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Abstract. In this paper is studied the problem concerning the angle between
two subspaces of arbitrary dimensions in Euclidean space En. It is proven that
the angle between two subspaces is equal to the angle between their orthogonal
subspaces. Using the eigenvalues and eigenvectors of corresponding matrix repre-
sentations, there are introduced principal values and principal subspaces. Their
geometrical interpretation is also given together with the canonical representation
of the two subspaces. The canonical matrix for the two subspaces is introduced
and its properties of duality are obtained. Here obtained results expand the classic
results given in [1,2].
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1. Angle between two subspaces in En

We prove the following theorem which will enable us to define the angle between two subspaces
of arbitrary dimensions of the Euclidean space En.

Theorem 1.1. Let a1, . . . , ap and b1, . . . ,bq are bases of two subspaces Σ1 and Σ2 of Eu-
clidean space En with inner product (, ) respectively and suppose that p ≤ q ≤ n. Then the
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following inequality holds

(1.1) det(MMT ) ≤

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(a1, a1) (a1, a2) · · · (a1, ap)
(a2, a1) (a2, a2) · · · (a2, ap)
·
·
·

(ap, a1) (ap, a2) · · · (ap, ap)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

×

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(b1,b1) (b1,b2) · · · (b1,bq)
(b2,b1) (b2,b2) · · · (b2,bq)
·
·
·

(bq,b1) (bq,b2) · · · (bq,bq)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where

M =





(a1,b1) (a1,b2) · · · (a1,bq)
(a2,b1) (a2,b2) · · · (a2,bq)
·
·
·

(ap,b1) (ap,b2) · · · (ap,bq)





and moreover equality holds if and only if Σ1 is subspace of Σ2.

Proof. The inequality (1.1) is invariant under any elementary row operation. Without loss of
generality we can assume that {a1, . . . , ap} is an orthonormal system and also {b1, . . . ,bq}
is an orthonormal system. Then we should prove that

det(MMT ) ≤ 1.

Let denote
ci = ((ai,b1), (ai,b2), . . . , (ai,bq)) ∈ R

q (1 ≤ i ≤ p).

Since {bi} and {ai} are orthonormal systems we get that ‖ci‖ ≤ 1 with respect to the
Euclidean metric in Rq.
Let cp+1, . . . , cq be an orthonormal system of vectors such that each of them is orthogonal

to c1, . . . , cp. Then

det(MMT ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(c1 · c1) (c1 · c2) · · · (c1 · cp)
(c2 · c1) (c2 · c2) · · · (c2 · cp)
·
·
·

(cp · c1) (cp · c2) · · · (cp · cp)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=
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=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(c1 · c1) (c1 · c2) · · · (c1 · cq)
(c2 · c1) (c2 · c2) · · · (c2 · cq)
·
·
·

(cq · c1) (cq · c2) · · · (cq · cq)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

which is the square of the volume of the parallelotop inRq generated by the vectors c1, . . . , cq.
Since ‖ci‖ ≤ 1, (1 ≤ i ≤ q) we obtain det(MMT ) ≤ 1.
Moreover, equality holds if and only if c1, . . . , cq is an orthonormal system. But ‖ci‖ = 1

implies that ai belongs to the subspace Σ2. Thus Σ1 ⊆ Σ2. Conversely, if Σ1 ⊆ Σ2 then it is
trivial that equality holds in (1.1). �

Under the assumptions of Theorem 1.1 we define the angle ϕ between Σ1 and Σ2 by

(1.2) cosϕ =

√
det(MMT )
√
Γ1 ·
√
Γ2

where the matrix M was defined in Theorem 1.1 and Γ1 and Γ2 are the Gram’s determinants
obtained by the vectors a1, . . . , ap and b1, . . . ,bq respectively.

Note that det(MMT ) ≥ 0; considering both values of
√
det(MMT ), we obtain two angles

ϕ and π − ϕ. Note that det(MMT ) = 0 if q < p.
In this paper we give some deeper results concerning the Theorem 1.1. Indeed, some

theorems which yield to principal directions on both subspaces Σ1 and Σ2 and common
principal values are proven.

