced in [15] a hypergraph-algebraic language to investigate partial algebras
and their subalgebra lattices. For instance, we have shown in [15] that for partial algebras
A and B (even of different types), if their directed hypergraphs are isomorphic, then their
subalgebra (weak, relative, strong and initial segment) lattices are isomorphic. Moreover,
weak subalgebra lattices of A and B are isomorphic iff their hypergraphs are isomorphic. We
also characterized in [15] pairs 〈L,A〉, where L is a lattice and A is a partial algebra, such
that the weak subalgebra lattice of A is isomorphic to L.

Now, using this language, we generalize the result from [14] onto algebras with finitely
many unary and binary operations. More precisely, let A be a total, locally finite algebra
with unary operations kA1 , . . . , k

A
m and binary operations fA1 , . . . , f

A
n such that for a1, a2 ∈ A

and k = 1, . . . , n, a1 6= a2 implies fAk (a1, a2) 6= a1 and fAk (a1, a2) 6= a2. Then we prove that
for a partial algebra B with m unary and n binary operations, if the weak subalgebra lattices
of A and B are isomorphic, then their strong subalgebra lattices are isomorphic, and B is
also total, locally finite and satisfies the same formula.

2. Basic results

For basic notions and facts concerning algebras (partial and total) and subalgebras and
lattices of subalgebras see e.g. [3], [5] and [7], [10]; concerning hypergraphs see e.g. [4].

Let A =
〈
A, (kAi )i=mi=1 , (f

A
i )i=ni=1

〉
and B =

〈
B, (kBi )i=mi=1 , (f

B
i )i=ni=1

〉
be partial algebras with

m unary and n binary operations. Recall that B is a weak subalgebra of A iff B ⊆ A and
kBi ⊆ kAi , fBj ⊆ fAj for i = 1, . . . ,m, j = 1, . . . , n. The set of all weak subalgebras of A forms
a complete and algebraic lattice Sw(A) under (weak subalgebra) inclusion ≤w. Analogously,
the algebraic lattice of all strong subalgebras of A under (strong subalgebra) inclusion ≤s
will be denoted by Ss(A).

We need some connections between hypergraphs and partial algebras proved in [15]. An
(undirected) hypergraph H = 〈V H, EH, IH〉 is a triplet (see e.g. [4]) such that V H and
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EH are sets (of vertices and hyperedges respectively), and IH is a function of EH into the
family of all finite and non-empty subsets of V H. A dihypergraph (directed hypergraph)
D = 〈V D, ED, ID〉 is a triplet such that V D and ED are sets, and ID = 〈ID1 , I

D
2 〉 is a pair,

where ID1 is a function of ED into the family of all finite subsets of V D, and ID2 is a function
of ED into V D.

With each dihypergraph D we can associate the hypergraph D∗ by omitting the orien-
tation of all hyperedges, i.e.

V D
∗

= V D, ED
∗

= ED and
ID

∗
(e) = ID1 (e) ∪ {ID2 (e)} for each e ∈ ED.

Each partial algebra A =
〈
A, (kAi )i=mi=1 , (f

A
i )i=ni=1

〉
with m unary and n binary operations

can be represented by a dihypergraph D(A) as follows (see [15]):

V D(A) = A,

ED(A) =
{
〈a, i, b〉 ∈ A× {1, . . . ,m} × A : 〈a, b〉 ∈ kAi

}⋃

{
〈a1, a2, j, b〉 ∈ A× A× {1, . . . , n} × A : 〈a1, a2, b〉 ∈ f

A
j

}
,

and for each 〈a, i, b〉, 〈a1, a2, j, b〉 ∈ E
D(A),

I
D(A)
1

(
〈a, i, b〉

)
= a, I

D(A)
2

(
〈a, i, b〉

)
= b and

I
D(A)
1

(
〈a1, a2, j, b〉

)
= {a1, a2}, I

D(A)
2

(
〈a1, a2, j, b〉

)
= b.

We can also associate with A the hypergraph D∗(A) =
(
D(A)

)∗
.

First, we use hypergraphs to represent partial algebras, and therefore we do not restrict
the cardinality of vertex and hyperedge sets. Secondly, we consider only (partial) algebras A
with unary and binary operations (for example, groupoids, semigroups and semilattices are

this kind of algebras). Hence, for each hyperedge e of D(A), its initial set I
D(A)
1 (e) has one or

two vertices. Thus we can restrict our attention to dihypergraphs whose hyperedges have one-
or two-element initial sets. Then the set of hyperedges of a dihypergraph D can be divided
onto two classes. More precisely, e ∈ ED is a 1-edge, or simply an edge, iff |ID1 (e)| = 1. e is
a 2-edge iff |ID1 (e)| = 2. The set of all edges and 2-edges are denoted by ED(1) and ED(2)
respectively. Moreover, e ∈ ED(2) is regular (a 2-loop) iff ID2 (e) 6∈ ID1 (e)

(
ID2 (e) ∈ ID1 (e)

)
.

Regular edges and loops are analogously defined. The set of all regular edges and 2-edges
are denoted by EDreg(1) and EDreg(2).

For any finite subset V ⊆ V D we can define EDs (V ) =
{
e ∈ ED : ID1 (e) = V

}
, and the

cardinal number sD(V ) = |EDs (V )|. In our case only for one- and two-element sets V , sD(V )
may be non-zero. If V = {v1} or V = {v1, v2}, then we write EDs (v1), E

D
s (v1, v2) and sD(v1),

sD(v1, v2)
Since we consider only dihypergraphs D such that ED = ED(1) ∪ ED(2), the type of

dihypergraphs (defined in [15]) can be represented by a pair of cardinal numbers. More
formally, let D be a dihypergraph and η1, η2 cardinal numbers. Then D is of type 〈η1, η2〉 iff
sD(v) ≤ η1 for v ∈ V D and sD(V ) ≤ η2 for all two-element V ⊆ V D. D of type 〈η1, η2〉 is
total iff sD(v) = η1 for v ∈ V D and sD(v1, v2) = η2 for v1, v2 ∈ V D, v1 6= v2. A type 〈η1, η2〉
is finite iff η1 and η2 are non-negative integers, i.e. η1, η2 ∈ N.

Proposition 2.1. Let A be a partial algebra with m unary and n binary operations. Then
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(a) D(A) is a dihypergraph of type 〈m+ n, 2 · n〉.

(b) A is total iff D(A) is total.

It follows from simple observations that for a, b ∈ A with a 6= b, sD(A)(a) =
∣∣{1 ≤ i ≤

m : a ∈ dom(kAi )
}
∪
{

1 ≤ i ≤ n : 〈a, a〉 ∈ dom(fAi )
}∣∣ and sD(A)(a, b) =

∣∣{1 ≤ i ≤ n : 〈a, b〉 ∈
dom(fAi )

}∣∣ +
∣∣{1 ≤ i ≤ n : 〈b, a〉 ∈ dom(fAi )

}∣∣. Here kA1 , . . . , k
A
m and fA1 , . . . , f

A
n are unary

and binary operations of A, respectively, and dom(hA) is the domain of any partial function
hA.

It is easy to prove (see [15]) that for any m,n ∈ N and a dihypergraph D of type
〈m + n, 2 · n〉 there is a partial algebra A with m unary and n binary operations such that
D(A) ' D. By Proposition 2.1(b) we obtain also that if D is a total dihypergraph, then A
is a total algebra.

