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Abstract. Let b(K) denote the minimal number of smaller homothetical copies
of a convex body K ⊂ Rn, n ≥ 2, covering K. For the class B of belt bodies,
which is dense in the set of all convex bodies (in the Hausdorff metric), 3 · 2n−2 is
known to be an upper bound on b(K) if K is different from a parallelotope. We will
show that (except for all parallelotopes and two particular cases, each satisfying
b(K) = 3 · 2n−2) within B this bound can be improved to 5 · 2n−3.
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1. Introduction

Let Rn, n ≥ 2, denote the n-dimensional Euclidean space. A compact, convex set K ⊂ Rn
with nonempty interior is said to be a convex body. As usual, we will use the common
abbreviations dim, int, cl, bd and vert for dimension, interior, closure, boundary, and vertex
set, respectively. We write b(K) for the minimal positive integer k such that K can be
covered by k of its smaller homothetical copies. A famous open problem (which was posed
in geometrically different, but equivalent forms by F. W. Levi, H. Hadwiger, I. Gohberg and
A. Markus, cf. [16], [13], and [11]) asks whether b(K) ≤ 2n for each convex body K ⊂ Rn,
with equality if and only if K is parallelotope. We remark that in [16] and [11] this problem
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was positively answered for n = 2 (the paper [11] was written in 1956 but, due to some events
in Russia, published much later, see also [6]). For n ≥ 3 the problem is still unsolved. Thus
it is interesting to solve it for sufficiently large subclasses of the class of convex bodies. One
of the most striking results in this direction is M. Lassak’s positive solution b(M) ≤ 8 for any
centrally symmetric, three-dimensional convex body M , cf. [15]. In this article we consider
the problem for the family of belt bodies which was introduced in [1] and [5] (for a definition,
see below).
We also refer to Section 34 of [8] and to [18] for almost complete surveys regarding these

and related results.
In 1960, V. Boltyanski [4] formulated the illumination problem for convex bodies. A

boundary point x of a convex body K ⊂ Rn is illuminated by the direction defined by a
nonzero vector e if x+λe ∈ intK for a sufficiently small λ > 0. The illumination problem asks
for the minimal positive integer k such that there are k directions in Rn which illuminate the
whole boundary ofK (i.e., each boundary point is illuminated by at least one of the considered
directions). Denote this minimal number by c(K). In [4], the equality b(K) = c(K) for each
convex body K ⊂ Rn was established. From our point of view, the illumination arguments
yield a more convenient and more intuitive method than the consideration of coverings by
smaller homothetical copies. Thus in the sequel we will use the terminology of illumination
and the number c(K) instead of b(K).
For formulating some lemmas, we recall that an n-dimensional polytope Z ⊂ Rn is said

to be a zonotope if it is representable as the vector sum of a finite set of line segments:
Z = I1 + · · · + Ir, r ≥ n. Furthermore, a convex body V ⊂ Rn is a zonoid if it is the limit
of a convergent sequence of zonotopes (in the Hausdorff metric). Another generalization of
the notion of zonotopes is that of belt polytopes. A convex n-dimensional polytope B ⊂ Rn
is called a belt polytope if it has a non-degenerate segment summand parallel to each of its
edges. In other words, each belt polytope B is representable in the form B = Z +B′, where
Z is a zonotope such that each of its edges is parallel to an edge of Z. (It should be noticed
that sometimes belt polytopes were also called planets, see, e.g., [3] and [17].)
It seems to be natural to define belt bodies as the limits of convergent sequences of belt

