Ikeda-Nakayama Modules*

Robert Wisbauer Mohamed F. Yousif Yiqiang Zhou
Heinrich-Heine-University, 40225 Düsseldorf, Germany
e-mail: wisbauer@math.uni-duesseldorf.de
The Ohio State University, Lima Campus, Ohio 45804, USA
e-mail: yousif.1@osu.edu
Memorial University of Newfoundland, St.John's, NF A1C 5S7, Canada
e-mail: zhou@math.mun.ca

Abstract

Let ${ }_{S} M_{R}$ be an (S, R)-bimodule and denote $\mathbf{l}_{S}(A)=\{s \in S: s A=0\}$ for any submodule A of M_{R}. Extending the notion of an Ikeda-Nakayama ring, we investigate the condition $\mathbf{l}_{S}(A \cap B)=\mathbf{l}_{S}(A)+\mathbf{l}_{S}(B)$ for any submodules A, B of M_{R}. Various characterizations and properties are derived for modules with this property. In particular, for $S=\operatorname{End}\left(M_{R}\right)$, the π-injective modules are those modules M_{R} for which $S=\mathbf{l}_{S}(A)+\mathbf{l}_{S}(B)$ whenever $A \cap B=0$, and our techniques also lead to some new results on these modules.

MSC 2000: 16D50 (primary); 16L60 (secondary)

1. Annihilator conditions

Let R and S be rings and ${ }_{S} M_{R}$ be a bimodule. For any $X \subseteq M$ and any $T \subseteq S$, denote

$$
\mathbf{l}_{S}(X)=\{s \in S: s X=0\} \quad \text { and } \quad \mathbf{r}_{M}(T)=\{m \in M: T m=0\} .
$$

There is a canonical ring homomorphism $\lambda: S \longrightarrow \operatorname{End}\left(M_{R}\right)$ given by $\lambda(s)(x)=s x$ for $x \in M$ and $s \in S$. For any submodules A and B of M_{R} and any $t \in \mathrm{l}_{S}(A \cap B)$, define

$$
\alpha_{t}: A+B \rightarrow M, \quad a+b \mapsto t a .
$$

Clearly, α_{t} is a well-defined R-homomorphism.

[^0]Lemma 1. Let ${ }_{S} M_{R}$ be a bimodule and A, B be submodules of M_{R}. The following are equivalent:
(1) $\mathbf{l}_{S}(A \cap B)=\mathbf{l}_{S}(A)+\mathbf{l}_{S}(B)$.
(2) For any $t \in \mathbf{1}_{S}(A \cap B)$, the diagram

$$
\begin{gathered}
0 \rightarrow M+B \rightarrow M \\
\downarrow \alpha_{t} \\
M
\end{gathered}
$$

can be extended commutatively by $\lambda(s)$, for some $s \in S$.
Proof. (1) $\Rightarrow(2)$. Suppose (1) holds. For A, B, t given as in (2), write $t=u+v$ where $u \in \mathbf{l}_{S}(A)$ and $v \in \mathbf{l}_{S}(B)$. Then, for all $a \in A$ and $b \in B$,

$$
\alpha_{t}(a+b)=t a=(u+v) a=v a=v(a+b)=\lambda(v)(a+b) .
$$

$(2) \Rightarrow(1)$. It is clear that $\mathbf{l}_{S}(A \cap B) \supseteq \mathbf{l}_{S}(A)+\mathbf{l}_{S}(B)$. Let $t \in \mathbf{l}_{S}(A \cap B)$. Define α_{t} : $A+B \longrightarrow M$ as above. By (2), there exists $s \in S$ such that $\lambda(s)$ extends α_{t}.

Thus, for all $a \in A$ and $b \in B, t a=\alpha_{t}(a+b)=\lambda(s)(a+b)=s(a+b)$. It follows that $(t-s) a+(-s) b=0$ for all $a \in A$ and $b \in B$. So, $t-s \in \mathbf{l}_{S}(A)$ and $-s \in \mathbf{l}_{S}(B)$, and hence $t=(t-s)-(-s) \in \mathbf{l}_{S}(A)+\mathbf{l}_{S}(B)$.