Two kinds of subdihypergraphs can be defined which represent weak and strong subal-
gebras (see [15]). Let D and G be dihypergraphs. Then G is a weak subdihypergraph of
D (G ≤w D) iff V G ⊆ V D, EG ⊆ ED and IG ⊆ ID. G is a strong subdihypergraph of
D (G ≤s D) iff G ≤w D and for e ∈ ED, ID1 (e) ⊆ V D implies e ∈ ED. Note that a
subdihypergraph is called ”weak” to stress its relation with weak subalgebras. We call a
subdihypergraph ”strong” when it represents a strong subalgebra. Since we consider only
dihypergraphs with edges and 2-edges, the empty hypergraph 〈∅, ∅, ∅〉 is a strong (thus also
weak) subdihypergraph of every dihypergraph. Obviously each weak subdihypergraph of a
dihypergraph of type 〈η1, η2〉 is also of this type.

It is proved in [15], in an analogous way as for partial algebras, that the sets of all weak
and strong subdihypergraphs of D with relations ≤w and ≤s respectively, form complete and
algebraic lattices Sw(D) and Ss(D). The operations of infimum

∧
and supremum

∨
are

defined as in the case of partial algebras. In particular, for any set W ⊆ V D, there is the
least strong subdihypergraph containing W which will be denoted by 〈W 〉D. Analogously as
for algebras, we say that D is locally finite iff for each finite set W ⊆ V D, 〈W 〉D is also finite
(i.e. its vertex set V 〈W 〉D is finite).

In the same way as above we can define weak subhypergraphs of an (undirected) hyper-
graph H, and moreover, the set of all weak subhypergraphs of H also forms an algebraic
lattice Sw(H) (see [15]).

Theorem 2.2. Let A be a partial algebra. Then

Sw(A) ' Sw
(
D(A)

)
and Ss(A) ' Ss

(
D(A)

)
.

Proof. Recall (see [15]) that these isomorphisms are given by ϕ such that ϕ(B) = D(B) for
B ≤w A.

First, for each weak subdihypergraph H ≤w D(A), it is not difficult to construct the
weak subalgebra B of A such that D(B) = H. And if H is a strong subdihypergraph, then
B is a strong subalgebra.

Secondly, it is obtained by a standard verification that for any weak (strong) subalgebras
B1,B2 of A, B1 = B2 iff D(B1) = D(B2), and B1 ≤w B2 iff D(B1) ≤w D(B2) (B1 ≤s B2
iff D(B1) ≤s D(B2)).
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These facts imply that ϕ is bijective and moreover, ϕ and its inverse ϕ−1 are order-
preserving. Thus ϕ is an isomorphism of Sw(A) onto Sw

(
D(A)

)
. Analogously, ϕ restricted

to the set of all strong subalgebras is an isomorphism between Ss(A) and Ss
(
D(A)

)
. 2

In exactly the same way we can show that the function ψ such that ψ(B) = D∗(B) for each
B ≤w A forms an isomorphism of lattices Sw(A) and Sw

(
D∗(A)

)
(see also [15]).

Proposition 2.3. A partial algebra A is locally finite iff D(A) is a locally finite dihyper-
graph.

From the proof of Theorem 2.2 (see also [15]) it follows that for a partial algebra A and
B ⊆ A, D

(
〈B〉A

)
= 〈B〉D(A) (where 〈B〉A is the strong subalgebra of A generated by B).

Theorem 2.4. Let A and B be partial algebras (which can be of arbitrary and different
types). Then

Sw(A) ' Sw(B) iff D∗(A) ' D∗(B).

Proof. It is also proved in [15]. Now we sketch only main steps of this proof. ⇐ is obvious,
since Sw(A) ' Sw

(
D∗(A)

)
, Sw(B) ' Sw

(
D∗(B)

)
and, of course, Sw

(
D∗(A)

)
' Sw

(
D∗(B)

)
.

Let Sw(A) and Sw(B) be isomorphic. Then there is also an isomorphism Φ of Sw
(
D∗(A)

)

onto Sw
(
D∗(B)

)
. In particular, we have bijections Φa and Φi between the sets of all atoms

and the sets of all non-atomic join-irreducible elements (of these lattices) respectively. A
non-zero element i of a lattice L = 〈L,∨,∧〉 is join-irreducible iff for k, l ∈ L, k∨ l = i implies
k = i or l = i (see e.g. [10]).

Let H be a hypergraph and M a weak subhypergraph. It is easy to show (in the same
way as for partial algebras, see [1]) that: M is an atom in Sw(H) iffM has exactly one vertex
and none hyperedges. M is a non-atomic join-irreducible element in Sw(H) iffM has exactly
one hyperedge and its endpoints as the set of vertices.

These facts imply that Φa and Φi induce the bijections ϕ and ψ between V D
∗(A), V D

∗(B)

and ED
∗(A), ED

∗(B) respectively. Moreover, using these facts, since Φ and Φ−1 preserve ≤w,
it can be obtained (by standard, but long verification) ϕ

(
ID

∗(A)(e)
)

= ID
∗(B)
(
ψ(e)
)

for all

e ∈ ED
∗(A). Thus 〈ϕ, ψ〉 is an isomorphism of D∗(A) and D∗(B). 2

Finally, observe that our formula: ∀x,y∀1≤i≤n x 6= y ⇒ fi(x, y) 6= x ∧ fi(x, y) 6= y, has the
following dihypergraph interpretation (obtained by a simple verification):

Proposition 2.5. Let A be a partial algebra with (kAi )i=mi=1 unary and (fAi )i=ni=1 binary opera-
tions. Then D(A) has no 2-loops iff for all a, b ∈ A and 1 ≤ i ≤ n, a 6= b implies fAi (a, b) 6= a
and fAi (a, b) 6= b.

3. Main results

Results and definitions of the previous section reduce our algebraic problem to some dihy-
pergraph question. More precisely, partial algebras A and B with m unary and n binary
operations can be replaced by dihypergraphs D and G with edges and 2-edges. Assumptions
on A are translated onto the hypergraph language as follows: D is a total dihypergraph of
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finite type 〈m+n, 2n〉 and locally finite and without 2-loops. Moreover, the condition about
the weak subalgebra lattices of A and B is equivalent to the property that D∗ and G∗ are
isomorphic. Thus to prove our algebraic result we must show: Let D be a total dihypergraph
of finite type 〈n1, n2〉 and locally finite and without 2-loops, and let G be a dihypergraph of
type 〈n1, n2〉 such that D∗ ' G∗. Then the strong subdihypergraph lattices of D and G are
isomorphic, and G is also total, locally finite and without 2-loops.

We start from simple facts describing dihypergraphs with the same (up to isomorphism)
undirected hypergraphs. First, we can form, in a similar way as for graphs, new dihypergraphs
by inverting the orientation of some regular edges. More precisely, let D be a dihypergraph
and E ⊆ EDreg(1). Then D(E) is a dihypergraph defined as follows: V D(E) = V D, ED(E) =

ED, ID(E)(e) = ID(e) for e ∈ ED \ E, and I
D(E)
1 (f) =

{
ID2 (f)

}
,
{
I
D(E)
2 (f)

}
= ID1 (f)

for f ∈ E. Secondly, we can generalize this construction on sets of regular 2-edges. More
formally, let F ⊆ EDreg(2) and let U = {uf : f ∈ F} be a set of vertices such that uf ∈ ID1 (f)

for f ∈ F . Then D(F,U) is a dihypergraph obtained from D as follows: V D(F,U) = V D,

ED(F,U) = ED, ID(F,U)(e) = ID(e) for e ∈ ED\F , and I
D(F,U)
1 (f) =

(
ID1 (f)\{uf}

)
∪
{
ID2 (f)

}
,

I
D(F,U)
2 (f) = uf for f ∈ F . We can apply both these construction to D, and, of course, it

does not matter which is first, because E and F are always disjoint. Thus we can denote
D
(
E; 〈F,U〉

)
= D(F,U)(E) = D(E)(F,U).