polytopes. But this is incorrect since every convex body can be represented as such a limit;
cf. [7] and Section 41 of [8]. In this connection, the class of belt bodies is defined in a more
delicate way, namely: Let H(K) denote the set of all outward normal unit vectors of a convex
body K ⊂ Rn at its regular boundary points. A nonzero vector e is said to be a belt vector
of K if for each supporting line L of K, parallel to e, and for a ∈ L ∩ K at least one of
the rays defined on L by a is a tangential ray of K at a. A convex body K ⊂ Rn is said
to be a belt body if for every q ∈ H(K) and any ε > 0 there exist linearly independent belt
vectors e1, . . . , en−1 of K such that the hyperplane spanned by them has a unit normal vector
p satisfying ||p− q|| < ε. Each zonotope, each zonoid, and each belt polytope is a belt body,
see Sections 40 and 41 of [8]. And it is clear that, as already the set of belt polytopes, also
the family of belt bodies is dense in the set of all compact, convex bodies (with respect to
the Hausdorff metric).
In 1985, H. Martini [17] confirmed the conjecture c(K) ≤ 2n for the class of belt polytopes

in the following reinforced form: If an n-dimensional belt polytope P is not a parallelotope,
then c(P ) ≤ 3 · 2n−2. In 1992, V. Boltyanski and P. Soltan [9] established the same result
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for the class of zonoids. And in 1996, V. Boltyanski [5] confirmed this result for belt bodies:
c(B) ≤ 3 · 2n−2 for any n-dimensional belt body B distinct from a parallelotope, see also [7].
In this article, we give a complete list of the n-dimensional belt bodies with c(B) =

3 · 2n−2, and we prove that for all other n-dimensional belt bodies the more exact estimate
c(B) ≤ 5 · 2n−3 holds.

2. Results

For the complete list referring to c(B) = 3 · 2n−2 we need the following

Definition 1. Let I1, I2, I3, I4 be four line segments in R3 each three of which are in general
position (i.e., not parallel to a plane). The zonotope D = I1 + I2 + I3 + I4 is said to be a
parallelogramic dodecahedron.

Remark 1. In the particular case when all segments I1, I2, I3, I4 have the same length, such
a zonotope is named a rhombic dodecahedron, since then all its facets are rhombs. Very
often this specified notion is incorrectly used for the general case, described by Definition 1,
where the facets of D can be parallelograms with different side lengths. Nevertheless, also
the restricted class of rhombic dodecahedra is interesting in itself. For example, S. Bilinski
[2] surprisingly found that, besides the classical rhombic dodecahedron (which is a Catalan
solid and dual to the Archimedean cuboctahedron), there exists a second type of rhombic
dodecahedra all of whose rhombic facets are congruent, see also [10], p. 156, for a nice
approach.

Remark 2. It is easy to see that each parallelogramic dodecahedron D has six 4-valent
vertices (and eight 3-valent ones), and that no two of these 4-valent vertices can be illuminated
by the same direction, since each such pair of vertices is antipodal (i.e., the two vertices belong
to a pair of parallel facets of D). Thus we have c(D) = 6, see also [17].

Now we are ready to formulate our

Theorem. Let B ⊂ Rn be an n-dimensional belt body (in particular, a zonoid or a zonotope),
where n ≥ 3. Then c(B) ≤ 5 · 2n−3, except for the following three particular cases:

(i) B is an n-dimensional parallelotope (= affine cube); in this case c(B) = 2n.

(ii) B is the direct vector sum of a 2-dimensional belt body C distinct from a parallelogram
and an (n − 2)-dimensional parallelotope (i.e., B is an (n − 2)-fold prism over C); in
this case c(B) = 3 · 2n−2.

(iii) B is the direct vector sum of a 3-dimensional parallelogramic dodecahedron Z and an
(n− 3)-dimensional parallelotope (i.e., it is an (n− 3)-fold prism over Z); in this case
c(B) = 3 · 2n−2.

The proof of this theorem is based on several lemmas which are possibly interesting for
themselves. To formulate them, we recall that an n-dimensional zonotope Z is said to be
indecomposable if there is no representation Z = Z1⊕· · ·⊕Zr with r ≥ 2 and dimZi ≥ 1, i =
1, . . . , r, where ⊕ means direct vector sum.
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Lemma 1. Let Z be a 3-dimensional, indecomposable zonotope which is representable as the
vector sum of at least 5 pairwise non-parallel line segments. Then c(Z) ≤ 5.