In the next research will be used the following result.

Theorem 1.2. Let U be any p × q matrix. Any nonzero scalar λ is an eigenvalue of the
square matrix UUT if and only if it is eigenvalue of the square matrix UTU and moreover
the multiplicities of λ for both matrices UUT and UTU are equal.

Proof. Assume that λ 6= 0 is an eigenvalue of UUT with geometrical multiplicity r and
assume that x1, . . . ,xr are linearly independent eigenvectors corresponding to λ. Then we
will prove that the vectors

yi = U
Txi, (1 ≤ i ≤ r)

are linearly independent eigenvectors for the matrix UTU . Indeed,

UTUyi = (U
TU)UTxi = U

T (UUTxi) = λU
Txi = λyi

and thus yi are eigenvectors of U
TU corresponding to the eigenvalue λ.

Now let us assume that α1y1 + · · ·+ αryr = 0, then multiplying this equality by U from
left we obtain

λα1x1 + · · ·+ λαrxr = 0.

Since λ 6= 0 we obtain
α1x1 + · · ·+ αrxr = 0
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and hence α1 = · · · = αr = 0 because x1, . . . ,xr are linearly independent vectors.
Hence the geometric multiplicity of λ for the matrix UUT is smaller or equal to the

geometric multiplicity of λ for the matrix UTU . Analogously, the geometric multiplicity of λ
for the matrix UTU is smaller or equal to the geometric multiplicity of λ for the matrix UUT .
Thus these two geometrical multiplicities are equal. Since UUT and UTU are symmetric
non-negative definite matrices, we obtain that their geometrical multiplicities are equal to
the algebraic multiplicities. �

Now we are enabled to prove the following theorem.

Theorem 1.3. If Σ1 and Σ2 are any subspaces of the Euclidean vector space En and Σ
∗
1 and

Σ∗2 are their orthogonal complements, then

ϕ(Σ1,Σ2) = ϕ(Σ
∗
1,Σ

∗
2).

Proof. Assume that dimΣ1 = p and dimΣ2 = q. Without loss of generality we assume
that p ≤ q and assume that Σ1 is generated by ei, (1 ≤ i ≤ p) and Σ∗1 is generated by ej,
(p + 1 ≤ j ≤ n) where ei, (1 ≤ i ≤ n) is the standard basis of En. Further without loss
of generality we can assume that Σ2 is generated by ai, (1 ≤ i ≤ q) and Σ∗2 is generated
by aj, (q + 1 ≤ j ≤ n), where ai, (1 ≤ i ≤ n) is an orthonormal system of vectors. Let ai
have coordinates (ai1, ai2, . . . , ain), (1 ≤ i ≤ n) and the matrix with row vectors a1, · · · , an
will be denoted by A. We denote by X, Y and Z the following submatrices of A: X is
the submatrix of A with elements aij, (1 ≤ i ≤ p; 1 ≤ j ≤ q); Y is the submatrix of A
with elements aij, (1 ≤ i ≤ p; q + 1 ≤ j ≤ n); Z is the submatrix of A with elements aij,
(p+ 1 ≤ i ≤ n; q + 1 ≤ j ≤ n). According to these assumptions

cos2 ϕ(Σ1,Σ2) = det(XX
T )

and
cos2 ϕ(Σ∗1,Σ

∗
2) = det(Z

TZ)

and we should prove that
det(XXT ) = det(ZTZ).

Since A is an orthogonal matrix, it holds

XXT = Ip×p − Y Y
T and ZTZ = I(n−q)×(n−q) − Y

TY

and we should prove that

det(Ip×p − Y Y
T ) = det(I(n−q)×(n−q) − Y

TY ).