Observe that the above construction preserves ∗, i.e. D
(
E; 〈F,U〉

)∗
= D∗. Unfortunately,

the inverse fact is not true. More precisely, there are dihypergraphs D and H such that
H∗ ' D∗ and H is not isomorphic to D

(
E; 〈F,U〉

)
for any sets E,F, U (satisfying suitable

conditions). It follows from the fact that images of 2-loops and regular edges under ∗ are
(undirected) hyperedges with exactly two vertices, so a 2-loop in D may correspond to a
regular edge in H, and conversely. But if we additionally assume that D and H have no
2-loops, then this inverse result holds. More precisely,

Lemma 3.1. Let D, H be dihypergraphs without 2-loops and D∗ ' H∗. Then there are
F1 ⊆ EDreg(1), F2 ⊆ EDreg(2), U = {uf : f ∈ F2} ⊆ V D such that uf ∈ ID1 (f) for all f ∈ F2
and H ' D

(
F1; 〈F2, U〉

)
.

Proof. Let ϕ = 〈ϕV , ϕE〉 be an isomorphism of D∗ and H∗. First, each hyperedge of D∗ with
exactly one or exactly two endpoints is the image of an edge of D under ∗, because D has no
2-loops. Of course, forH the analogous fact holds. Thus ϕE restricted to ED(1) is a bijection
onto EH(1). Moreover, ϕE induces a bijective correspondence between the sets of all loops
of D and H. Secondly, each 2-edge of D or H is a hyperedge of D∗ or H∗ respectively, with
exactly three endpoints (because D and H have only regular 2-edges). Hence, ϕE induces
also a bijection between sets of all 2-edges of D and H. Now take the set F1 ⊆ EDreg(1) (F2 ⊆
EDreg(2)) of regular edges (2-edges) e such that ϕV

(
ID2 (e)

)
6= IH2

(
ϕE(e)

)
, and let U = {uf : f ∈

F2} with uf = ϕ−1V
(
IH2 (ϕE(f))

)
. Then it is easily shown that ϕ is the desired isomorphism

of D
(
F1; 〈F2, U〉

)
and H. It follows from the definition of D

(
F1; 〈F2, U〉

)
and equalities:

ϕV
(
ID1 (e)

)
∪
{
ϕV
(
ID2 (e)

)}
= ϕV

(
ID

∗
(e)
)

= IH
∗(
ϕE(e)

)
= IH1

(
ϕE(e)

)
∪
{
IH2
(
ϕE(e)

)}
for

e ∈ ED. 2

By the above proposition we have that for a given dihypergraph D without 2-loops, each
dihypergraph also without 2-loops with the same (undirected) hypergraph can be obtained
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from D (up to isomorphism) by changing the orientation of some hyperedges. Unfortunately,
in the contradiction to edges, for regular 2-edges it is not sufficient to know which 2-edges are
inverting, but we must also know how it is done, i.e. which vertices form new final vertices
of these 2-edges. Therefore we now introduce a concept of labeled 2-edges. More formally,
let D be a dihypergraph and e ∈ EDreg(2) and let v be a vertex such that v ∈ ID1 (e). Then
the pair 〈e, v〉 will be said a labeled 2-edge. Of course, each regular 2-edge e can be labeled
onto exactly two ways by choosing a vertex in its initial set ID1 (e).

Now we generalize the concepts of chains, paths and cycles in graphs. Let D be a
dihypergraph and r =

(
〈e1, v1〉, . . . , 〈em, vm〉

)
, where m ≥ 1, a sequence of labeled 2-edges

of D. Then r is a (directed) hyperchain iff r satisfies the following two conditions:
(
ID1 (ei) \

{vi}
)
∪
{
ID2 (ei)

}
= ID1 (ei+1) for any 1 ≤ i ≤ m − 1, and for each 1 ≤ i 6= j ≤ m,

ei = ej implies vi = vj (i.e. r does not contain a 2-edge labeled onto two different ways);
a hyperchain r is a (directed) hyperpath iff e1, . . . , em are pairwise different; a hyperchain
(hyperpath) r is a hypercycle (simple hypercycle) iff

(
ID1 (em) \ {vm}

)
∪
{
ID2 (em)

}
= ID1 (e1).

Let Er = {e1, . . . , em} and V r = {v1, . . . , vm}.
We also use usual chains, cycles and simple cycles in dihypergraphs defined as for graphs.

Recall only that a sequence (f1., . . . , fm) of edges is a simple cycle iff it is a chain with at
least two vertices and its final vertex is equal to its initial vertex and all its edges are regular
and pairwise different.

Observe that the construction of new dihypergraphs from a given dihypergraph D by
changing the orientation of 2-edges in a set F ⊆ EDreg(2) according to U (where U = {uf : f ∈
F} is a set of vertices such that uf ∈ ID1 (f) ) can be formulated in terms of labeled 2-edges.
Because each such pair of sets 〈F,U〉 uniquely determines the set of labeled 2-edges, and
conversely, any set of labeled 2-edges (we must, of course, assume that each 2-edge in this
set is labeled in exactly one way) uniquely forms such a pair of sets. In particular, we can
apply these notes to families of hyperchains. More precisely, let R1 be a family of chains
and R2 a family of pairwise hyperedge-disjoint hyperchains, i.e. for all r, p ∈ R2, r 6= p
implies Er ∩ Ep = ∅. Then D(R1, R2) = D

(
ER1 ; 〈ER2 , V R2〉

)
, where ER1 =

⋃
r∈R1

Er and
ER2 =

⋃
r∈R2

Er, V R2 =
⋃
r∈R2

V r. Observe that the second condition of the definition of
hyperchains and the assumption that hyperchains in R2 are pairwise hyperedge-disjoint imply
that each 2-edge in ER2 is labeled in exactly one way, so this construction is correctly defined.
Of course, for arbitrary families of chains and hyperchains, dihypergraphs so obtained have
quite different properties, but now we prove that for families of cycles and hypercycles, this
construction preserves the strong subdihypergraph lattices. We start with the following
auxiliary:

Proposition 3.2. Let D be a dihypergraph, R1, R2 families of cycles and pairwise hyperedge-
disjoint hypercycles respectively. Let H ≤w D, K ≤w D(R1, R2) be such that V

H = V K,
EH = EK. Then:

H ≤s D iff K ≤s D(R1, R2).

