Weierstrass Gaps and Curves on a Scroll

Cícero Carvalho

Departmento de Matemática, Universidade Federal de Uberlândia av. J. N. de Ávila 2160, 38408-100 Uberlândia-MG, Brazil e-mail: cicero@ufu.br

Abstract. The aim of this paper is to study the Weierstrass semigroup of ramified points on non-singular models for curves on a rational normal scroll. We find properties of this semigroup and determine it in some special cases, finding also a geometrical interpretation for some of the Weierstrass gaps. MSC 2000: 14H55 (primary), 14H50 (secondary)

Introduction

The Weierstrass gap sequences at ramification points of a (non-singular) trigonal curve have been determined by Coppens in [4] and [5]. These sequences also appeared in a work by Stöhr and Viana (cf. [12]), where they were both obtained by a method based on the fact that trigonal curves are canonically immersed on a rational normal scroll (Coppens had already used this fact in [5]). On the other hand, Weierstrass gap sequences at non-singular points of a singular plane curve (or, more precisely, at the inverse image of the non-singular point by the normalization morphism over the curve) have been studied in recent papers (e.g. [6], [7], [2]), specially when the non-singular point is ramified with respect to some morphism over the projective line. In the present work, we study the Weierstrass gap sequences at non-singular ramification points of possibly singular curves on a rational normal scroll, generalizing the results in [4] and [5] (the ramification being with respect to the morphism over the projective line defined by a ruling of the scroll). Also, we obtain a geometrical interpretation for some gaps, when the singularity locus of the curve is contained in the directrix of the scroll, and contains only simple cusps or simple nodes.

0138-4821/93 \$ 2.50 © 2002 Heldermann Verlag

1. Divisors on curves on a scroll

A rational normal scroll $S_{mn} \subset \mathbb{P}^{m+n+1}(k)$ defined over an algebraically closed field k is a surface which after a suitable choice of projective coordinates is given by

$$S_{mn} := \{ (x_0 : \ldots : x_{m+n+1}) \in \mathbb{P}^{m+n+1}(k) \mid rank \begin{pmatrix} x_0 & \cdots & x_{n-1} & x_{n+1} & \cdots & x_{n+m} \\ x_1 & \cdots & x_n & x_{n+2} & \cdots & x_{n+m+1} \end{pmatrix} < 2 \}$$

where the positive integers m and n are such that $m \leq n$.

 \mathcal{S}_{mn} has a ruling given by the union of the disjoint lines

$$L_{b/a} := \overline{(a^n : a^{n-1}b : \ldots : b^n : 0 : \ldots : 0), (0 : \ldots : 0 : a^m : a^{m-1}b : \ldots : b^m)},$$

where $b/a \in \mathbb{P}^1(k) = k \cup \{\infty\}$, which join points of the non-singular rational curves

$$D := \{ (a^n : a^{n-1}b : \dots : b^n : 0 : \dots : 0) \in \mathbb{P}^{m+n+1}(k) \mid (a : b) \in \mathbb{P}^1(k) \} \text{ and}$$
$$E := \{ (0 : \dots : 0 : a^m : a^{m-1}b : \dots : b^m) \in \mathbb{P}^{m+n+1}(k) \mid (a : b) \in \mathbb{P}^1(k) \}.$$

Following [12] we cover S_{mn} with four affine open sets, all isomorphic to $\mathbb{A}^2(k)$ and defined by

$$U_{0} := S_{mn} \setminus (L_{\infty} \cup E) = \{(a^{0} : \ldots : a^{n} : a^{0}b : \ldots : a^{m}b) \in \mathbb{P}^{m+n+1}(k) \mid (a,b) \in \mathbb{A}^{2}(k)\}, \\ U_{n} := S_{mn} \setminus (L_{0} \cup E) = \{(a^{n} : \ldots : a^{0} : a^{m}b : \ldots : a^{0}b) \in \mathbb{P}^{m+n+1}(k) \mid (a,b) \in \mathbb{A}^{2}(k)\}, \\ U_{n+1} := S_{mn} \setminus (L_{\infty} \cup D) = \{(a^{0}b : \ldots : a^{n}b : a^{0} : \ldots : a^{m}) \in \mathbb{P}^{m+n+1}(k) \mid (a,b) \in \mathbb{A}^{2}(k)\}, \\ U_{n+m+1} := S_{mn} \setminus (L_{0} \cup D) = \{(a^{n}b : \ldots : a^{0}b : a^{m} : \ldots : a^{0}) \in \mathbb{P}^{m+n+1}(k) \mid (a,b) \in \mathbb{A}^{2}(k)\}.$$

Associating to each affine curve in $\mathbb{A}^2(k)$ the Zariski closure of its image in U_0 under the isomorphism $(a:b) \mapsto (a^0:\ldots:a^n:a^0b:\ldots:a^mb)$ we get a bijection between affine plane curves and the projective curves on \mathcal{S}_{mn} that do not have L_{∞} or E as a component (we do not assume that a curve is irreducible, unless explicitly stated).