Lemma 2. Let ${ }_{S} M_{R}$ be a bimodule and A, B be submodules of M_{R} such that $A \cap B=0$. The following are equivalent:
(1) $S=\mathbf{l}_{S}(A)+\mathbf{l}_{S}(B)$.
(2) The diagram

$$
\begin{gathered}
0 \rightarrow A+B \rightarrow M \\
\downarrow \alpha_{1} \\
M
\end{gathered}
$$

can be extended commutatively by $\lambda(s)$, for some $s \in S$.
Proof. (1) \Rightarrow (2). Apply Lemma 1 with $t=1$.
$(2) \Rightarrow(1)$. It suffices to show that $1 \in \mathbf{l}_{S}(A)+\mathbf{l}_{S}(B)$. Note that $\alpha_{1}: A+B \longrightarrow M$ is given by $\alpha_{1}(a+b)=a(a \in A$ and $b \in B)$. By (2), there exists $s \in S$ such that $\lambda(s)$ extends α_{1}. Arguing as in the proof of '(2) $\Rightarrow(1)$ ' of Lemma 1, we have $1=(1-s)-(-s) \in$ $\mathbf{l}_{S}(A)+\mathbf{l}_{S}(B)$.

Lemma 3. Let ${ }_{S} M_{R}$ be a bimodule such that ${ }_{S} M$ is faithful and A, B be complements of each other in M_{R}. The following are equivalent:
(1) $S=\mathbf{1}_{S}(A)+\mathbf{l}_{S}(B)$.
(2) $S=\mathbf{l}_{S}(A) \oplus \mathbf{l}_{S}(B)$.
(3) $M=A \oplus B$ and, for the projection f of M onto A along B, $f=\lambda(s)$ for some $s \in S$.

Proof. $\quad(1) \Rightarrow(3)$. By (1), we have $S=\mathbf{l}_{S}(A)+\mathbf{l}_{S}(B)$. Write $1_{S}=u+v$ where $u \in \mathbf{1}_{S}(A)$ and $v \in \mathbf{1}_{S}(B)$. It follows that $a=v a$ for all $a \in A, b=u b$ for all $b \in B$ and $v B=u A=0$. Thus, $B \subseteq \mathbf{r}_{M}(v) \subseteq \mathbf{r}_{M}\left(v^{2}\right)$ and $\mathbf{r}_{M}\left(v^{2}\right) \cap A=0$. Since B is complement of A in M_{R}, we have $B=\mathbf{r}_{M}(v)=\mathbf{r}_{M}\left(v^{2}\right)$. Similarly, $A=\mathbf{r}_{M}(u)=\mathbf{r}_{M}\left(u^{2}\right)$. Next we show that $(v u) M \cap(A+B)=0$. For any $z \in(v u) M \cap(A+B)$, write $z=v u x=a+b$, where $x \in M$, $a \in A$ and $b \in B$. Noting that $v u=u v$, we have that $\left(v^{2} u^{2}\right) x=(v u)(a+b)=0$. So, $u^{2} x \in \mathbf{r}_{M}\left(v^{2}\right)=\mathbf{r}_{M}(v)$, and this gives that $u^{2} v x=v u^{2} x=0$. So, $v x \in \mathbf{r}_{M}\left(u^{2}\right)=\mathbf{r}_{M}(u)$. Thus, $z=v u x=u v x=0$. So, $(v u) M \cap(A+B)=0$. Since $A+B$ is essential in $M_{R},(v u) M=0$, and hence $v u=0$ since ${ }_{S} M$ is faithful. So, $u M \subseteq \mathbf{r}_{M}(v)=B$ and $v M \subseteq \mathbf{r}_{M}(u)=A$, and hence $M=v M+u M=A+B=A \oplus B$.

Let f be the projection of M onto A along B. Then $f(M)=A$ and $(1-f)(M)=B$. Noting that ${ }_{S} M$ is faithful, we have $\mathbf{l}_{S}(A)=\mathbf{l}_{S}(f(M))=\{s \in S: \lambda(s) f(M)=0\}=\{s \in S$: $\lambda(s) f=0\}$ and $\mathbf{l}_{S}(B)=\mathbf{l}_{S}((1-f)(M))=\{s \in S: \lambda(s)(1-f)=0\}$. Thus, $\lambda(u) f=0$ and $\lambda(v)(1-f)=0$. It follows that