Proof. LetG be a dihypergraph andC a strong subdihypergraph ofG. By a simple induction
we obtain that for any cycle r of G, if r and C have a common vertex, then r is contained in
C. Moreover, an analogous result holds for hypercycles, i.e. if r =

(
〈f1, v1〉, . . . , 〈fm, vm〉

)
is a

hypercycle such that IG1 (fi) ⊆ V C for some 1 ≤ i ≤ m, then Er ⊆ EC. This also follows by an
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induction, since IG1 (fi) ⊆ V C implies IG2 (fi) ∈ V C, so IG1 (fi+1) =
(
IG1 (fi)\{vi}

)
∪
{
IG2 (fi)

}
⊆

V C, where fm+1 = f1, and so on.
⇒: Assume that H is a strong subdihypergraph of D and take e ∈ ED such that

IM1 (e) ⊆ V K = V H, where M = D(R1, R2). If e 6∈ ER1 ∪ ER2 , then IM1 (e) = ID1 (e) so
e ∈ EH = EK, because H ≤s D. If e ∈ ER1 , then {ID2 (e)} = IM1 (e) ⊆ V K and there is a
cycle r ∈ R1 such that e ∈ Er. Hence, Er ⊆ EH = EK, in particular e ∈ EH. Assume now
that e ∈ ER2 , i.e. there is a hypercycle r =

(
〈f1, v1〉, . . . , 〈fm, vm〉

)
such that e = fi for some

i = 1, . . . ,m. Then ID1 (fi+1) =
(
ID1 (fi)\{vi}

)
∪
{
ID2 (fi)

}
= IM1 (fi) ⊆ V K, where fm+1 = f1,

so ID1 (fi+1) ⊆ V H. Hence, e ∈ Er ⊆ EH = EK, because H ≤s D. This completes the proof
that K is a strong subdihypergraph.
⇐: Observe first that for any cycle r = (f1, . . . , fm) ∈ R1, r = (fm, . . . , f1) is a cycle in

M = D(R1, R2). Let R1 be the set of all such cycles inM. Secondly, an analogous result also
holds for hypercycles in R2. More precisely, it is easily obtained by the definition of M that
for any r =

(
〈f1, v1〉, . . . , 〈fm, vm〉

)
∈ R2, r =

(
〈fm, vm〉, . . . , 〈f1, v1〉

)
, where vi = ID2 (fi) for

i = 1, . . . ,m, is a hypercycle in M. Let R2 be the set of all such cycles in M. Thirdly, it is
easy to see M(R1, R2) = D.

Assume now that K is a strong subdihypergraph ofM. Then by the above facts and the
proved implication ⇒ (applying to M and R1,R2) we obtain that H is a strong subdihyper-
graph of D. 2

Theorem 3.3. Let D be a dihypergraph, R1 a family of cycles and R2 a family of pairwise
hyperedge-disjoint hypercycles. Then Ss(D) ' Ss

(
D(R1, R2)

)
.

Proof. Let ϕ be a function of the set of all strong subdihypergraphs of D into the set of
all strong subdihypergraphs of M = D(R1, R2) such that ϕ(H) = 〈V H, EH, IM|EH〉 for each
H ≤s D. First, it is easy to see that ϕ(H) is a well-defined weak subdihypergraph of M,
so by Proposition 3.2 we have that ϕ(H) ≤s M. Thus ϕ is correctly defined. Secondly, by
Proposition 3.2 ϕ is surjective. More formally, take K ≤sM, and let H = 〈V K, EK, ID|EK〉.
Then obviously H is a weak subdihypergraph of D, so it is also strong by Proposition 3.2.
Moreover, ϕ(H) = K.

Now observe that for two arbitrary strong subdihypergraphs H1,H2 ≤s D (and anal-
ogously for H1,H2 ≤s M), H1 ≤s H2 iff V H1 ⊆ V H2 ; H1 = H2 iff V H1 = V H2 . These
facts easily follow from the definition of strong subdihypergraphs. Hence we deduce that ϕ
is also injective. Moreover, we obtain that H1 ≤s H2 iff V H1 ⊆ V H2 iff V ϕ(H1) ⊆ V ϕ(H2)

iff ϕ(H1) ≤s ϕ(H2). Thus ϕ and its inverse ϕ−1 preserve the (strong subdihypergraph)
inclusion, so ϕ is the desired lattice isomorphism. 2

Corollary 3.4. Let D be a dihypergraph, R1 a family of cycles and R2 a family of pairwise

hyperedge-disjoint hypercycles. Then for each W ⊆ V D, V 〈W 〉
s
D = V

〈W 〉s
D(R1,R2) and E〈W 〉

s
D =

E
〈W 〉s

D(R1,R2).

Proof. Let ϕ be the lattice isomorphism of Ss(D) and Ss
(
D(R1, R2)

)
from the proof of

Theorem 3.3. Then, of course, to the family of all strong subdihypergraphs of D containing
W is assigned under ϕ the family of all strong subdihypergraphs of D(R1, R2) also containing
W . Hence, ϕ

(
〈W 〉D

)
= 〈W 〉D(R1,R2), because ϕ preserves all meets and joins. This completes

the proof. 2
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Proposition 3.5. Let D be a dihypergraph and R1, R2 families of hyperedge-disjoint simple
cycles and hypercycles of D respectively. Then for each one- or two-element V ⊆ V D,
sD(R1,R2)(V ) = sD(V ).

Proof. Take a two-element set V ⊆ V D and a simple hypercycle r =
(
〈f1, v1〉, . . . , 〈fm, vm〉

)
∈

R2. Observe that if 〈fi, vi〉 is a labeled 2-edge starting from V , then 〈fi−1, vi−1〉, where f0 =
fm, is a labeled 2-edge ending in V , i.e.

(
ID1 (fi−1) \ {vi−1}

)
∪
{
ID2 (fi−1)

}
= V . Conversely,

if 〈fi, vi〉 ends in V , then 〈fi+1, vi+1〉, where fm+1 = f1, starts from V . Moreover, f1, . . . , fm
are pairwise different. These facts imply that the number of all labeled 2-edges of r starting
from V is equal to the number of all labeled 2-edges of r ending in V . Hence we infer that
the number of all labeled 2-edges in ER2 starting from V is equal to the number of all labeled
2-edges in ER2 ending in V , because hypercycles in R2 are pairwise 2-edge-disjoint. This
implies sD(R1,R2)(V ) = sD(V ).

Using the definition of simple cycles and the assumption that cycles in R1 are pairwise
edge-disjoint we can show, in a similar way, that for any v ∈ V D, sD(R1,R2)(v) = sD(v). 2

A simple consequence of the above fact is the following

Corollary 3.6. Let D be a total dihypergraph of finite type 〈n1, n2〉 (where n1, n2 ∈ N)
and let R1, R2 be families of hyperedge-disjoint simple cycles and simple hypercycles of D
respectively. Then D(R1, R2) is also a total dihypergraph of finite type 〈n1, n2〉.

Now we must prove several, in general, difficult and rather technical results on dihypergraphs,
which will be needed in the proof of our main result. For example we formulate an analogue
of Euler’s Theorem for dihypergraphs. To this purpose we consider in the sequel dihyper-
graphs having only regular 2-edges and such that each of its hyperedges is labeled; such
dihypergraphs will be called labeled dihypergraphs. In other words, let D be a dihypergraph
without edges and 2-loops (i.e. ED = EDreg(2) ) and let U ⊆ V D be a set of vertices such that
|U ∩ ID1 (e)| = 1 for each e ∈ ED. Then the pair 〈D, U〉 will be called a labeled dihypergraph
(or more formally, a dihypergraph labeled by U). Moreover, for any (regular) 2-edge e of
D, the exactly one element of U belonging to ID1 (e) will be denoted by u(e), and the other
vertex of ID1 (e) will be denoted by uot(e), i.e. {uot(e)} = ID1 (e) \ {u(e)}.