We deal in this paper with (possibly) singular curves and divisors on them, following in this matter [11] (cf. also [9]). Thus let C be an integral curve defined over k and let k(C) be its function field, a *divisor* \mathcal{D} on C is a non-zero coherent fractional ideal sheaf of C, which we denote by the product of its stalks $\mathcal{D} = \prod_{P \in C} \mathcal{D}_P$. We denote by \mathcal{O} the structure sheaf of C. The *local degree at* $P \in C$ of D is the integer deg_P(D) defined by requiring that deg_P(\mathcal{O}) = 0 and that deg_P(\mathcal{D}) – deg_P(\mathcal{E}) = dim_k($\mathcal{D}_P/\mathcal{E}_P$) whenever $\mathcal{D}_P \supseteq \mathcal{E}_P$. The *degree* of \mathcal{D} is the integer deg(\mathcal{D}) := $\sum_{P \in C} \deg_P(\mathcal{D})$. The *divisor of a rational function* $h \in k(C)^*$ is defined by div $h := \prod_{P \in C} (1/h)\mathcal{O}_P$. If F is a (Cartier) divisor on \mathcal{S}_{mn} and $C \subset \mathcal{S}_{mn}$ is not a component of F then we define the *intersection divisor* of C and F as $C \cdot F := \prod_{P \in C} (1/f_P)\mathcal{O}_P$, where Fis locally defined by f_P on a open set containing P. We observe that the local degree at P of $C \cdot F$ coincides with the intersection number i(C, F; P) of C and F at P as divisors on \mathcal{S}_{mn} . We also note that the divisors on a singular curve are not necessarily locally principal, i.e. of the form $\mathcal{D} = \prod d_P \mathcal{O}_P$, where $d_P \in k(C)^*$ for all $P \in C$ (cf. [9, Ex. 1.6.1] or [3, Ex. 2.4]) and they do not form a group under the operation defined by $\mathcal{D} * \mathcal{E} := \prod \mathcal{D}_P \mathcal{E}_P$. Nevertheless, the locally principal divisors do form a commutative group under this operation and since the divisors on C appearing on this paper are all (intersection divisors and hence) locally principal we will denote this operation as a sum, thus $\prod d_P \mathcal{O}_P + \prod e_P \mathcal{O}_P = \prod (d_P e_P) \mathcal{O}_P$ and $\prod d_P \mathcal{O}_P - \prod e_P \mathcal{O}_P = \prod (d_p/e_P) \mathcal{O}_P$. Accordingly, instead of $\prod d_P \mathcal{O}_P \supseteq \prod \mathcal{O}_P$ we write $\prod d_P \mathcal{O}_P \ge 0$ and say that $\prod d_P \mathcal{O}_P$ is a *non-negative divisor*. Two divisors \mathcal{D} and \mathcal{E} on C are *linearly equivalent* if $\mathcal{D} - \mathcal{E} = \operatorname{div} h$ for some $h \in k(C)^*$ and the set $|\mathcal{K}|$ of all non-negative divisors linearly equivalent to a canonical divisor \mathcal{K} on C is called the *canonical linear series* of C.

Now let C be a curve on S_{mn} that does not have E or L_{∞} as a component and let $c_{\ell}(X)Y^{\ell} + c_{\ell-1}Y^{\ell-1} + \cdots + c_0(X) = 0$ be the equation of the affine curve that corresponds to $C \cap U_0$ under the isomorphism $\mathbb{A}^2(k) \simeq U_0$ described above. Then $\deg(C \cdot L_a) = \ell$ for all $a \in k \cup \{\infty\}$, $\deg(C \cdot E) = d_{\ell}$ and $\deg(C \cdot D) = d_{\ell} + \ell(n-m)$, where d_{ℓ} is the smallest integer such that $\deg c_i(X) \leq d_{\ell} + (\ell-i)(n-m)$ for all $i \in \{0, \ldots, \ell\}$ (and hence the equality holds for some i). The Picard group of S_{mn} is the free group generated by the classes of D and a line L, and the canonical divisor of S_{mn} is linearly equivalent to -2D + (n-m-2)L (cf. [1, page 121]). From this we may deduce that $C \sim \ell D + d_{\ell}L$, where \sim denotes the linear equivalence of divisors on S_{mn} and, if C is irreducible, from the adjunction formula $2g-2 = C \cdot (C + (n-m-2)L-2D)$ (cf. [10, page 75]) we get $g = (\ell-1)(2d_{\ell}+\ell(n-m)-2)/2$, where g is the arithmetic genus of C. In what follows L will always denote a line of the ruling on S_{mn} . We recall that any two lines of the ruling on S_{mn} are linearly equivalent and we also have $E \sim D - (n-m)L$ (cf. [12]).