Let λ1, . . . , λp be the eigenvalues of Y Y
T and µ1, . . . , µn−q be the eigenvalues of Y

TY . Ac-
cording to Theorem 1.2, the matrices Y Y T and Y TY have the same non-zero eigenvalues
with the same multiplicities and hence

det(Ip×p − Y Y
T ) = (1− λ1) · · · (1− λp) =

= (1− µ1) · · · (1− µq) = det(I(n−q)×(n−q) − Y
TY ). �
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2. Principal values and principal subspaces

First we prove the following statement.

Theorem 2.1. Let Σ1 and Σ2 be two vector subspaces of the Euclidean space En of dimen-
sions p and q, (p ≤ q) and let A1 and A2 be n × p and n × q matrices whose vector rows
generate the subspace Σ1 and Σ2 respectively. Then the eigenvalues of the matrix

f(A1, A2) = A1A
T
2 (A2A

T
2 )
−1A2A

T
1 (A1A

T
1 )
−1

are p canonical squares cos2 ϕi, (1 ≤ i ≤ p) and moreover

cos2 ϕ =
p∏

i=1

cos2 ϕi,

where ϕ is the angle between the subspaces Σ1 and Σ2.

Proof. The transition of the base of Σj to another base corresponds to multiplication of Aj
by nonsingular matrix Pj, i.e. Aj → PjAj, where P1 is p× p matrix and P2 is q × q matrix.
By direct calculation one verifies that

f(P1A1, P2A2) = P1f(A1, A2)P
−1
1

and thus the eigenvalues are unchanged. Moreover, f(A1, A2) is unchanged under the trans-
formation of form Aj → AjR where R is any orthogonal matrix of n-th order, which means
that f(A1, A2) is invariant under the change of the rectangular Cartesian coordinates in the
Euclidean space En.
Since A1A

T
1 and A2A

T
2 are positive definite matrices, there exist symmetric positive def-

inite matrices P1 and P2 of orders p and q respectively such that

P1A1A
T
1 P
T
1 = B1B

T
1 = Ip×p and P2A2A

T
2 P
T
2 = B2B

T
2 = Iq×q,

where B1 and B2 correspond to another bases of Σ1 and Σ2. Since S = (B1B
T
2 )(B1B

T
2 )
T

is non-negative definite matrix, there exists a symmetric non-negative definite orthogonal
matrix Q1 of order p such that Q1SQ

−1
1 is diagonalized, i.e.

Q1SQ
−1
1 = (C1B

T
2 )(C1B

T
2 )
T = diag(c21, c

2
2, . . . , c

2
p), (c1 ≥ c2 ≥ · · · ≥ cp ≥ 0)

where C1 = Q1B1 corresponds to another basis of Σ1. Having in mind that each ci is an inner
product of two unimodular vectors, we get ci = cosϕi, 0 ≤ ϕ1 ≤ ϕ2 ≤ · · · ≤ ϕp ≤ π/2. The
vector rows of C1B

T
2 are mutually orthogonal, which means that there exists an orthogonal

matrix Q2 of order q, such that

C1B
T
2 Q

T
2 = C1C

T
2 = cosϕiδik,

where C2 = Q2B2 corresponds to another orthonormal base of Σ2. This shows that the
ordered set of angles ϕ1, ϕ2, . . . , ϕp is canonical and its invariance follows from the decompo-
sition

det[λIp×p − f(C1, C2)] =
p∏

i=1

(λ− cos2 ϕi) = det[λIp×p − f(A1, A2)].
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Finally note that according to the chosen bases of Σ1 and Σ2, we obtain

cos2 ϕ = det(f(C1, C2)) = det(f(A1, A2)) =
p∏

i=1

cos2 ϕi

where ϕ is the angle between the subspaces Σ1 and Σ2. �

Note that if the bases of Σ1 and Σ2 are orthonormal then A1A
T
1 = A2A

T
2 = I and f(A1, A2) =

A1A
T
2 (A1A

T
2 )
T .

Now let us consider the case p ≥ q. Instead of the matrix f(A1, A2) we should consider
the matrix f(A2, A1) which is of type q × q. Analogously to Theorem 2.1 the eigenvalues
of f(A2, A1) are q canonical squares of cosine functions but the product of them is equal to
zero if p > q. Now we prove the following theorem considering the mutually eigenvalues of
f(A1, A2) and f(A2, A1).