We say that a labeled dihypergraph 〈D, U〉 is labeled-connected (or more formally, thatD
is labeled-connected with respect to U) iff each vertex of D is an endpoint of some hyperedge
(i.e. V D =

⋃
e∈ED

(
ID1 (e) ∪ {ID2 (e)}

)
) and for any two 2-edges f, g ∈ ED, ID1 (f) = ID1 (g) or

there is a sequence
(
〈e1, u(e1)〉, . . . , 〈em, u(em)〉

)
of labeled 2-edges such that

(HC.1) ID1 (e1) = ID1 (f) or
{
uot(e1), I

D
2 (e1)

}
= ID1 (f),

(HC.2) ID1 (em) = ID1 (g) or
{
uot(em), ID2 (em)

}
= ID1 (g),

(HC.3) for 1 ≤ i ≤ m− 1, one of the following holds:{
uot(ei), I

D
2 (ei)

}
= ID1 (ei+1) or

{
uot(ei), I

D
2 (ei)

}
=
{
uot(ei+1), I

D
2 (ei+1)

}

or ID1 (ei) =
{
uot(ei+1), I

D
2 (ei+1)

}
or ID1 (ei) = ID1 (ei+1).

Having this definition we can take the relation ∼ on ED such that for f, g ∈ ED, f ∼ g
iff ID1 (f) = ID1 (g) or there is

(
〈e1, u(e1)〉, . . . , 〈em, u(em)〉

)
satisfying (HC.1)–(HC.3) for f

and g. Then it is easy to see that ∼ is an equivalence relation on ED, so we can take the
family {Ei}i∈I of equivalence classes of ∼, and next subdihypergraphs {Di∈I} such that Di
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consists of Ei and all endpoints of hyperedges of Ei, for each i ∈ I. Observe also that
U uniquely labels each of such dihypergraphs, it is sufficient to take Ui = U ∩ V Di for
any i ∈ I. Moreover, it is obvious that each of these labeled dihypergraphs is labeled-
connected and a maximal labeled subdihypergraph of 〈D, U〉 with this property. The labeled
subdihypergraphs {〈Di, Ui〉}i∈I ofD so obtained will be called labeled-connected components
of 〈D, U〉. Obviously, labeled-connected components are pairwise hyperedge-disjoint (i.e.
EDi ∩ EDj = ∅ for i 6= j). But their vertex sets do not need be disjoint (they can even
be equal). For instance, take the dihypergraph D with two 2-edges e1, e2 and four vertices
v1, v2, v3, v4 and ID(e1) = 〈{v1, v2}, v3〉, ID(e2) = 〈{v3, v4}, v2〉 and u(e1) = v1, u(e2) = v3.
Then obviously e1 and e2 belong to two different labeled-connected components of 〈D, U〉, i.e.
e1, v1, v2, v3 form one labeled-connected component, and e2, v1, v2, v3 form the other. Note
also that the connectivity of labeled dihypergraphs (and thus also the decomposition onto
labeled-connected components) depends on U . For instance, 〈D, U〉 in the above example is
not labeled-connected, but if we take U1 =

{
u(e1), u(e2)

}
such that u(e1) = v1 and u(e2) = v4,

then 〈D, U1〉 is labeled-connected.
For directed graphs the concept of labeled graphs is of no interest, since then U must

be the set of the initial vertices of all edges). Thus 〈D, U〉 is equivalent to D. Moreover,
〈D, U〉 is labeled-connected iff the subgraph of D consisting of all edges and their endpoints
is connected in the usual sense, because then (HC.1)–(HC.3) are reduced to the existence
of an undirected chain. Hence, labeled-connected components of 〈D, U〉 are just connected
components of D with at least two vertices.

Let 〈D, U〉 be any labeled dihypergraph and V ⊆ V D a two-element set. Then

E
〈D,U〉
k (V ) =

{
e ∈ ED : {uot(e), ID2 (e)} = V

}
and k〈D,U〉(V ) =

∣∣E〈D,U〉k (V )
∣∣.

It easily follows from the definition of labeled-connected components by a simple verification:

Lemma 3.7. Let 〈D, U〉 be a labeled dihypergraph and 〈H,W 〉 a labeled-connected component
of 〈D, U〉. Then for each e ∈ EH,

EHs (V ) = EDs (V ) and E
〈H,W 〉
k (V ) = E

〈D,U〉
k (V ),

where V = ID1 (e) or V =
{
uot(e), ID2 (e)

}
.

Now observe that for any dihypergraph D, ED =
⋃
v1,v2∈VD

EDs (v1, v2). This equality implies

that if D is finite (i.e. V D is finite) and of finite type 〈n1, n2〉, then

|ED| ≤
∑

v1,v2∈VD

sD(v1, v2) =
∑

v∈VD

sD(v) +
∑

v1,v2∈VD,v1 6=v2

sD(v1, v2) ≤

n1 · |V
D|+ n2 ·

∣∣{{v1, v2} ⊆ V D : v1 6= v2
}∣∣,

so ED is also finite. Moreover, if D has no edges, then 2 · |ED| =
∑
v1,v2∈VD,v1 6=v2

sD(v1, v2).
For a dihypergraph D without edges, the concept of the dihypergraph type can be a

little simplified, because sD(v) = 0 for v ∈ V D. More precisely, a dihypergraph D without
edges (i.e. ED = ED(2) ) is of 2-type η (where η is a cardinal number) iff D is of type 〈0, η〉.
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A labeled dihypergraph 〈D, U〉 is of 2-type η iff D is of 2-type η. Analogously, a directed
graph D is of 1-type η iff D is of type 〈η, 0〉.

Now we generalize two well-known results of graph theory onto labeled dihypergraphs
with finitely many vertices and 2-edges. Since we know that each finite labeled dihypergraph
〈D, U〉 (i.e. V D is finite) of finite 2-type has only finitely many 2-edges, we can formulate
the first of them as follows:

Lemma 3.8. Let 〈D, U〉 be a finite labeled dihypergraph of finite 2-type n (where n ∈ N).
Then ∑

v1,v2∈VD,v1 6=v2

sD(v1, v2) =
∑

v1,v2∈VD,v1 6=v2

k〈D,U〉(v1, v2).

Proof. Since the left side of this equality is equal to the number 2·|ED| of all hyperedges ofD,
it is sufficient to prove that the right side is also 2 · |ED|. But this is trivial, because for each

labeled 2-edge e there exist exactly two pairs 〈v1, v2〉 of vertices such that e ∈ E〈D,U〉k (v1, v2).
2

Lemma 3.9. Let 〈D, U〉 be a labeled-connected and finite labeled dihypergraph of finite 2-type
n with at least one 2-edge. Then the following conditions are equivalent:

(a) there is a simple hypercycle
(
〈f1, u(f1)〉, . . . , 〈fm, u(fm)〉

)
such that ED = {f1, . . . , fm}.

(b) sD(v1, v2) = k〈D,U〉(v1, v2) for each v1, v2 ∈ V D, v1 6= v2.

Of course, this result (and its proof) is some generalization of Euler’s Theorem.

Proof. (a) ⇒ (b): Take v1, v2 ∈ V D. Observe that if 〈fi, u(fi)〉 is a labeled 2-edge starting
from {v1, v2}, then 〈fi−1, u(fi−1)〉, where f0 = fm, is a labeled 2-edge ending in {v1, v2} (i.e.

{uot(fi−1), ID2 (fi−1)}={v1, v2}). Conversely, if 〈fi, u(fi)〉∈E
〈D,U〉
k (v1, v2), then 〈fi+1, u(fi+1)〉,

where fm+1 = f1, starts from {v1, v2}. Moreover, f1, . . . , fm are pairwise different. These
facts imply that sD(v1, v2) = k〈D,U〉(v1, v2).