Theorem 1.1. The divisors of the canonical linear series of an irreducible curve $C \in S_{mn}$ are exactly the intersections of C with curves linearly equivalent to $(\ell-2)E + (d_{\ell} + (\ell-1)(n-m) - 2)L$.

Proof. Let x and y be the rational functions defined on $C \cap U_0$ by $(a^0 : \ldots : a^n : a^0 b : \ldots : a^m b) \mapsto b$, respectively and let $\mathcal{K} := (\ell-2)C \cdot E + (d_\ell + (\ell-1)(n-m)-2)C \cdot L_\infty$. We have div $x = C \cdot L_0 - C \cdot L_\infty$ and div $y = C \cdot D - C \cdot E - (n-m)C \cdot L_\infty$, thus $\{x^i y^j \mid 0 \le j \le \ell - 2, 0 \le i \le d_\ell + (\ell - 1 - j)(n - m) - 2\} \subset H^0(\mathcal{K})$. The degree of \mathcal{K} is $(\ell-2)d_\ell + (\ell-1)\ell(n-m) + (d_\ell-2)\ell = 2g - 2$ hence the set of the g linearly independent elements $x^i y^j$ form a basis for $H^0(\mathcal{K})$ and \mathcal{K} is canonical divisor of C. Now let $f := \sum_{j=0}^{\ell-2} \sum_{i=0}^{d_\ell+(\ell-1-j)(n-m)-2} a_{ij}x^i y^j$ be a non-zero element of $H^0(\mathcal{K})$, let r be the greatest integer such that $a_{ir} \neq 0$ for some i and let e_r be the least non-negative integer satifying $\max\{i \mid a_{ij} \neq 0; i = 0, \ldots, d_\ell + (\ell-1-j)(n-m)-2\} \le e_r + (r-j)(n-m)$ for all $j = 0, \ldots, r$ such that $a_{ij} \neq 0$ for some i. Then $0 \le e_r \le d_\ell + (\ell-1-r)(n-m)-2$, $a_{ij} = 0$ if j > r or $i > e_r + (r-j)(n-m)$ and let F be the curve on S_{mn} whose correspondent curve on $\mathbb{A}^2(k) \simeq U_0$ is $\sum_{j=0}^r \sum_{i=0}^{e_r+(r-j)(n-m)} a_{ij} X^i Y^j = 0$. We claim that $\operatorname{div}(\sum_{j=0}^r \sum_{i=0}^{e_r+(r-j)(n-m)} a_{ij} x^i y^j) + \mathcal{K}$ is the intersection divisor of C and $G := (\ell-2-r)E + (d_\ell+(\ell-1-r)(n-m)-2 - e_r)L_\infty + F$. In fact, if $P \in C \cap U_0$ then $(C \cdot G)_P = (1/\sum_{j=0}^r \sum_{i=0}^{e_r+(r-j)(n-m)} a_{ij} x^i y^j)\mathcal{O}_P$ and the claim holds because $\mathcal{K}_P = \mathcal{O}_P$. Suppose now that $P \in C \cap U_{n+m+1}$ and let \tilde{x} and \tilde{y} be the rational functions defined on $C \cap U_{n+m+1}$ by $(a^n b : \ldots : a^0 b : a^m : \ldots : a^0) \mapsto a$ and $(a^n b : \ldots : a^0 b : a^m : \ldots : a^0) \mapsto b$