Theorem 2.2. Any nonzero scalar λ is an eigenvalue of f(A1, A2) if and only if it is
eigenvalue of f(A2, A1) and moreover the multiplicities of λ for both matrices f(A1, A2) and
f(A2, A1) are equal.

Proof. Let C1 and C2 have the same meanings like in the Theorem 2.1. According to
Theorem 1.2 we obtain that any nonzero scalar λ is an eigenvalue of f(C1, C2) if and only if
it is eigenvalue of f(C2, C1) and moreover the multiplicities of λ for both matrices f(C1, C2)
and f(C2, C1) are equal, because f(C1, C2) = (C1C

T
2 )(C1C

T
2 )
T . On the other hand, f(A1, A2)

is the same eigenvalues as f(C1, C2) with the same multiplicity and f(A2, A1) is the same
eigenvalues as f(C2, C1) with the same multiplicity. �

Note that λ = 0 is eigenvalue for the matrix f(A2, A1) if q > p, but λ = 0 may not be
eigenvalue for the matrix f(A1, A2).
The common eigenvalues will be called principal values. According to the Theorems

2.1 and 2.2 there are unique decompositions of the subspaces Σ1 and Σ2 into the orthogonal
eigenspaces for the common non-negative eigenvalues and for the zero eigenvalue if such exists.
These eigenspaces are called principal subspaces or principal directions for the eigenvalues with
multiplicity 1. The geometrical interpretation of the principal values and principal subspaces
will be given after the proof of the Theorem 2.3.

Theorem 2.3. The function cos2 ϕ, where ϕ is the angle between any vector x ∈ Σ1 and
the subspace Σ2, has maximum if and only if the vector x belongs to a principal subspace of
Σ1 which corresponds to the maximal principal value. The maximal value of cos

2 ϕ is the
maximal principal value.

Proof. According to the proof of Theorem 2.1, without loss of generality we can suppose
that Σ1 is generated by the orthonormal vectors ai, (1 ≤ i ≤ p) and Σ2 is generated by the
orthonormal vectors bj, (1 ≤ j ≤ q) such that (ai,bj) = 0, (i 6= j; 1 ≤ i ≤ p, 1 ≤ j ≤ q).
Let x = α1a1+· · ·+αpap, let λ21 = a1b1 be the maximal principal value and the corresponding
subspace of Σ1 be generated by a1, . . . , ar. Then for the angle ϕ between x and Σ2 it holds

cos2 ϕ =
(α1λ1)

2 + · · ·+ (αpλs)2

α21 + · · ·+ α2p
=
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=
λ21(α

2
1 + · · ·+ α

2
r) + λ

2
r+1(· · ·) + · · ·

α21 + · · ·+ α2p
≤ λ21

and equality holds if and only if αr+1 = · · · = αp = 0, i.e. if and only if x belongs to the
eigenspace corresponding to λ1. �

Note that an analogous statement like Theorem 2.3 holds also if we consider x as vector of Σ2
and ϕ is the angle between x and Σ1. Thus we obtain the following geometrical interpretation:
Among all values cos2 ϕ where ϕ is angle between any vector x ∈ Σ1 and any vector

y ∈ Σ2, the maximal value λ21 is the first (maximal) principal value. Then

Σ11 = {x ∈ Σ1| cos
2(x,Σ2) = λ

2
1}

is the the principal subspace of Σ1. Analogously

Σ21 = {y ∈ Σ2| cos
2(y,Σ1) = λ

2
1}

is the principal subspace of Σ2 and moreover dimΣ11 = dimΣ21. Now let us consider the
subspaces Σ′1 and Σ