Lemma 2. Let Z be a 4-dimensional, indecomposable zonotope which is representable as the
vector sum of 5 pairwise non-parallel line segments. Then c(Z) = 10.

Lemma 3. Let Z be an n-dimensional, indecomposable zonotope, n ≥ 4. Then c(Z) ≤
5 · 2n−3.

The following lemma affirms that our Theorem is valid for the family of all zonotopes.

Lemma 4. For any n-dimensional zonotope Z, n ≥ 3, which is distinct from the three
particular cases in the Theorem, the inequality c(Z) ≤ 5 · 2n−3 holds.

To extend this result from zonotopes to arbitrary belt bodies, we have to generalize the notion
of tangential zonotopes, introduced for zonoids in [9], to general belt bodies.

Definition 2. Let B ⊂ Rn be a belt body, e1, . . . , ek be some of its belt vectors, and I1, . . . , Ik
be line segments parallel to the vectors e1, . . . , ek, respectively. Then the zonotope Z = I1 +
· · · + Ik is said to be a tangential zonotope of the belt body B. Moreover, a belt polytope P
with the property that each of its edges is parallel to one of the vectors e1, . . . , ek is called a
tangential belt polytope of B.

Remark 3. It is possible to prove the following Approximation Theorem: For every belt
body B ⊂ Rn there exists a sequence P1, P2, . . . of its tangential belt polytopes such that
limk−→∞ Pk = B (in the sense of the Hausdorff metric). In other words, for every real
number ε > 0 there exists a tangential belt polytope P of B such that the Hausdorff distance
d(P,B) is less than ε. In [9], the Approximation Theorem was used in the proof of the
analogue (for zonoids) of Lemmas 5 and 7 below, and this allowed to establish that for every
n-dimensional zonoid Z distinct from a parallelotope the inequality c(Z) ≤ 3 · 2n−2 holds.
Here we give another, more simple proof of Lemmas 5 and 7 below (for all belt bodies), and
by this we do not need the Approximation Theorem.

Lemma 5. For any n-dimensional belt body B ⊂ Rn and each of its n-dimensional, tangential
zonotopes (or its tangential belt polytopes) Z, the inequality c(B) ≤ c(Z) holds.

Lemma 6. Let B ⊂ Rn be an n-dimensional belt body having only n+1 belt directions defined
by vectors e1, . . . , en, en+1, where e1, . . . , en are linearly independent and en+1 = λ1e1 + · · ·+
λnen with some nonzero coefficients. Then B is a zonotope that is the vector sum of line
segments I1, . . . , In, In+1 parallel to the vectors e1, . . . , en, en+1, respectively.

Remark 4. Let Wn ⊂ Rn be a zonotope as in Lemma 6. It is easily shown (by a method as
in the proof of Lemma 3, see below) that the inequalities

c(W2)

22
≤
c(W3)

23
≤
c(W4)

24
≤ · · · ≤

c(Wk)

2k
≤ · · ·
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hold. The first and the second fraction in this sequence are equal to the number 3
4
, whereas

the third fraction is equal to 5
8
(due to Lemma 2). Evaluating fractions after the third one,

one might obtain estimates more precise than those in our Theorem.

Lemma 7. Let M ⊂ Rn be an n-dimensional belt body. If M is indecomposable, then there
exists an n-dimensional, indecomposable, tangential zonotope Z of the body M .

3. Proofs

Proof of Lemma 1. The normal fans of n-dimensional zonotopes are hyperplane arrange-
ments in projective (n−1)-spaces (see, e.g., Chapter 7 in [19]). Therefore these arrangements
can be used to study the combinatorial types of zonotopes. Thus the complete list of com-
binatorial types of 3-zonotopes which are vector sums of 5 pairwise non-parallel segments
can be taken from Figures 18.1.1 and 18.1.2 of [12], where all projective 2-arrangements of
5 lines are presented. Except for the decomposable case of the octagonal prism, there are
three types shown in the figure below. Now it is possible to show that the whole boundary
of every such 3-zonotope Z can be illuminated by 5 directions.