respectively, we have $x = 1/\tilde{x}$ and $y = 1/(\tilde{x}^{(n-m)}\tilde{y})$ on $C \cap U_0 \cap U_{n+m+1}$. Let $(a^nb:\ldots:a^0b:a^m:\ldots:a^0b:a^m:\ldots:a^0) \mapsto (a,b)$ be an isomorphism between U_{n+m+1} and $\mathbb{A}^2(k)$ and let \tilde{X} and \tilde{Y} be the affine coordinates in $\mathbb{A}^2(k)$, then $F \cap U_{n+m+1}$, $E \cap U_{n+m+1}$ and $L_{\infty} \cap U_{n+m+1}$ correspond to the plane curves given by $\sum_{j=0}^r \sum_{i=0}^{e_r+(r-j)(n-m)} a_{ij} \tilde{X}^{e_r+(r-j)(n-m)-i} \tilde{Y}^{r-j} = 0$, $\tilde{Y} = 0$ and $\tilde{X} = 0$ respectively. Now it is easy to check that $(C \cdot G)_P = (\operatorname{div}(\sum_{j=0}^r \sum_{i=0}^{e_r+(r-j)(n-m)} a_{ij} \tilde{x}^{d_\ell+(l-1-j)(n-m)-2-i} \tilde{y}^{\ell-2-j}) \mathcal{O}_P$. The proof of the claim for $P \in U_n$ and $P \in U_{n+1}$ is similar. Thus any divisor in $|\mathcal{K}|$ is the intersection of C and a curve linearly equivalent to $(\ell-2)E + (d_\ell + (\ell-1)(n-m)-2)L$.

Conversely, if H is a curve linearly equivalent to $(\ell-2)E + (d_{\ell} + (\ell-1)(n-m)-2)L$ then we may write $H = sE + tL_{\infty} + G$, with s and t non-negative integers, G a curve that does not have E or L_{∞} as a component, and $G \sim (\ell-2-s)E + (d_{\ell} + (\ell-1)(n-m)-2-t)L \sim (\ell-2-s)D + (d_{\ell} + (s+1)(n-m)-2-t)L$. Thus $G \cap U_0$ is an affine curve given in $\mathbb{A}^2(k) \simeq U_0$ by an equation of the form $\sum_{j=0}^{\ell-2-s} \sum_{i=0}^{d_{\ell}+(s+1)(n-m)-2-t} a_{ij}X^iY^j = 0$, and as above one may check that div $(\sum_{j=0}^{\ell-2-s} \sum_{i=0}^{d_{\ell}+(s+1)(n-m)-2-t} a_{ij}x^iy^j) + \mathcal{K} = C \cdot H$. This completes the proof of the theorem.

2. Weierstrass gaps at ramification points

From now on C will always denote an irreducible curve on S_{mn} . Let $\eta : \tilde{C} \to C$ be the normalization of C, let $\tilde{P} \in \tilde{C}$ and let \tilde{K} be a canonical divisor on \tilde{C} . The set of positive integers $WG(\tilde{P}) := \{1 + \dim_k \mathcal{D}_{\tilde{P}}/\mathcal{O}_{\tilde{P}} \mid \mathcal{D} \in |\tilde{K}|\}$ is called the Weierstrass gap sequence at \tilde{P} . The cardinality of this set is equal to the genus of \tilde{C} and its complementary in the set of the non-negative integers is called the Weierstrass semigroup at \tilde{P} (cf. [13]). Let $P \in C$ be a non-singular point and let $\tilde{P} = \eta^{-1}(P)$. In this case we will refer to the set $WG(\tilde{P})$ as the *Weierstrass gap sequence at* P and write WG(P). Also, if T is the line of the ruling passing through P and r := i(C, T; P) then we say that P is an r-ramification point of C. We want to determine WG(P) at r-ramification points of $C \sim \ell D + d_\ell L$ for $r = \ell, \ell - 1$ (observe that $r \leq \deg(C \cdot L) = \ell$). Let's begin with the case where C is non-singular.

Theorem 2.1. Let C be a non-singular curve on a scroll S_{mn} such that $C \sim \ell D + d_{\ell}L$. Let $P \in C$ be an r-ramification point with $r \geq 2$ and let WG(P) be the Weierstrass gap sequence at P.

- a) If $P \notin E$ then $\{ir + j + 1 \mid j = 0, 1, ..., \ell 2; i = 0, 1, ..., d_{\ell} + (\ell 1 j)(n m) 2\} \subseteq WG(P)$ and equality holds when $r \in \{\ell, \ell 1\}$.
- b) If $P \in E$ then $\{ir + \ell 1 j \mid j = 0, 1, \dots, \ell 2; i = 0, 1, \dots, d_{\ell} + (\ell 1 j)(n m) 2\} \subseteq WG(P)$ and equality holds when $r \in \{\ell, \ell 1\}$.