′
2 where Σ

′
1 is orthogonal complement of Σ11 in Σ1 and Σ

′
2 is orthogonal

complement of Σ21 in Σ2. Among all values cos
2 ϕ where ϕ is angle between any vector

x ∈ Σ′1 and any vector y ∈ Σ
′
2, the maximal value λ

2
2 is the second principal value. Then

Σ12 = {x ∈ Σ
′
1| cos

2(x,Σ′2) = λ
2
2}

is the principal subspace of Σ′1. Analogously

Σ22 = {y ∈ Σ
′
2| cos

2(y,Σ′1) = λ
2
2}

is the principal subspace of Σ′2 and moreover dimΣ12 = dimΣ22. Continuing this procedure
we obtain the decompositions of orthogonal principal subspaces

Σ1 = Σ11 + Σ12 + · · ·+ Σ1,s+1

Σ2 = Σ21 + Σ22 + · · ·+ Σ2,s+1

where dimΣ1i = dimΣ2i, (1 ≤ i ≤ s). The subspaces Σ1,s+1 and Σ2,s+1 correspond for the
possible value 0 as a principal value.

Example. Let Σ1 be generated by the vectors (1, 0, 0, 0) and (0, 1, 0, 0) and Σ2 be gener-
ated by (cosϕ, 0, sinϕ, 0) and (0, cosϕ, 0, sinϕ). Then cos2 ϕ is unique principal value, its
multiplicity is 2 and Σ1 and Σ2 are principal subspaces themselves.

At the end we prove a theorem which determines the orthogonal projection of any vector x
on any subspace of En.

Theorem 2.4. In the n-dimensional Euclidean space En let be given a subspace Σ generated
by k linearly independent vectors ai, (1 ≤ i ≤ k; k ≤ n− 1). The orthogonal projection x′ of
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an arbitrary vector x of En is given by

(2.1) x′ = −
1

Γ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 (x, a1) (x, a2) · · · (x, ak)
a1 (a1, a1) (a1, a2) · · · (a1, ak)
a2 (a2, a1) (a2, a2) · · · (a2, ak)
·
·
·
ak (ak, a1) (ak, a2) · · · (ak, ak)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

where Γ is the Gram’s determinant of the vectors ai, (1 ≤ i ≤ k).

Proof. According to (2.1) it is obvious that

x− x′ =
1

Γ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

x (x, a1) (x, a2) · · · (x, ak)
a1 (a1, a1) (a1, a2) · · · (a1, ak)
a2 (a2, a1) (a2, a2) · · · (a2, ak)
·
·
·
ak (ak, a1) (ak, a2) · · · (ak, ak)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

By scalar multiplication of this equality by ai, (1 ≤ i ≤ k) the first column is equal to
the (i+ 1)-st column and thus

(x− x′, ai) = 0, (1 ≤ i ≤ k).

Since x′ is a linear combination of the vectors ai, (1 ≤ i ≤ k) then the vector x′ lies in Σ.
Moreover, x − x′ is orthogonal to the base vectors of Σ, we obtain that x′ is the required
orthogonal projection of x on the subspace Σ. �

3. Principle of duality and canonical form

In this section we will consider the duality principle like in the Theorem 1.3 and as a crown
of all previous research will be given the canonical form of two subspaces Σ1 and Σ2. Now
let Σ∗i denote the orthogonal subspace of Σi, (i = 1, 2) in the Euclidean space En. We saw
that ϕ(Σ1,Σ2) = ϕ(Σ

∗
1,Σ

∗
2) and now the same conclusions for the eigenvalues and principal

subspaces (principal directions) also hold for the subspaces Σ∗1 and Σ
∗
2.

Theorem 3.1. If Σ1 and Σ2 are any subspaces of the Euclidean vector space En and Σ
∗
1

and Σ∗2 are their orthogonal complements, then the nonzero and different from 1 principal
values for the pair (Σ1,Σ2) are the same for the pair (Σ

∗
1,Σ

∗
2) with the same multiplicities

and conversely.
If p + q ≤ n, then the multiplicity of 1 for the pair (Σ∗1,Σ

∗
2) is bigger for n − p − q than

the multiplicity of 1 for the pair (Σ1,Σ2).
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If p + q ≥ n, then the multiplicity of 1 for the pair (Σ1,Σ2) is bigger for p + q − n than
the multiplicity of 1 for the pair (Σ∗1,Σ

∗
2).