For every polytope Z it suffices to illuminate (instead of bdZ) the set vertZ. Furthermore,
it is easy to see that a subset M of vertZ can be illuminated by one direction if M can
be described in the following way. Consider a zone Q (or, in other terms, a belt) of Z, i.e.,
the union of all edges of Z parallel to each other and all segments in bdZ parallel to these
edges. Let e 6= o be a vector parallel to the edges of the zone Q. Denote by C1, C2 two
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open caps forming together (bdZ)\Q, where C1 is the cap completely illuminated by e. Let
p : R3 −→ L be the projection on a plane L in the direction of e. Choose some vertices
w1, . . . , wk from (clC1)∩Q such that the vertices p(w1), . . . , p(wk) of the polygon p(Z) can be
illuminated in L by one direction. Then by a small perturbation of e we can obtain a vector
whose direction illuminates the vertices w1, . . . , wk ∈ Z and all vertices from C1. Having this
in mind, we can descriptively prove that each of the 3-zonotopes shown in the figure can be
illuminated by 5 directions. Namely, in every partial figure the set vertZ can be dissected
into 5 disjoint subsets (with an own marking, in every case) each of which can be illuminated
by one direction.

Thus Lemma 1 is verified for all indecomposable 3-zonotopes with 5 zones. And by Theorem
34.8 from [8] this result can be extended to all indecomposable 3-zonotopes with a larger
number of zones. �

Also we remark that, e.g., in the third picture of the figure one can easily find five vertices
being pairwise antipodal. Hence there are no four directions illuminating all the vertices of
this zonotope.

Proof of Lemma 2. Let Z be the 4-dimensional, indecomposable zonotope which is the vec-
tor sum of pairwise non-parallel segments I1, I2, I3, I4, I5. Denote by ei the vector going from
the midpoint of the segment Ii (as starting point) to one of its endpoints, i ∈ {1, 2, 3, 4, 5}.
Then every four of the vectors e1, e2, e3, e4, e5 are linearly independent (otherwise Z is de-
composable). Changing the orientation of the vectors, if necessary, we can assume that

λ1e1 + λ2e2 + λ3e3 + λ4e4 + λ5e5 = o

with positive coefficients λ1, λ2, λ3, λ4, λ5. Denote the vector λiei by vi, i ∈ {1, 2, 3, 4, 5}.
Then v1 + v2 + v3 + v4 + v5 = o, and every four of the vectors v1, v2, v3, v4, v5 are linearly
independent. Furthermore, denote by W the zonotope that is the set of all points

µ1v1 + µ2v2 + µ3v3 + µ4v4 + µ5v5

with |µi| ≤ 1, i ∈ {1, 2, 3, 4, 5}. The zonotopes Z and W have pairwise parallel edges.
Consequently c(Z) = c(W ). Thus we have to prove that c(W ) = 10.
The vertices of W are the points ±wi and ±wi,j, where wi = 2vi and wi,j = 2(vi + vj);

here i, j ∈ {1, 2, 3, 4, 5} with i 6= j. For example, w1 = 2v1 = v1 − v2 − v3 − v4 − v5, since
v1 + v2 + v3 + v4 + v5 = o. It is easy to show that the vector q1 = −v1 − εv2 − ε2v4 with
0 < ε < 1

2
illuminates the vertices

w1 = v1 − v2 − v3 − v4 − v5,
w1,2 = v1 + v2 − v3 − v4 − v5,
−w3,5 = v1 + v2 − v3 + v4 − v5 .
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Indeed, the points

w1 + q1 = w1 + q1 +
3
2
ε(v1 + v2 + v3 + v4 + v5) =

3
2
εv1 +

(
−1 + 1

2
ε
)
v2 +

(
−1 + 3

2
ε
)
(v3 + v5) +

(
−1 + ε

(
3
2
− ε
))
v4 ,

w1,2 + q1 = w1,2 + q1 +
1
2
ε(v1 + v2 + v3 + v4 + v5) =

1
2
εv1 +

(
1− 1

2
ε
)
v2 +

(
−1 + 1

2
ε
)
(v3 + v5) +

(
−1 + ε

(
1
2
− ε
))
v4 ,

−w3,5 + q1 = −w3,5 + q1 +
1
2
ε2(v1 + v2 + v3 + v4 + v5) =

1
2
ε2v1 +

(
1− ε

(
1− 1

2
ε
))
v2 +

(
−1 + 1

2
ε2
)
(v3 + v5) +

(
1− 1

2
ε2
)
v4

are situated in the interior of the zonotope W (since all coefficients on the right-hand side
are strictly contained between −1 and 1).
Shifting all indices by 1, we obtain successively that