$$
0=\lambda(v)(1-f)=\lambda(1-u)(1-f)=(1-\lambda(u))(1-f)=1-f-\lambda(u)
$$

and thus $f=1-\lambda(u)=\lambda(1-u)=\lambda(v)$.
(3) \Rightarrow (2). By (3), $M=A \oplus B$. Let f be the projection of M onto A along B. Then $f^{2}=f \in \operatorname{End}\left(M_{R}\right), A=f(M)$ and $B=(1-f)(M)$. By (3), $f=\lambda(s)$ for some $s \in S$. It follows that $\left(s^{2}-s\right) M=\lambda\left(s^{2}-s\right)(M)=\left(f^{2}-f\right)(M)=0$. So, $s^{2}=s$, since ${ }_{S} M$ is faithful. And so,

$$
\mathbf{l}_{S}(A)=\mathbf{l}_{S}(f(M))=\mathbf{l}_{S}(s M)=\mathbf{l}_{S}(s)=S(1-s)
$$

and, similarly, $\mathbf{l}_{S}(B)=S s$. Thus, $S=\mathbf{l}_{S}(A) \oplus \mathbf{l}_{S}(B)$.
$(2) \Rightarrow(1)$. Obvious.
A module M_{R} is called π-injective (or quasi-continuous) if every submodule is essential in a direct summand (C1) and, for any two direct summands M_{1}, M_{2} with $M_{1} \cap M_{2}=0, M_{1} \oplus M_{2}$ is also a direct summand (C3) (see [8]). It is known that M_{R} is π-injective if and only if $M=A \oplus B$ whenever A and B are complements of each other in M_{R} (see [8, Theorem 2.8]).

Corollary 4. Let ${ }_{S} M_{R}$ be a bimodule such that ${ }_{S} M$ is faithful. The following are equivalent:
(1) For any submodules A and B of M_{R} with $A \cap B=0, S=\mathbf{l}_{S}(A)+\mathbf{l}_{S}(B)$.
(2) If A and B are complements of each other in M_{R}, then $S=\mathbf{l}_{S}(A)+\mathbf{1}_{S}(B)$.
(3) If A and B are complements of each other in M_{R}, then $S=\mathbf{l}_{S}(A) \oplus \mathbf{l}_{S}(B)$.
(4) M is π-injective and, for any $f^{2}=f \in \operatorname{End}\left(M_{R}\right), f=\lambda(s)$ for some $s \in S$.

Proof. (1) $\Leftrightarrow(2)$ is obvious, and $(2) \Leftrightarrow(3) \Leftrightarrow(4)$ is by Lemma 3 .
For submodules A, B of M_{R}, let

$$
\pi: M /(A \cap B) \rightarrow M / A \oplus M / B, \quad m+(A \cap B) \mapsto(m+A, m+B)
$$

be the canonical R-homomorphism. The next lemma can easily be verified.

Lemma 5. Let M_{R} be an R-module with $S=\operatorname{End}\left(M_{R}\right)$ and A, B be submodules of M_{R}. The following are equivalent:
(1) $\mathbf{l}_{S}(A \cap B)=\mathbf{l}_{S}(A)+\mathbf{l}_{S}(B)$.
(2) For any R-homomorphism $f: M /(A \cap B) \longrightarrow M$, the diagram

$$
\begin{gathered}
0 \rightarrow M /(A \cap B) \quad \xrightarrow{\pi} \quad M / A \oplus M / B \\
\downarrow f \\
M
\end{gathered}
$$

can be extended commutatively by some $g: M / A \oplus M / B \longrightarrow M$.

2. Ikeda-Nakayama modules

A well known result of Ikeda and Nakayama [6] says that every right self-injective ring R satisfies the so called Ikeda-Nakayama annihilator condition, i.e., $\mathbf{l}_{R}(A \cap B)=\mathbf{l}_{R}(A)+\mathbf{l}_{R}(B)$ for all right ideals A, B of R. Rings with the Ikeda-Nakayama annihilator condition, called right Ikeda-Nakayama rings, were studied in [2]. Extending this notion we call M_{R} an IkedaNakayama module (IN-module) if

$$
\mathbf{l}_{S}(A \cap B)=\mathbf{l}_{S}(A)+\mathbf{l}_{S}(B)
$$

for any submodules A and B of M_{R} where $S=\operatorname{End}\left(M_{R}\right)$. Clearly, every quasi-injective module is an IN-module (Lemma 1) and every IN-module is π-injective (Corollary 4).