Proof. We use the same notations and assumptions as in the proof of the Theorem 1.3.
Specially, the matrices X, Y and Z are the same. Assume that p+q ≤ n. The case n > p+q
can be discussed analogously.
We will prove the following identity

det(λIp×p −XX
T ) · (λ− 1)n−q−p = det(λI(n−q)×(n−q) − Z

TZ)

and hence the proof will be finished.
Since A is an orthogonal matrix, it holds

XXT = Ip×p − Y Y
T and ZTZ = I(n−q)×(n−q) − Y

TY

and we should prove that

det((λ− 1)Ip×p + Y Y
T ) · (λ− 1)n−q−p = det((λ− 1)I(n−q)×(n−q) + Y

TY ).

Multiplying this equality by (−1)n−q and putting 1− λ = µ, we should prove that

det(µIp×p − Y Y
T ) · µn−q−p = det(µI(n−q)×(n−q) − Y

TY ).

Let µ1, . . . , µp be the eigenvalues of Y Y
T . According to Theorem 1.2, both sides of the last

equality are equal to
(µ− µ1)(µ− µ2) · · · (µ− µp)µ

n−q−p. �

According to Theorem 3.1 we obtain the following consequence.

Corollary 3.2. According to the notations of Theorem 3.1,
i) the number of nonzero and nonunit principal values (each value counts as many times

as its multiplicity) of the pair (Σ1,Σ2) is less or equal to n/2;
ii) if n is an odd number and p = q, then at least one of the pairs (Σ1,Σ2) and (Σ

∗
1,Σ

∗
2)

has a principal value 1, i.e. they have a common subspace of dimension ≥ 1.

Now we are able to give the canonical form of two subspaces. In order to avoid many
indices we assume that the considered subspaces of En are Σ and Π with dimensions p and
q respectively. We denote by Σ∗ and Π∗ the orthogonal subspaces of En. Without loss
of generality we assume that p ≤ q. Since the canonical form is according to these four
subspaces, we can also assume that p+ q ≤ n. Indeed, if p+ q > n then (n− p)+ (n− q) < n
and we can consider the subspaces Σ∗ and Π∗.

Assume that 1 = c0 > c1 > c2 > · · · > cs > cs+1 = 0 be the principal values for the pair
(Σ,Π) with multiplicities r0, r1, . . . , rs+1 respectively, such that p = r0 + r1 + · · ·+ rs+1. Let
Σ be generated by the following orthonormal vectors

a01, . . . , a0r0 , a11, . . . , a1r1 , . . . , as1, . . . , asrs , as+1,1, . . . , as+1,rs+1 ,
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such that the vectors ai1, . . . , airi generate the principal subspace for the principal value ci,
(0 ≤ i ≤ s+1). The pair of subspaces (Σ∗,Π∗) have the same principal values 1 = c0 > c1 >
c2 > · · · > cs > cs+1 = 0 with multiplicities r′0 = r0 + n− p− q, r1, . . . , rs+1. Assume that Σ

∗

is generated by the following orthonormal vectors

a∗01, . . . , a
∗
0r′0
, a∗11, . . . , a

∗
1r1
, . . . , a∗s1, . . . , a

∗
srs
, a∗s+1,1, . . . , a

∗
s+1,rs+1

, a∗1, . . . , a
∗
q−p

where the vectors ai1, . . . , airi generate the principal subspace for the principal value ci,
(1 ≤ i ≤ s + 1), a01, . . . , a0r′0 generate the principal subspace for the principal value 1 and
a∗1, . . . , a

∗
q−p be the remaining q − p orthonormal vectors.