the vector q2 = −v2 − εv3 − ε2v5 illuminates the vertices w2, w2,3,−w4,1,
the vector q3 = −v3 − εv4 − ε2v1 illuminates the vertices w3, w3,4,−w5,2,
the vector q4 = −v4 − εv5 − ε2v2 illuminates the vertices w4, w4,5,−w1,3,
the vector q5 = −v5 − εv1 − ε2v3 illuminates the vertices w5, w5,1,−w2,4.

It follows that the vectors±q1,±q2,±q3,±q4,±q5 illuminate all vertices ofW , i.e., c(W ) ≤ 10.

Now we prove the opposite inequality. Consider the coordinate system x1, x2, x3, x4 in R4 that
has v1, v2, v3, v4 as unit coordinate vectors (recall that every 4 of the vectors v1, v2, v3, v4, v5
are linearly independent). Then some 15 vertices of W have the following coordinates.

w1 = (2, 0, 0, 0), w2 = (0, 2, 0, 0), w3 = (0, 0, 2, 0) ,

w4 = (0, 0, 0, 2), −w5 = (2, 2, 2, 2) ;

w1,2 = (2, 2, 0, 0), w1,3 = (2, 0, 2, 0), w1,4 = (2, 0, 0, 2) ,

w2,3 = (0, 2, 2, 0), w2,4 = (0, 2, 0, 2), w3,4 = (0, 0, 2, 2) ,

−w1,5 = (0, 2, 2, 2), −w2,5 = (2, 0, 2, 2) ,

−w3,5 = (2, 2, 0, 2), −w4,5 = (2, 2, 2, 0) .

We call these vertices positive. Other vertices (negative ones) are symmetric to the positive
vertices with respect to the origin (i.e., have the same coordinates with minus sign).
Now it is easy to show the following: The hyperplanes in R4 described in the considered

coordinate system x1, x2, x3, x4 by the equations xi = 2, xi = −2, xi − xj = 2 with i, j ∈
{1, 2, 3, 4}, i 6= j, are supporting hyperplanes of W .

To finish the proof, it is sufficient to establish that no more than two of the 20 vertices
±wi,j can be illuminated simultaneously by any direction. Indeed, choose any three distinct
vertices from the 20 vertices ±wi,j. We consider two mutually exclusive cases:
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a) There are two positive and one negative vertices among the three chosen ones (or two
negative and one positive, the proof in this case being analogous). There are not less than
three coordinates which are equal to 2 for at least one chosen positive vertex. Consequently
there is a coordinate xi which is equal to −2 for the chosen negative vertex w(−) and which
is equal to 2 for a positive vertex (denote it by w(+)). This means that w(+) and w(−) are
situated in the parallel supporting hyperplanes xi = 2 and xi = −2. Consequently they
cannot be illuminated simultaneously by any direction.

b) All three chosen vertices are positive (or all three are negative, the proof in this case being
analogous). Then it is possible to select two vertices w(1), w(2) from the three chosen ones and
two distinct indices i, j ∈ {1, 2, 3, 4} such that xi = 2, xj = 0 for w(1) and xi = 0, xj = 2 for
w(2). Indeed, this assertion is evident if there are not less than two positive 3-vertices (i.e.,
with three coordinates equal to 2). Even if there is no more than one positive 3-vertex among
the three chosen vertices, then there are two positive 2-vertices (with two coordinates equal
to 2), and the above assertion holds, too. This means that w(1) and w(2) are situated in the
parallel supporting hyperplanes xi−xj = 2 and xj−xi = 2 ofW , respectively. Consequently,
they cannot be illuminated simultaneously by any direction. �

Proof of Lemma 3. Let Z = I1+· · ·+Ik, where I1, . . . , Ik are pairwise nonparallel segments.
Denote by e1, . . . , ek the unit vectors parallel to I1, . . . , Ik, respectively. Since dimZ = n,
we have k > n and there are n linearly independent vectors among e1, . . . , ek. Assume
that e1, . . . , en is a linarly independent n-tuple. Then every vector from {en+1, . . . , ek} is a
linear combination of e1, . . . , en, and in each case at least two coefficients are nonzero (since
e1, . . . , ek are pairwise nonparallel). We consider now three possible cases.

Case 1) Among en+1, . . . , ek, there is a vector that is a linear combination of e1, . . . , en with
at least 4 nonzero coefficients. Let, e.g.,

en+1 = λ1e1 + · · ·+ λnen ,

where λ1, λ2, λ3, λ4 are nonzero. Denote by q the composition of the projections parallel to
e5, . . . , en. Then q(Z) is a 4-dimensional zonotope, and c(Z) ≤ c(q(Z))·2n−4 (by Theorem 42.7
from [8]). Furthermore, q(Z) is the vector sum of the segments I ′1 = q(I1), I

′
2 = q(I2), I

′
3 =

q(I3), I
′
4 = q(I4), I

′
n+1 = q(In+1), . . . , I

′
k = q(Ik), i.e., q(Z) = Z

′ + Z ′′ with

Z ′ = I ′1 + · · ·+ I
′
4 + I

′
n+1, Z

′′ = I ′n+2 + · · ·+ I
′
k .

Since c(q(Z)) ≤ c(Z ′) (cf. Theorem 34.8 in [8]), it is sufficient to prove that c(Z ′) = 10.
Indeed, the segments I ′1, I

′
2, I

′
3, I

′
4, I

′
n+1 are parallel to the vectors e

′
1 = q(e1), e

′
2 = q(e2), e

′
3 =

q(e3), e
′
4 = q(e4), e

′
n+1 = q(en+1), and we have e

′
n+1 = λ1e

′
1 + λ2e

′
2 + λ3e

′
3 + λ4e

′
4. By Lemma

2, c(Z ′) = 10.

Case 2) None of the vectors en+1, . . . , ek is a linear combination of four (or more) of the
vectors e1, . . . , en, but there is at least one of the vectors en+1, . . . , ek which is a linear com-
bination of three of the vectors e1, . . . , en. Let, e.g.,

en+1 = λ1e1 + λ2e2 + λ3e3 ,
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where λ1, λ2, λ3 are nonzero. Denote by L1 ⊂ Rn the subspace spanned by e1, e2, e3, and let
L2 ⊂ Rn be the subspace spanned by e4, . . . , en. Since Z is indecomposable, there is a vector
among en+1, . . . , ek which is not contained in L1 ∪ L2. Let, for definiteness,

en+2 = µ2e2 + µ3e3 + µ4e4 + µ5e5 ,

where µ2 6= 0, µ4 6= 0 (and at least one of the numbers µ3, µ5 is zero). Denote by q the
composition of the projections parallel to e3, e5, e6, . . . , en. Then q(Z) is a 3-dimensional
zonotope, and c(Z) ≤ c(q(Z)) · 2n−3 (by Theorem 42.7 from [8]). Furthermore, q(Z) is the
vector sum of the line segments

q(I1), q(I2), q(I4), q(In+1), q(In+2), . . . , q(Ik) ,

i.e., the vector sum of at least five pairwise nonparallel segments. Moreover, q(Z) is inde-
composable since

q(en+1) = λ1q(e1) + λ2q(e2), q(en+2) = µ2q(e2) + µ4q(e4) .

Now, by Lemma 1, c(q(Z)) ≤ 5, and hence c(Z) ≤ 5 · 2n−3.