Proof. Let T be the line of the ruling through P. After a suitable automorphism of S_{mn} we may assume that $P = T \cap D$, if $P \notin E$ (cf. [12, Prop. 1.2]) and of course $P = T \cap E$, if $P \in E$. Since $i(C, T; P) \ge 2$ we have i(C, D; P) = 1, if $P \notin E$ or i(C, E; P) = 1, if $P \in E$. Let $L \neq T$ be another line of the ruling and hence $P \notin L$. From Theorem 1.1 we get that

$$WG(P) \supseteq \{1 + i(C, jD + (\ell - 2 - j)E + (d_{\ell} + (\ell - 1 - j)(n - m) - 2 - i)L + iT; P) \mid 0 \le j \le \ell - 2, 0 \le i \le d_{\ell} + (\ell - 1 - j)(n - m) - 2\}.$$

The right hand side set is equal to $\{ir+j+1 \mid 0 \leq j \leq \ell-2, 0 \leq i \leq d_{\ell}+(\ell-1-j)(n-m)-2\}$ if $P \notin E$, or is equal to $\{ir+\ell-1-j \mid 0 \leq j \leq \ell-2, 0 \leq i \leq d_{\ell}+(\ell-1-j)(n-m)-2\}$ if $P \in E$. Moreover, if $r \in \{\ell, \ell-1\}$ these sets have cardinality equal to $(\ell-1)(2d_{\ell}+\ell(n-m)-2)/2$ which is the genus of C and hence equality holds in either case. \Box

From now on we do not suppose that C is a smooth curve. Let \mathcal{F} be the conductor divisor on C defined by $\mathcal{F}_P = (\mathcal{O}_P : \widetilde{\mathcal{O}_P})$ for all $P \in C$, where $\widetilde{\mathcal{O}_P}$ is the integral closure of \mathcal{O}_P in k(C). We call a divisor F on \mathcal{S}_{mn} an *adjoint curve* if $F \sim (\ell-2)E + (d_\ell + (\ell-1)(n-m)-2)L$ and $\widetilde{\mathcal{O}_P} \subseteq (F \cdot C)_P \mathcal{F}_P$ for all $P \in C$. If Q is a singular point of C then $\mathcal{F}_Q \subset \mathcal{M}_Q$, where \mathcal{M}_Q is the maximal ideal of \mathcal{O}_Q , and if f_Q defines an adjoint curve F locally in an open set of \mathcal{S}_{mn} containing Q we get $\widetilde{\mathcal{O}_Q}f_Q \subset \mathcal{F}_Q \subset \mathcal{M}_Q$, thus F intersects C at Q. Exactly as in the case of plane curves one may show that the divisors of the canonical series of \tilde{C} are the scheme theoretic inverse image under η of the divisors $\prod (F \cdot C)_P \mathcal{F}_P$, where F is an adjoint curve. At a non-singular point $P \in C$ we have $(F \cdot C)_P \mathcal{F}_P = (F \cdot C)_P$ since $\mathcal{F}_P = \mathcal{O}_P$, thus from the preceeding theorem we obtain the following result.

Lemma 2.2. Let $P \in C \sim \ell D + d_{\ell}L$ be an r-ramification point, where $r \in \{\ell, \ell - 1\}$.

- a) If $P \notin E$ then $WG(P) \subset \{ir + j + 1 \mid j = 0, 1, \dots, \ell 2; i = 0, 1, \dots, d_{\ell} + (\ell 1 j)(n m) 2\}.$
- b) If $P \in E$ then $WG(P) \subset \{ir + \ell 1 j \mid j = 0, 1, \dots, \ell 2; i = 0, 1, \dots, d_{\ell} + (\ell 1 j)(n m) 2\}.$

The next result shows that the so called Namba's Lemma holds for curves on \mathcal{S}_{mn} .

Lemma 2.3. Let C, C_1 and C_2 be curves on a scroll S_{mn} and let $P \in S_{mn}$ be a non-singular point of C. Then $i(C_1, C_2; P) \ge \min\{i(C, C_1; P), i(C, C_2; P)\}$.