Proposition 6. The following are equivalent for a module M_{R} with $S=\operatorname{End}\left(M_{R}\right)$:
(1) M_{R} is an IN-module.
(2) For any finite set $\left\{A_{i}: i=1, \ldots, n\right\}$ of submodules of M_{R},

$$
\mathbf{l}_{S}\left(A_{1} \cap \cdots \cap A_{n}\right)=\mathbf{l}_{S}\left(A_{1}\right)+\cdots+\mathbf{l}_{S}\left(A_{n}\right) .
$$

(3) For any submodules A, B of M_{R} and any $f \in S$ with $f(A \cap B)=0$, the diagram

$$
\begin{array}{cc}
0 \rightarrow A+B & \rightarrow M \\
\downarrow \alpha_{f} & \\
M
\end{array}
$$

can be extended commutatively by some $g: M \longrightarrow M$.
(4) For any submodules A, B of M_{R} and any R-homomorphism $f: M /(A \cap B) \longrightarrow M$, the diagram

$$
\begin{aligned}
& 0 \rightarrow M /(A \cap B) \xrightarrow{m} \quad M / A \oplus M / B \\
& \downarrow f \\
& M
\end{aligned}
$$

can be extended commutatively by some $g: M / A \oplus M / B \longrightarrow M$.

Proof. (1) $\Rightarrow(2)$ can be easily proved by using induction on $n ;(2) \Rightarrow(1)$ is obvious; $(1) \Leftrightarrow(3)$ is by Lemma 1 ; and $(1) \Leftrightarrow(4)$ is by Lemma 5 .
Remark 7. The equivalences $(1) \Leftrightarrow(2) \Leftrightarrow(3)$ in Proposition 6 can be proved to hold for an arbitrary bimodule ${ }_{S} M_{R}$.

Many characterizations of π-injective modules are given in [13, $41.21 \& 41.23]$. In particular, the equivalence " $(1) \Leftrightarrow(2)$ " of the next theorem is contained in [13, 41.21].

Theorem 8. The following are equivalent for a module M_{R} with $S=\operatorname{End}\left(M_{R}\right)$:
(1) M is π-injective.
(2) For any submodules A and B of M_{R} with $A \cap B=0, S=\mathbf{l}_{S}(A)+\mathbf{l}_{S}(B)$.
(3) For any submodules A and B of M_{R} with $A \cap B=0$ and any $f \in S$, the diagram

$$
\begin{array}{cc}
0 \rightarrow A+B & \rightarrow M \\
\downarrow \alpha_{f} \\
M
\end{array}
$$

can be extended commutatively by some $g: M \longrightarrow M$.
(4) For any submodules A, B of M_{R} with $A \cap B=0$, the diagram

$$
\begin{gathered}
0 \rightarrow A+B \rightarrow M \\
\downarrow \alpha_{1} \\
M
\end{gathered}
$$

can be extended commutatively by some $g: M \longrightarrow M$.
(5) For any submodules A, B of M_{R} with $A \cap B=0$ and any $f \in S$, the diagram

$$
\begin{array}{rlll}
0 \rightarrow & M \\
& \downarrow f & & \\
& M
\end{array}
$$

can be extended commutatively by some $g: M / A \oplus M / B \longrightarrow M$.
(6) For any submodules A and B of M_{R} with $A \cap B=0, S_{0}=\mathbf{l}_{S_{0}}(A)+\mathbf{l}_{S_{0}}(B)$ where S_{0} is the subring of S generated by all idempotents of S.
(7) If A and B are complements of each other in M_{R}, then $S=\mathbf{l}_{S}(A) \oplus \mathbf{1}_{S}(B)$.

In each of the conditions (2)-(6), the pair A, B of submodules with $A \cap B=0$ can be replaced by a pair A, B of submodules such that they are complements of each other in M_{R}.
Proof. (2) $\Leftrightarrow(3) \Leftrightarrow(4) \Leftrightarrow(5)$: By Lemmas 1,2 and 5 .
(1) $\Leftrightarrow(2) \Leftrightarrow(7):$ By Corollary 4 .
$(1) \Leftrightarrow(6)$: Apply Corollary 4 to the bimodule $S_{0} M_{R}$.
One condition in the equivalence list of Theorem 8 says that, if A, B are complements of each other in M_{R}, then the map $\alpha_{1}: A \oplus B \longrightarrow M$ given by $\alpha_{1}(a+b)=a$ extends to M. This is an improvement of a result of Smith and Tercan [11, Thm.4] where it was proved that M_{R} is π-injective if and only if M satisfies $\left(P_{2}\right)$, i.e., if A and B are complement submodules of M with $A \cap B=0$, then every map from $A \oplus B$ to M extends to M.