(b) ⇒ (a): We apply induction on ED. Basis: If 〈D, U〉 has at least one 2-edge and
satisfies (b), then 〈D, U〉 must have at least two 2-edges. Let 〈D, U〉 have exactly two,
〈e, u(e)〉, 〈f, u(f)〉. Then

{
uot(e), ID2 (e)

}
= ID1 (f) and {uot(f), ID2 (f)} = ID1 (e). Hence,(

〈e, u(e)〉, 〈f, u(f)〉
)

is a simple hypercycle containing ED.
Induction step: Let |ED| ≥ 2 and assume that our thesis is true for all labeled dihyper-

graphs having at least one hyperedge and not greater than |ED| − 1.
Take A = {a1, a2} = ID1 (e) for some e ∈ ED and observe first that there are hyperpaths

starting from A, because, for example, 〈e, u(e)〉 forms such a hyperpath. Secondly, there are
only finitely many hyperpaths starting from A, since ED is finite. These facts imply that
there is a hyperpath r =

(
〈e1, u(e1)〉, . . . , 〈em, u(em)〉

)
starting from A (i.e. ID1 (e1) = A)

with the greatest length m ≥ 1.
Assume now that B 6= A, where B = {uot(em), ID2 (em)}. Then it is not difficult to see (in

a similar way as in the proof of (a)⇒(b)) that |E〈D,U〉k (B)∩Er| = |EDs (B)∩Er|+ 1 (because
〈em, u(em)〉 ends in B, but 〈e1, u(e1)〉 does not start from B, by our assumption). This
implies that there is a labeled 2-edge 〈f, u(f)〉 such that f 6∈ {e1, . . . , em} and ID1 (f) = B,
since sD(B) = k〈D,U〉(B). Thus we obtain another hyperpath starting from A such that
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its length is equal m + 1. This contradiction implies that r is a simple hypercycle (i.e.{
uot(em), ID2 (em)

}
= ID1 (e1) ).

Now it is sufficient to show that r contains all hyperedges of D. Assume otherwise
that r does not contain all hyperedges of D. Then first, the labeled dihypergraph 〈D, U〉
obtained from 〈D, U〉 by omitting all labeled 2-edges of r has hyperedges. Secondly, by the
proof of (a)⇒(b) we know that for any two-element set {v1, v2} ⊆ V D, |EDs (v1, v2) ∩ Er| =

|E〈D,U〉k (v1, v2) ∩ Er|. This fact implies

(1) sD(v1, v2) = k〈D,U〉(v1, v2) for each v1, v2 ∈ V D, v1 6= v2.

Now let 〈H,W 〉 be a labeled-connected component of 〈D, U〉 and take v1, v2 ∈ V H, v1 6= v2.
If there is no labeled 2-edge of 〈H,W 〉 ending or starting from {v1, v2}, then sH(v1, v2) = 0 =
k〈H,W 〉(v1, v2). If there is a labeled 2-edge 〈e, u(e)〉 of 〈H,W 〉 such that ID1 (e) = {v1, v2}
or {uot(e), ID2 (e)} = {v1, v2}, then by Lemma 3.7 we have sH(v1, v2) = sD(v1, v2) and

k〈H,W 〉(v1, v2) = k〈D,U〉(v1, v2). Thus by (1)

(2) sH(v1, v2) = k〈H,W 〉(v1, v2) for each v1, v2 ∈ V H, v1 6= v2.

Now we show that there is a labeled 2-edge 〈h, u(h)〉 of 〈H,W 〉 such that ID1 (h) = ID1 (ep)
for some p = 1, . . . ,m. Take 〈g, u(g)〉 of 〈H,W 〉. If ID1 (g) = ID1 (e1), then 〈g, u(g)〉 is the
desired labeled 2-edge. Thus we can assume ID1 (g) 6= ID1 (e1). Then there is a sequence(
〈f1, u(f1)〉, . . . , 〈fl, u(fl)〉

)
satisfying (HC.1)–(HC.3) for 〈g, u(g)〉 and 〈e1, u(e1)〉, because

〈D, U〉 is labeled-connected. We have three cases: f1 = ei for some 1 ≤ i ≤ m; or there
is 2 ≤ j ≤ l such that fj = ei for some 1 ≤ i ≤ m and {f1, . . . , fj−1} ∩ {e1, . . . , em} = ∅;
or {f1, . . . , fl} ∩ {e1, . . . , em} = ∅. Let 〈h, u(h)〉 = 〈g, u(g)〉 or 〈h, u(h)〉 = 〈fj−1, u(fj−1)〉
or 〈h, u(h)〉 = 〈fl, u(fl)〉, respectively. Then ID1 (h) = ID1 (ei) or ID1 (h) =

{
uot(ei), I

D
2 (ei)

}
=

ID1 (ei+1) (where em+1 = e1) or
{
uot(h), ID2 (h)

}
= ID1 (ei) or

{
uot(h), ID2 (h)

}
=
{
uot(ei), I

D
2 (ei)

}

= ID1 (ei+1). Hence, in the first two cases, 〈h, u(h)〉 is the required labeled 2-edge. In the
last two cases by (2) there is a labeled 2-edge 〈h, u(h)〉 such that ID1 (h) =

{
uot(h), ID2 (h)

}
;

recall 〈e1, u(e1)〉, . . . , 〈em, u(em)〉 do not belong to 〈H,W 〉. Obviously 〈h, u(h)〉 is the desired
labeled 2-edge.

Now we apply the induction hypothesis.
First, we know that 〈D, U〉, thus also 〈H,W 〉, has at least one hyperedge and less than
D. Moreover, 〈H,W 〉 is labeled-connected and satisfies (2). Thus by the induction hypo-
thesis there is a simple hypercycle

(
〈f1, u(f1)〉, . . . , 〈fk, u(fk)〉

)
containing all hyperedges

of H; of course, we can assume f1 = h. Then
(
〈e1, u(e1)〉, . . . , 〈ep, u(ep)〉, 〈f1, u(f1)〉, . . . ,

〈fk, u(fk)〉, 〈ep+1, u(ep+1)〉, . . . , 〈em, u(em)〉
)

is also a simple hypercycle of 〈D, U〉. But its
length is equal to m + l ≥ m + 1, which contradicts our assumption that r has the greatest
length. This completes the proof of the induction step, and consequently, the implication
(a) ⇒ (b). 2

Let 〈D, U〉 be a labeled dihypergraph and let V be an arbitrary subset of V D. Then the
strong subdihypergraph 〈V 〉D generated by V can also be labeled by U ; more precisely, by
U ⊆ U such that U = {u(e) ∈ U : e ∈ E〈V 〉D}. The labeled dihypergraph so obtained will
be denoted by 〈V 〉〈D,U〉.
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Lemma 3.10. Let a labeled-connected dihypergraph 〈D, U〉 and V ⊆ V D satisfy the follow-
ing:

(∗) V = ID1 (e) for some e ∈ ED.

(∗∗) E
〈V 〉〈D,U〉
k (w1, w2) = E

〈D,U〉
k (w1, w2) for each w1, w2 ∈ V 〈V 〉D, w1, 6= w2.

Then 〈D, U〉 = 〈V 〉〈D,U〉.

Proof. It is sufficient to show ED = E〈V 〉D , because 〈D, U〉 is labeled-connected and V 〈V 〉D ⊆
V D. Obviously ED ⊇ E〈V 〉D . Moreover, the definition of strong subdihypergraphs easily
implies

(1) E〈V 〉Ds (w1, w2) = EDs (w1, w2) for any w1, w2 ∈ V
〈V 〉D .