Proof. Let F = 0, $G_1 = 0$ and $G_2 = 0$ be local equations for C, C_1 and C_2 respectively, in an open affine subset of \mathcal{S}_{mn} isomorphic to $\mathbb{A}^2(k)$. For $i \in \{1,2\}$ we get $i(C,C_i;P) = \dim_k \mathcal{O}_{\mathbb{A}^2(k),P}/(F,G_i) = \dim_k \mathcal{O}_{C,P}/(g_i) = \operatorname{ord}_P(g_i)$ where $g_i \in k(C)$ is the rational function determined by the polynomial G_i . Then $i(C_1, C_2; P) = \dim_k \mathcal{O}_{\mathbb{A}^2(k),P}/(G_1, G_2) \geq \dim_k \mathcal{O}_{\mathbb{A}^2(k),P}/(F,G_1,G_2) = \dim_k \mathcal{O}_{C,P}/(g_1,g_2) = \min\{\operatorname{ord}_P(g_1),\operatorname{ord}_P(g_2)\} = \min\{i(C,C_1;P),$ $i(C,C_2;P)\}.$

Theorem 2.4. Let $P \in C \subset S_{mn}$ be a non-singular r-ramification point and let T be the line of the ruling passing through P. If $F \sim sE + tL$ is a divisor of S_{mn} such that s < r and $i(C, F; P) \geq r$ then F = T + G and $G \sim sE + (t - 1)L$.

Proof. From the above Lemma $i(F, T; P) \ge \min\{i(C, T; P), i(C, F; P)\} \ge r$ but $\deg(F \cdot T) = s \deg(E \cdot T) + t \deg(L \cdot T) = s < r$. Then (cf. [8, page 360]) F and T must have a common irreducible component so F = T + G for some divisor $G \subset S_{mn}$ and $G \sim sE + (t-1)L$. \Box

Corollary 2.5. Let $P \in C \subset S_{mn}$ be an r-ramification point of $C \sim \ell D + d_{\ell}L$ where $r \in \{\ell, \ell - 1\}$. If ir + s is a Weierstrass gap at P, with s and i positive integers, then $\{(i-1)r + s, \ldots, r + s, s\}$ are also Weierstrass gaps at P.

Proof. Since ir + s is a Weierstrass gap at P there exists an adjoint curve F such that i(C, F; P) = ir + s - 1. Let T be the line of the ruling passing through P, from the above Theorem we get that F = T + G where $G \sim (\ell - 2)E + (d_{\ell} + (\ell - 1)(n - m) - 3)L$ and i(C, G; P) = (i - 1)r + s - 1. From $\deg(C \cdot T) = \ell$ and $r \in \{\ell, \ell - 1\}$ we get that T intersects C at most at another non-singular point so if T' is a line of the ruling not containing P then the curve G + T' is an adjoint curve. From i(C, G + T'; P) = i(C, G; P) we get that the integer (i - 1)r + s is a Weierstrass gap at P. Thus the corollary follows from repeated applications of the above theorem.

In view of the above proof, if $ir + s \in WG(P)$ one would expect iT to be a component of an adjoint curve that yields this gap. The result below shows that if m < n then the curve E is also a component of many adjoint curves.

Theorem 2.6. Let $C \sim \ell D + d_{\ell}L$ be a singular curve on S_{mn} , where m < n and let T be the line of the ruling passing through the r-ramification point P, with $r \in \{\ell, \ell - 1\}$. If F is an adjoint curve such that i(C, F; P) = ir+j or $i(C, F; P) = ir+\ell-2-j$, where $j \in \{0, \ldots, \ell-3\}$ and $i \in \{d_{\ell} + (n-m) - 1, \ldots, d_{\ell} + (\ell-1-j)(n-m) - 2\}$, then F = iT + sE + H, where s is the integer satisfying $d_{\ell} + s(n-m) - 2 < i \leq d_{\ell} + (s+1)(n-m) - 2$ and H is an effective divisor of S_{mn} .

Proof. Let F be an adjoint curve such that i(C, F; P) = ir + j or $i(C, F; P) = ir + \ell - 2 - j$, with i and j as in the theorem. After successive applications of Theorem 2.4 we get F = iT + G, where $G \sim (\ell - 2)E + (d_{\ell} + (\ell - 1)(n - m) - 2 - i)L \sim (\ell - 2)D + (d_{\ell} + (n - m) - 2 - i)L$. As we remarked in Section 1, a curve that does not have E or L_{∞} as a component is linearly equivalent to a divisor aD + bL of \mathcal{S}_{mn} , with $a \geq 0$ and $b \geq 0$. Since $d_{\ell} + (n - m) - 2 - i < 0$ the curve G must have E as a component, so $G = E + G_1$ where $G_1 \sim (\ell - 3)D + (d_{\ell} + 2(n - m) - 2 - i)L$. We repeat this argument s times to obtain $G = sE + G_s$ with $G_s \sim (\ell - 2 - s)D + (d_{\ell} + (s + 1)(n - m) - 2 - i)L$.

Taking into account that C_{Sing} is contained in every adjoint curve, we may interpret geometrically the greatest possible integers in WG(P) as follows.