Case 3) Each of the vectors en+1, . . . , ek is a linar combination of exactly two of the vectors
e1, . . . , en with nonzero coefficients. Let, e.g.,

en+1 = λ1e1 + λ2e2 .

Denoting by L1 the subspace spanned by e1, e2, and by L2 the subspace spanned by e3, . . . , en,
we conclude (as above) that there is a vector among en+2, . . . , ek which is not contained in
L1 ∪ L2. Let, for definiteness,

en+2 = µ1e1 + µ3e3

(with µ1, µ3 nonzero). Denote by q the composition of the projections parallel to e4, . . . , en.
Then q(Z) is a 3-dimensional zonotope as in Lemma 1, i.e., c(q(Z)) ≤ 5 and c(Z) ≤ 5 · 2n−3.

�

Proof of Lemma 4. Let Z = Z1 ⊕ · · · ⊕ Zk, where Z1, . . . , Zk are indecomposable. Denote
dimZi by mi and assume that that m1 ≥ m2 ≥ · · · ≥ mk. If m2 6= 1 (i.e., the sum-
mands Z1, Z2 are not one-dimensional and, by indecomposability, are not parallelotopes),
then c(Z1) ≤ 3 · 2m1−2, c(Z2) ≤ 3 · 2m2−2, and hence

c(Z) ≤ 3 · 2m1−2 · 3 · 2m2−2 · 2m3 · · · 2mk =
9

2
· 2n−3 < 5 · 2n−3 ,

i.e., the conclusion of the lemma holds. Let now m2 = 1, i.e., Z = Z1 ⊕ P where P is an
(n−m1)-dimensional parallelotope. For m1 = 2, we obtain case (ii) of the Theorem. Even for
m1 > 2 the lemma follows immediately from Lemmas 1, 3, and 6 (Lemma 6 is independently
proved below). �

Proof of Lemma 5. Let Z = I1 + · · · + Ik, where Ij is a segment parallel to a belt vector
wj of the body B, j = 1, . . . , k. Denote the number c(Z) by m and choose some nonzero
vectors e1, . . . , em whose directions illuminate the whole boundary of the zonotope Z.
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Let now a be an arbitrary boundary point of B, and Ka be the supporting cone of the
body B at the point a, i.e., Ka is the intersection of all supporting half-spaces of B at the
point a. Denote by lj the line through a parallel to the vector wj, j = 1, . . . , k. For every
index j ∈ {i, . . . , k} we consider the following two possible cases:

a) The line lj has a nonempty intersection with the interior of the cone Ka. Replacing, if
necessary, wj by −wj, we may suppose that a + wj ∈ intKa. This means that there is a
segment I ′j emanating from a which is equal and parallel to the segment Ij and satisfies the
inclusion I ′j ⊂ Ka.

b) The line lj has empty intersection with the interior of the cone Ka, i.e., lj is a supporting
line of the cone Ka, and hence lj is a supporting line of the body B (passing through a).
Since lj ‖ wj and wj is a belt vector of B, at least one of the rays defined on the line lj by the
point a is a tangential ray of B at the point a. Replacing, if necessary, wj by −wj we may
suppose that the ray rj, emanating from a in the direction of the vector wj, is a tangential
ray of B at the point a. This means that the ray rj is contained in the cone Ka. Denote by
I ′j ‖ Ij the segment which is equal to Ij and is going from a in the direction of the vector wj.
Then I ′j ⊂ Ka.
Combining both the cases, we conclude that for every j ∈ {1, . . . , k} there is a segment

I ′j with the endpoint a which is equal and parallel to Ij and I
′
j ⊂ Ka.