Now take f ∈ ED. If ID1 (f) = ID1 (e) = V , then f ∈ E〈V 〉D , by (1). Thus we can assume
ID1 (f) 6= V .
Then, since 〈D, U〉 is labeled-connected, there is a sequence

(
〈f1, u(f1)〉, . . . , 〈fl, u(fl)〉

)
satis-

fying (HC.1)–(HC.3) for e and f (see (∗∗)). Then ID1 (f1) = ID1 (e) = V or {uot(f1), ID2 (f1)} =
V . By (1) and (∗∗) we obtain in both cases f1 ∈ E〈V 〉D , so also u(f1), u

ot(f1), I
D
2 (f1) ∈ V 〈V 〉D .

Hence and by (∗∗), (HC.3) we deduce ID1 (f2) ⊆ V 〈V 〉D or {uot(f2), ID2 (f2)} ⊆ V 〈V 〉D , so again
f2 ∈ E〈V 〉D . Thus by a simple induction we obtain {f1, . . . , fl} ⊆ E〈V 〉D , in particular
u(fl), u

ot(fl), I
D
2 (fl) ∈ V 〈V 〉D . This fact and (HC.2) imply ID1 (f) ⊆ V 〈V 〉D , so f ∈ E〈V 〉D . 2

Lemma 3.11. Let a labeled dihypergraph 〈D, U〉 of finite 2-type n (where n ∈ N) satisfy the
following:

(∗) 〈D, U〉 is labeled-connected and locally finite.

(∗∗) sD(w1, w2) = k〈D,U〉(w1, w2) for each w1, w2 ∈ V D, w1 6= w2.

Then 〈D, U〉 =
〈
ID1 (e)

〉
〈D,U〉

for any e ∈ ED; in particular 〈D, U〉 is finite.

Proof. Take e ∈ ED and W = ID1 (e). Let v1, v2 ∈ V 〈W 〉D be vertices such that v1 6= v2. Then

(1) s〈W 〉D(v1, v2) = sD(v1, v2)

(see (1) in the previous proof) and, of course, k〈W 〉〈D,U〉(v1, v2) ≤ k〈D,U〉(v1, v2). Hence and by
(∗∗),

s〈W 〉D(w1, w2) ≥ k〈W 〉〈D,U〉(w1, w2) for all w1, w2 ∈ V 〈W 〉D , w1 6= w2.

Moreover, 〈W 〉〈D,U〉 is of finite 2-type n, and is finite, by (∗). Thus by Lemma 3.8 we obtain

∑

w1,w2∈V 〈W 〉D ,w1 6=w2

s〈W 〉D(w1, w2) =
∑

w1,w2∈V 〈W 〉D ,w1 6=w2

k〈W 〉〈D,U〉(w1, w2).

These two facts imply s〈W 〉D(v1, v2) = k〈W 〉〈D,U〉(v1, v2), so by (1) and (∗∗)

(2) k〈W 〉〈D,U〉(v1, v2) = k〈D,U〉(v1, v2).

Since E
〈D,U〉
k (v1, v2) is finite ( k〈D,U〉(v1, v2)≤n, by (∗∗) ) and E

〈W 〉〈D,U〉
k (v1, v2)⊆E

〈D,U〉
k (v1, v2),

we have by (2) that E
〈W 〉〈D,U〉
k (v1, v2) = E

〈D,U〉
k (v1, v2). This fact (because v1, v2 are arbitrary),

(∗) and Lemma 3.10 imply 〈W 〉〈D,U〉 = 〈D, U〉. 2
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Lemma 3.12. Let a dihypergraph D without edges and sets ∅ 6= F ⊆ ED, U = {u(f) : f ∈
F} ⊆ V D (where u(f) ∈ ID1 (f) for each f ∈ F ) and n ∈ N satisfy the following conditions:

(∗) D is locally finite and without 2-loops.

(∗∗) sD(v1, v2) = n and sD(F,U)(v1, v2) ≤ n for each v1, v2 ∈ V D, v1 6= v2.

Then there is a family R of pairwise hyperedge-disjoint simple hypercycles such that D(F,U)=
D(R).

Proof. We show that F can be divided onto pairwise 2-edge-disjoint finite sets in such a way
that each of these sets forms a simple hypercycle.

Let H = D(F,U) and take a two-element set V ⊆ V D. Then it easily follows from the
definition of H that

|EHs (V )| =
∣∣(EDs (V ) \ F

)
∪
{
f ∈ F :

(
ID1 (f) \ u(f)

)
∪ {ID2 (f)} = V

}∣∣,

so we have

|EHs (V )| = |EDs (V )| − |EDs (V ) ∩ F |+
∣∣{f ∈ F :

(
ID1 (f) \ u(f)

)
∪ {ID2 (f)} = V

}∣∣,

because D is of finite 2-type.
Hence, since by (∗∗) sH(V ) ≤ n = sD(V ), we deduce the equality

|EDs (V )| − |EDs (V ) ∩ F |+
∣∣{f ∈ F :

(
ID1 (f) \ u(f)

)
∪ ID2 (f) = V

}∣∣ ≤ |EDs (V )|.

Thus for each two-element set V ⊆ V D,

(1)
∣∣{f ∈ F :

(
ID1 (f) \ u(f)

)
∪ {ID2 (f)

}
= V
}∣∣ ≤ |EDs (V ) ∩ F |.

Let K be the weak subdihypergraph of D with V K = V D and EK = F . Of course, K has
no edges and 2-loops, and also K is of finite 2-type n and locally finite (it easily follows from
(∗) and (∗∗) ). Moreover, take the labeled dihypergraph 〈K, U〉. Then by (1),

(2) sK(v1, v2) ≥ k〈K,U〉(v1, v2) for each v1, v2 ∈ V
K, v1 6= v2.

Now take v1, v2 ∈ V K, v1 6= v2, and let 〈M,W 〉 = 〈v1, v2〉〈K,U〉. Then sM(w1, w2) =
sK(w1, w2) (see (1) in the previous proof) and, of course, k〈M,W 〉(w1, w2) ≤ k〈K,U〉(w1, w2).
Hence and by (2),

k〈M,W 〉(w1, w2) ≤ sM(w1, w2) for w1, w2 ∈ VM, w1 6= w2.

On the other hand,M is a finite dihypergraph without edges of finite 2-type n, so by Lemma
3.8 ∑

w1,w2∈VM,w1 6=w2

sM(w1, w2) =
∑

w1,w2∈VM,w1 6=w2

k〈M,W 〉(w1, w2).

These two facts imply k〈M,W 〉(w1, w2) = sM(w1, w2) for each w1, w2 ∈ VM, w1 6= w2, in
particular sM(v1, v2) = k〈M,W 〉(v1, v2). Hence and by (2) we obtain

k〈K,U〉(v1, v2) ≤ sK(v1, v2) = sM(v1, v2) = k〈M,W 〉(v1, v2) ≤ k〈K,U〉(v1, v2).
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Thus, since v1 and v2 were arbitrary

(3) sK(v1, v2) = k〈K,U〉(v1, v2) for each v1, v2 ∈ V
K, v1 6= v2.

Since EK = F 6= ∅, we can take the non-empty family {〈Ki, Ui〉 : i ∈ I} of all the labeled-
connected components of K. First, each such component of K is also a dihypergraph of finite
2-type n and locally finite. Secondly, by Lemma 3.7 for any w1, w2 ∈ V Ki with w1 6= w2 and
i ∈ I,

sKi(w1, w2) = sK(w1, w2) and k〈Ki,Ui〉(w1, w2) = k〈K,U〉(w1, w2)
or

sKi(w1, w2) = 0 = k〈Ki,Ui〉(w1, w2).