Corollary 2.7. Let $C \sim \ell D + d_{\ell}L$ be a singular curve on S_{mn} and let P be a non-singular *r*-ramification point, where $r \in \{\ell, \ell-1\}$.

- a) If m < n and $(d_{\ell} + (\ell 1)(n m) 2)r + 1 \in WG(P)$ or $(d_{\ell} + (\ell 1)(n m) 2)r + \ell 1 \in WG(P)$ then $C_{Sing} \subset E$.
- b) If m = n and $(d_{\ell} 2)r + \ell 1 \in WG(P)$ then C_{Sing} is contained in a curve linearly equivalent to D that also contains P.

Proof. To prove (a) we take $i = (d_{\ell} + (\ell - 1)(n - m) - 2)$ and j = 0 in the above theorem and get $s = \ell - 2$. Thus $F = (d_{\ell} + (\ell - 1)(n - m) - 2)T + (\ell - 2)E$ and we must have $C_{Sing} \subset E$. To prove (b) we use Theorem 2.4 to obtain an adjoint curve $F = (d_{\ell} - 2)T + G$ where $G \sim (\ell - 2)D$ and $C_{Sing} \subset G$. Since n = m the curves linearly equivalent to D are exactly E and the curves given in $\mathbb{A}^2(k) \simeq U_0$ by the equations Y - b = 0, with $b \in k$; it is easy to check that these curves do not intersect each other. Since $i(C, G; P) = \ell - 2$ we must have $G = (\ell - 2)D'$, where D' is a curve linearly equivalent to D that contains P and C_{Sing} . The following result determines WG(P) for curves satisfying certain restrictions on the singularities.

Proposition 2.8. Let $C \sim \ell D + d_{\ell}L$ be a curve of singularity degree δ on the scroll S_{mn} . Let $P \in C$ be an r-ramification point, where $r \in \{\ell, \ell-1\}$. Suppose that $C_{Sing} \subset E$ if m < n, or that C_{Sing} is contained in a curve linearly equivalent to D, if m = n. Suppose also that the singularities of C are either simple nodes or simple cusps.

- a) If m < n and $P \notin E$, or if m = n and P and C_{Sing} are not contained in a curve linearly equivalent to D, then $WG(P) = \{ir + j + 1 \mid 0 \le j \le \ell 3; \ 0 \le i \le d_\ell + (\ell 1 j)(n m) 2\} \cup \{ur + \ell 1 \mid 0 \le u \le d_\ell + (n m) 2 \delta\}.$
- b) If m < n and $P \in E$, or if m = n and P and C_{Sing} are contained in a curve linearly equivalent to D, then $WG(P) = \{ir + \ell 1 j \mid 0 \le j \le \ell 3; \ 0 \le i \le d_{\ell} + (\ell 1 j)(n m) 2\} \cup \{(d_{\ell} + (n m) 2 \delta u)r + 1 \mid 0 \le u \le d_{\ell} + (n m) 2 \delta\}.$

Proof. Let \mathcal{F} be the conductor divisor of C. We recall that C is a Gorenstein curve, for it lies on a surface, and thus the degree of singularity of a point $Q \in C$ is equal to $\dim_k(\mathcal{O}_Q/\mathcal{F}_Q)$. From $\mathcal{F}_Q \subset \mathcal{M}_Q$, where \mathcal{M}_Q is the maximal ideal of \mathcal{O}_Q , and the hypothesis on the singularities we get $\mathcal{F}_Q = \mathcal{M}_Q$ for all singular points of C (thus \mathcal{M}_Q , as \mathcal{F}_Q , is not only an \mathcal{O}_Q -module but also an $\widetilde{\mathcal{O}}_Q$ -module). If F is a curve intersecting C at a singular point Q and f_Q defines F locally on an open set of \mathcal{S}_{mn} containing Q then $f_Q \in \mathcal{M}_Q$ and hence $\widetilde{\mathcal{O}}_P f_Q \subset \mathcal{F}_Q$, i.e. $\widetilde{\mathcal{O}}_P \subset (F \cdot C)_Q \mathcal{F}_Q$. This shows that any curve $F \sim (\ell - 2)E + (d_\ell + (\ell - 1)(n - m) - 2)L$ passing through all the singular points of C is an adjoint curve.