Denote by Z ′a the set of all points (x1−a)+ · · ·+(xk−a) with xj ∈ I
′
j, j = 1, . . . , k. Then

Z ′a is a zonotope which is obtained from Z by translation. Moreover, Z
′
a ⊂ Ka and a is a

vertex of Z ′a. Since the directions of the vectors e1, . . . , em illuminate the whole boundary of
the zonotope Z (and hence illuminate the boundary of Z ′a), there is an index i ∈ {1, . . . ,m}
such that the direction of the vector ei illuminates the vertex a of the zonotope Z

′
a. This

means that for λ > 0 small enough we have a+λei ∈
∫
Z ′a, and hence a+λei ∈ intKa (since

Z ′a ⊂ Ka). This implies that for λ > 0 small enough the inclusion a+ λei ∈ intB holds, i.e.,
the direction of the vector ei illuminates the boundary point a of the body B.
Thus every boundary point a of the body B is illuminated by at least one of the directions

defined by the vectors e1, . . . , em. This means that c(B) ≤ m, i.e., c(B) ≤ c(Z). �

Proof of Lemma 6. Let Γ be a supporting hyperplane of B at a regular boundary point a
of B. By the definition of belt bodies, for each ε > 0 there are belt vectors h1, . . . , hn−1 of B
such that the hyperplane spanned by them is ε-close to Γ. But since there are only n+1 belt
vectors e1, . . . , en, en+1 of B, it follows that Γ is spanned by n−1 of these vectors. Thus every
regular supporting hyperplane of B is spanned by some n− 1 vectors from {e1, . . . , en, en+1}.
Consequently there are only n(n+1) regular supporting hyperplanes of B. These hyperplanes
we will call marked.
Let now Z be the polytope circumscribed about B with the n(n+1) marked hyperplanes

as its facet hyperplanes, i.e., the affine hull of its facets. Assuming that B does not coincide
with Z, we have a boundary point a of B which is an interior point of Z. Let b be a
regular boundary point of the body B being close to a such that b ∈ intZ, and let Γ be the
supporting hyperplane of B through b. Then Γ is not parallel to any marked hyperplane.
But this is impossible, and this contradiction shows that B = Z. Finally we have to remark
that Z is a zonotope (since its edges are parallel to the vectors e1, . . . , en, en+1 and each of
its two-dimensional faces is a parallelogram). �



V. Boltyanski; H. Martini: Covering Belt Bodies by Smaller Homothetical Copies 323

Proof of Lemma 7. Denote by B(M) the set of all unit belt vectors of the body M . Since
M is indecomposable, the set B(M) is not splitable, i.e., there is no nontrivial decomposition
Rn = L1⊕L2 with B(M) ⊂ L1∪L2 (Theorem 43.4 in [8]). Consequently there exists a finite
subset {e1, . . . , ek} ⊂ B(M) that also is not splitable. Take some segments I1, . . . , Ik parallel
to e1, . . . , ek, respectively. Then the n-dimensional tangential zonotope Z = I1 + · · · + Ik is
not decomposable (again by Theorem 43.4 in [8]). �

Proof of the Theorem. Let B be an n-dimensional belt body different from the special
bodies described in the theorem, and let

B = B1 ⊕ · · · ⊕Bk

be its direct sum decomposition such that each Bi is indecomposable. Denote by mi the
dimension of Bi, and assume that m1 ≥ m2 ≥ · · · ≥ mk. If m2 > 1, then c(B) ≤

9
2
· 2n−3 <

5 · 2n−3 (cf. the proof of Lemma 4), i.e., the assertion of the Theorem holds.
Let now m2 = · · · = mk = 1. Then m1 ≥ 3, since the cases (i) and (ii) in the theorem are

excluded. If m1 = 3, then B1 is a belt body distinct from a parallelogramic dodecahedron.
By Lemma 7, there is an m1-dimensional, indecomposable, tangential zonotope Z1 of B1.
By Lemma 6, we may suppose that Z1 is distinct from a parallelogramic dodecahedron.
Consequently (by Lemmas 1 and 5) c(B1) ≤ c(Z1) ≤ 5, and hence c(B) ≤ 5 · 2n−3.
Let, finally, m1 ≥ 4. By Lemma 7, there is an indecomposable, m1-dimensional, tangen-

tial zonotope Z1 of B1. Consequently (by Lemmas 3 and 5) c(B1) ≤ c(Z1) ≤ 5 · 2m1−3, and
hence c(B) ≤ 5 · 2n−3. �
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