Now we chose the orthonormal vectors of Π as follows. We chose

b01, . . . ,b0r0 ,b11, . . . ,b1r1 , . . . ,bs1, . . . ,bsrs ,bs+1,1, . . . ,bs+1,rs+1 ,b1, . . . ,bq−p

such that b0i coincides with a0i, (1 ≤ i ≤ r0), bi1, . . . ,biri generate the principal sub-
space for the principal value ci, (1 ≤ i ≤ s) and such that (aiu,biv) = δuvci. The vectors
bs+1,1, . . . ,bs+1,rs+1 generate the same subspace as the vectors a

∗
s+1,1, . . . , a

∗
s+1,rs+1

and we can
choose bs+1,i = a

∗
s+1,i, (1 ≤ i ≤ rs+1). The vectors b1, . . . ,bq−p generate the same space as

the vectors a∗1, . . . , a
∗
q−p and we can choose bi = a

∗
q−p+1−i, (1 ≤ i ≤ q − p).

Finally we determine the orthonormal vectors of Π∗

b∗01, . . . ,b
∗
0r′0
,b∗11, . . . ,b

∗
1r1
, . . . ,b∗s1, . . . ,b

∗
srs
,b∗s+1,1, . . . ,b

∗
s+1,rs+1

as follows. The vectors b∗01, . . . ,b
∗
0r′0
can be chosen such that b∗0i = a

∗
0i, (1 ≤ i ≤ r

′
0). The

vectors b∗i1, . . . ,b
∗
iri
generate the principal subspace for the principal value ci, (1 ≤ i ≤ s),

and the vectors b∗i1, . . . ,b
∗
iri
can uniquely be chosen such that (a∗iu,b

∗
iv) = δuvci. The vectors

b∗s+1,1, . . . ,b
∗
s+1,rs+1

generate the same subspace as the vectors a∗s+1,1, . . . , a
∗
s+1,rs+1

and thus
we can choose b∗s+1,i = a

∗
s+1,i, (1 ≤ i ≤ rs+1).

Moreover, the vectors a∗11, . . . , a
∗
1r1
, . . . , a∗s1, . . . , a

∗
srs
can be chosen such that

(a∗iu,biv) = −δuv
√
1− c2i , (1 ≤ i ≤ s).

Now we know some of the inner products between the base vectors of Σ and Σ∗ and the base
vectors of Π and Π∗. The matrix P of all such n× n inner products must be orthogonal and
can uniquely be obtained from the above inner products. Considering the base vectors of Σ
in the mentioned order together with the base vectors of Σ∗ in the opposite order and on the
other side the base vectors of Π in the mentioned order together with the base vectors of Π∗

in the opposite order we obtain the following

(r0 + r1 + r2 + · · ·+ rs + rs+1 + (q − p) + rs+1 + rs + · · ·+ r2 + r1 + r
′
0)×

×(r0 + r1 + r2 + · · ·+ rs + rs+1 + (q − p) + rs+1 + rs + · · ·+ r2 + r1 + r
′
0)

matrix as canonical matrix for the subspaces Σ and Π:
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P =





I 0 0 · · · 0 0 0 0 0 · · · 0 0 0
0 c1I 0 · · · 0 0 0 0 0 · · · 0 d1I

′ 0
0 0 c2I · · · 0 0 0 0 0 · · · d2I ′ 0 0
·
·
·
0 0 0 · · · csI 0 0 0 dsI

′ · · · 0 0 0
0 0 0 · · · 0 0 0 I ′ 0 · · · 0 0 0
0 0 0 · · · 0 0 I 0 0 · · · 0 0 0
0 0 0 · · · 0 I ′ 0 0 0 · · · 0 0 0
0 0 0 · · · −dsI ′ 0 0 0 csI · · · 0 0 0
·
·
·
0 0 −d2I ′ · · · 0 0 0 0 0 · · · c2I 0 0
0 −d1I ′ 0 · · · 0 0 0 0 0 · · · 0 c1I 0
0 0 0 · · · 0 0 0 0 0 · · · 0 0 I





,

where di =
√
1− c2i , (1 ≤ i ≤ s) and I

′ denotes the matrix with 1 on the opposite diagonal
of the main diagonal and the other elements are zero.
Note that the principal values for the pair (Σ,Π∗) (also (Σ∗,Π)) are the numbers d2i =

1 − c2i = sin
2 ϕi with the same multiplicities as c

2
i . Moreover the previous canonical matrix

P is also canonical matrix for the pair (Σ,Π∗) (also (Σ∗,Π)) if we permute its rows and
columns. Then the order q − p converts into n− p− q and vice versa.
The previous consideration yields to the following statement.