Thus (3) holds also for each 〈Ki, Ui〉, i.e. sKi(w1, w2) = k〈Ki,Ui〉(w1, w2). This fact and
Lemma 3.11 imply that Ki is finite for i ∈ I. Thus now we can use Lemma 3.9 (recall that
each labeled-connected component has at least one regular 2-edge) to obtain that for each
i ∈ I, there is a simple hypercycle ri =

(
〈ei1, v

i
1〉, . . . , 〈e

i
li
, vili〉
)

of 〈Ki, Ui〉 (thus also of 〈K, U〉)
containing all labeled 2-edges of 〈Ki, Ui〉.

It is trivial to see that R = {ri : i ∈ I} is a family of pairwise 2-edge-disjoint hypercycles
of 〈K, U〉 which contain all labeled 2-edges of 〈K, U〉. Hence, D(F,U) = D(R), since the set
of all labeled 2-edges of 〈K, U〉 is equal to

{
〈f, u(f)〉 : f ∈ F

}
, by the definition of 〈K, U〉. 2

Lemma 3.13. Let D be a locally finite and total dihypergraph of finite type 〈n1, n2〉 and
without 2-loops. Let H be any dihypergraph of type 〈n1, n2〉 such that D∗ ' H∗. Then H also
has no 2-loops.

Proof. Let D1 be the weak subdihypergraph of D consisting of all vertices and all 2-edges.
Of course, D1 contains only regular 2-edges, moreover, sD1(v1, v2) = sD(v1, v2) = n2 for
v1, v2 ∈ V D, v1 6= v2. Analogously, let H1 be the weak subdihypergraph of H consisting of
all vertices and all regular 2-edges. Then sH1(w1, w2) ≤ sH(w1, w2) ≤ n2 for w1, w2 ∈ V H,
w1 6= w2. Observe that D∗1 and H∗1 are subhypergraphs of D∗ and H∗ respectively, which
contain all (undirected) hyperedges with exactly three endpoints. It follows from the fact that
here we consider only dihypergraphs with 1- and 2-edges, so each undirected hyperedge with
three endpoints must be the image of a regular 2-edge. The inverse result is obvious. Hence
we infer D∗1 ' H

∗
1. Now, since we know that D1 and H1 have no 2-loops and edges, we can

apply Lemma 3.1, and next Lemma 3.12. Thus H1 ' D1(R), where R is a family of pairwise
hyperedge-disjoint simple hypercycles. This fact and Proposition 3.5 imply sH1(v1, v2) =
sD1(v1, v2) = n2 for v1, v2 ∈ V D, v1 6= v2. Hence we deduce that H cannot have 2-loops, since
H is of type 〈n1, n2〉. 2

Lemma 3.14. Let a dihypergraph D and F ⊆ EDreg(1) and n ∈ N satisfy the following
conditions:

(∗) D is locally finite.

(∗∗) sD(v) = n and sD(F )(v) ≤ n for each v ∈ V D.

Then there is a family R of pairwise disjoint simple cycles such that F = ER.
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Proof. In [14] we prove the analogous result for digraphs. Now we must only apply this
result to the digraph G obtained from D by omitting all 2-edges, since G contains F and
each cycle of G is also a cycle of D. Note that the proof of Lemma 3.12 is a generalization
of ideas used in [14]. 2

Theorem 3.15. Let dihypergrahs D and H satisfy the following conditions:

(∗) D∗ ' H∗.
(∗∗) D is a total dihypergraph of finite type 〈n1, n2〉 and locally finite and without 2-loops.

(∗∗∗) H is a dihypergraph of finite type 〈n1, n2〉.

Then Ss(H) ' Ss(D) and moreover, H is total and locally finite and without 2-loops.

Proof. By Lemma 3.13, H has no 2-loops, so by Lemma 3.1 there are F1 ⊆ EDreg(1) and
F2 ⊆ EDreg(2) and U = {u(f) : f ∈ F2} ⊆ V D such that u(f) ∈ ID1 (f) for f ∈ F2 and

H ' D
(
F1; 〈F2, U〉

)
.

It is easy to show sD(F2,U)(v, w) = sD(F1;〈F2,U〉)(v, w) and sD(F1)(v) = sD(F1;〈F2,U〉)(v) for
each v, w ∈ V D, v 6= w. Hence and by (∗∗∗) sD(F1)(v) ≤ n1 and sD(F2,U)(v, w) ≤ n2 for
v, w ∈ V D, v 6= w. These two facts, (∗∗) and Lemmas 3.12, 3.14 imply that there is a
family R of pairwise 2-edge-disjoint simple hypercycles of D such that D(F2, U) = D(R),
and there is a family S of pairwise disjoint simple cycles of D (and thus also D(F2, U))
such that F1 = ES. Hence, D(F1; 〈F2, U〉) = D(F2, U)(F1) = D(F2, U)(S) = D(R)(S) =
D(S;R). Thus we obtain H ' D(S;R). Hence and by Theorem 3.3 we deduce Ss(H) '
Ss(D), because obviously isomorphic dihypergraphs have isomorphic strong subdihypergraph
lattices. Moreover, by Corollaries 3.4 and 3.6, H is total and locally finite. 2

Remark. (∗) of Theorem 3.15 can be replaced by Sw(D) ' Sw(H) (see Theorems 2.2, 2.4
and the notes after Proposition 2.1).

Theorem 3.16. Let A =
〈
A, (kAi )i=mi=1 , (f

A
i )i=ni=1

〉
and B =

〈
B, (kB1 )i=mi=1 , (f

B
1 )i=ni=1

〉
be partial

algebras with m unary and n binary operations such that:

(∗) Sw(B) ' Sw(A),
(∗∗) A is a total and locally finite algebra,

(∗∗∗) for each a, b ∈ A and 1 ≤ i ≤ n, if a 6= b, then fAi (a, b) 6= a and fAi (a, b) 6= b.

Then
(a) Ss(B) ' Ss(A).

(b) B is total and locally finite, and B also satisfies (∗∗∗), i.e. for each b1, b2 ∈ B and
1 ≤ i ≤ n, b1 6= b2 implies f

B
i (b1, b2) 6= b1 and f

B
i (b1, b2) 6= b2.

Proof. Take D(A) and D(B). Then first, they are of (dihypergraph) type 〈m+ n, 2 · n〉 and,
of course, this type is finite. Secondly, by Theorem 2.4, D∗(A) ' D∗(B). Thirdly, since A
is total and locally finite, we have by Propositions 2.1(b) and 2.3 that D(A) is total and
locally finite. Fourthly, A satisfies (∗∗∗), so by Proposition 2.5, D(A) has no 2-loops. These
facts, Theorems 2.2 and 3.15 imply Ss(A) ' Ss

(
D(A)

)
' Ss

(
D(B)

)
' Ss(B). Moreover,

by Theorem 3.15, D(B) is total and locally finite and without 2-loops, so by Propositions
2.1(b), 2.3 and 2.5 we obtain (b). 2
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Obviously the result on unary algebras proved in [14] is a particular case of Theorem 3.16.
Thus we obtain, in particular, the necessity of the following three conditions of Theorem
3.16: A is total and locally finite and has only finitely many operations; and (∗∗) and (∗∗∗)
of Theorem 3.15. In [14] we showed that these conditions are necessary for unary algebras
and directed graphs.
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