If m = n then there exists an automorphism of the scroll taking a given curve linearly equivalent to D onto E (cf. [12]), so we may assume that $C_{sing} \subset E$. Let T be the line of the ruling that contains P. If $P \notin E$, let D' be a curve linearly equivalent to D containing P, then $P = T \cap D'$; if $P \in E$ then $P = T \cap E$. Let L_1, \ldots, L_{δ} be the lines of the ruling passing through the points in C_{Sing} . Let L be a line of the ruling different from T. To obtain the Weierstrass gaps listed in the theorem it suffices to calculate the local degree at P of the intersection divisor of C and the adjoint curves $iT + (\ell - 2 - j)E + jD' + (d_{\ell} + (\ell - 1 - j)(n - m) - 2 - i)L$, where $0 \leq j \leq \ell - 3$, $0 \leq i \leq d_{\ell} + (\ell - 1 - j)(n - m) - 2$ and $(\ell - 2)D' + (d_{\ell} + (n - m) - 2 - \delta - u)T + (u + 1)L_1 + L_2 + \cdots + L_{\delta}$, where $0 \leq u \leq d_{\ell} + (n - m) - 2 - \delta$. Using $r \in \{\ell, \ell - 1\}$ one may check that we get $(\ell - 1)(2d_{\ell} + \ell(n - m) - 2)/2 - \delta = g - \delta$ distinct numbers (where g is the arithmetic genus of C) and this is the cardinality of WG(P).

The next result follows from the above proposition and Corollary 2.7.

Corollary 2.9. Let $C \sim \ell D + d_{\ell}L$ be a curve on S_{mn} , whose singularities are only simple nodes or simple cusps. Let P be a non-singular r-ramification point of C, where $r \in \{\ell, \ell-1\}$.

- a) If m < n and $P \notin E$ then $C_{Sing} \subset E$ if and only if $(d_{\ell} + (\ell 1)(n m) 2)r + 1$ is a Weierstrass gap at P.
- b) If m < n and $P \in E$ then $C_{Sing} \subset E$ if and only if $(d_{\ell} + (\ell 1)(n m) 2)r + \ell 1$ is a Weierstrass gap at P.
- c) If m = n then P and C_{Sing} are on a curve that is linearly equivalent to D if and only if $(d_{\ell} 2)r + \ell 1$ is a Weierstrass gap at P.

References

- Arbarello, E.; Cornalba, M.; Griffiths, P. A.; Harris, J.: Geometry of algebraic curves, vol. I. Grundlehren 267, Springer-Verlag, New York/Berlin 1985.
 Zbl 0559.14017
- [2] Ballico, E.: Singular bielliptic curves and Weierstrass points. Preprint.
- [3] Carvalho, C. F.: *Linear systems on singular curves*. Manuscripta Math. 98 (1999), 155– 163.
 Zbl 0935.14004
- [4] Coppens, M.: The Weierstrass gap sequences of the total ramification points of trigonal coverings of P¹. Indag. Math. 47 (1985), 245–276.
 Zbl 0592.14025
- [5] Coppens, M.: Weierstrass gap sequences of the ordinary ramification points of trigonal coverings of ℙ¹: existence of a kind of Weierstrass gap sequence. J. Pure Appl. Algebra 43 (1986), 11–25.
- [6] Coppens, M.; Kato, T.: Weierstrass gap sequences at total inflection points of nodal plane curves. Tsukuba J. Math. 1 (1994), 119–129.
 Zbl 0819.14012
- [7] Coppens, M.; Kato, T.: The Weierstrass gap sequence at an inflection point on a nodal plane, aligned inflection points on plane curves. Boll. Un. Mat. Ital. B(7) 11 (1997), 1–33.
- [8] Hartshorne, R.: Algebraic Geometry. Graduate Texts in Mathematics, Springer-Verlag, New York 1977. Zbl 0367.14001
- [9] Hartshorne, R.: Generalized divisors on Gorenstein curves and a theorem of Noether. J. Math. Kyoto Univ. 26 (1986), 375–386.
 Zbl 0613.14008
- [10] Serre, J.-P.: Groupes algébriques e corps de classes. Hermann, Paris 1959.

- Stöhr, K.-O.: On the poles of regular differentials of singular curves. Bull. Soc. Brasil. Mat. 24(1) (1993), 105–136.
 Zbl 0788.14020
- [12] Stöhr, K.-O.; Viana, P.: Weierstrass gap sequences and moduli varieties of trigonal curves. J. Pure Appl. Algebra 81(1) (1992), 63–82.
 Zbl 0768.14016
- Stöhr, K.-O.; Voloch, J. F.: Weierstrass points and curves over finite fields. Proc. London Math. Soc. 52 (1986), 1–19.
 Zbl 0593.14020

Received July 10, 2000

Zbl 0097.35604