Theorem 3.3. Let n, p, q be positive integers such that n ≤ p + q and p ≤ q. Then for any
p values c21, . . . , c

2
p, (0 ≤ ci ≤ 1) there exist two subspaces Σ1 and Σ2 of En with dimensions

p and q such that c21, . . . , c
2
p are principal values for the pair (Σ1,Σ2). The existence of the

subspaces Σ1 and Σ2 is uniquely up to orthogonal motion in En.

Proof. Let n, p, q be positive integers such that n ≤ p+ q and p ≤ q and let be given p values
c2i , (0 ≤ ci ≤ 1). We choose arbitrary orthonormal base a1, . . . , ap, a

∗
n−p, . . . , a

∗
1 of En. Then

we introduce q vectors b1, . . . ,bq whose coordinates with respect to a1, . . . , ap, a
∗
n−p, . . . , a

∗
1

are given by the first q columns of the matrix P . Then it is obvious that the principal values
for the pair (Σ1,Σ2) where Σ1 is generated by a1, . . . , ap and Σ2 is generated by the vectors
b1, . . . ,bq are just the given numbers c

2
1, . . . , c

2
p.

Let (Σ1,Σ2) and (Σ
′
1,Σ

′
2) be two pairs of subspaces with the same principal values.

Without loss of generality we assume that both of them are given in canonical form given by
the same canonical matrix P . Let

{a1, . . . , ap, a
∗
1, . . . , a

∗
n−p} and {a′1, . . . , a

′
p, a

′∗
1 , . . . , a

′∗
n−p}

be the base vectors of Σ1+Σ
∗
1 and Σ

′
1+Σ

′∗
1 corresponding to their canonical forms. Since the

base vectors of Σ2 + Σ
∗
2 and Σ

′
2 + Σ

′∗
2 are determined uniquely, it is sufficient to choose the
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orthogonal transformation ϕ which maps the mentioned base of Σ1 +Σ
∗
1 into the mentioned

base of Σ′1 + Σ
′∗
1 and then ϕ(Σ1) = Σ

′
1 and ϕ(Σ2) = Σ

′
2. �

Theorem 3.4. Let A be a symmetric matrix of n-th order. Assume that the linear subspace
L of En such that A is positive definite matrix in L and A

−1 is positive definite matrix in the
orthogonal complement L∗, then A is positive definite matrix.

Proof. If A|L denotes the restriction of A to L, and by ind(A|L) is denoted the number of
negative eigenvalues of V TAV , where V is the matrix of the base of L, then the following
lemma holds.

Lemma 3.5. Let A be a symmetric nonsingular matrix of n-th order, and let L and L∗ be
the same notations as in Theorem 3.4. If A−1|L∗ is a nonsingular restriction, then also the
restriction A|L is nonsingular and moreover

ind(A|En) = ind(A|L) + ind(A
−1|L∗).

The Theorem 3.4 obtains for the special case

ind(A|L) = ind(A−1|L∗) = 0.

Proof of Lemma 3.5. Let V and W denote the matrices from the bases of L and L∗ respec-
tively. Then B = AVW is nonsingular matrix. Indeed, it is supposed that AV x = Wy for the
vectors x and y. Multiplying this equality by W ∗A−1 from left, we obtain W ∗A−1Wy = 0,
because V ∗W = 0. This implies y = 0 which means that W ∗A−1W is nonsingular matrix.
Consequently, Wx = A−1Wy = 0 implies x = 0. It implies that

ind(A|En) = ind(A
−1|En) = ind(B

TA−1B|En) =

= ind(A|L) + ind(A−1|L∗). �
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