Remark 9. Two modules X and Y are said to be orthogonal and written $X \perp Y$ if they have no nonzero isomorphic submodules. A submodule N of the module M is called a type submodule if, whenever $N \subset P \subseteq M$, there exists $0 \neq X \subseteq P$ such that $N \perp X$. Two submodules X and Y of M are said to be type complements of each other in M if they are complements of each other in M such that $X \perp Y$. The module M is called TS if each of its type submodules is a direct summand of M. The module M is said to satisfy $\left(T_{3}\right)$ if, whenever X and Y are type submodules as well as direct summands such that $X \oplus Y$ is essential in $M, X \oplus Y=M$. As shown in [14], a module M satisfies both TS and (T_{3}) if and only if, whenever A, B are type complements of each other in $M, M=A \oplus B$. The module satisfying TS and (T_{3}) can be regarded as the 'type' analogue of the notion of π-injective modules. Several characterizations of this 'type' analogue of π-injective modules have been obtained in [14]. Some new characterizations of this notion can be obtained by restating Theorem 8 with ' $A \cap B=0$ ' being replaced by ' $A \perp B$ ', ' A, B are complements of each other in M ' replaced by ' A, B are type complements of each other in M ', and "all idempotents of S " by "all idempotents f with $f(M) \perp \operatorname{Ker}(f)$ ".
Proposition 10. Let C be the center of $\operatorname{End}\left(M_{R}\right)$. The following are equivalent:
(1) For any submodules A, B of M_{R} with $A \cap B=0, C=\mathbf{l}_{C}(A)+\mathbf{l}_{C}(B)$.
(2) M_{R} is π-injective and every idempotent of $\operatorname{End}\left(M_{R}\right)$ is central.
(3) M_{R} is π-injective and every direct summand of M_{R} is fully invariant.

Proof. (1) $\Leftrightarrow(2)$. Apply Corollary 4 to the bimodule ${ }_{C} M_{R}$.
$(2) \Rightarrow(3)$. Let X be a direct summand of M_{R}. Then $X=f(M)$ for some $f^{2}=f \in \operatorname{End}\left(M_{R}\right)$. For any $g \in \operatorname{End}\left(M_{R}\right)$, since f is central by $(2), g(X)=g(f(M))=f(g(M)) \subseteq f(M)=X$. This shows that X is a fully invariant submodule of M_{R}.
$(3) \Rightarrow(2)$. Let $f, g \in \operatorname{End}\left(M_{R}\right)$ with $f^{2}=f$. By $(3), g(f(M)) \subseteq f(M)$ and $g((1-$ $f)(M)) \subseteq(1-f)(M)$. It follows that $f g f=g f$ and $(1-f) g(1-f)=g(1-f)$. Thus, $g-g f=g(1-f)=(1-f) g(1-f)=g-g f-f g+f g f=g-g f-f g+g f=g-f g$. This shows that $f g=g f$.

3. Applications

In the rest of the paper, we discuss some applications of Theorem 8. Recall that a module M is called continuous if (C 1) holds and every submodule isomorphic to a direct summand is itself a direct summand of $M(\mathrm{C} 2)$. As a generalization of $(\mathrm{C} 2)$-condition, a module M_{R} is called GC2 if, for any submodule N of M_{R} with $N \cong M, N$ is a summand of M. Note that if R is the 2×2 upper triangular matrix ring over a field, then R_{R} satisfies both (C1) and (GC2) but it does not satisfy (C3).
Proposition 11. Let M_{R} be a module with $S=\operatorname{End}\left(M_{R}\right)$. The following are equivalent:
(1) For any family $\left\{A_{i}: i \in I\right\}$ of submodules of M_{R} with $\cap_{i \in I} A_{i}=0, S=\Sigma_{i \in I} l_{S}\left(A_{i}\right)$.
(2) M_{R} is finitely cogenerated and, for any finite family $\left\{A_{i}: i=1, \ldots, n\right\}$ of submodules of M_{R} with $\cap_{i=1}^{n} A_{i}=0$, the map

$$
M \xrightarrow{h} \oplus_{i=1}^{n} M / A_{i}, \quad m \mapsto\left(m+A_{1}, \ldots, m+A_{n}\right)
$$

splits.
(3) M_{R} is finitely cogenerated and, for any finite family $\left\{A_{i}: i=1, \ldots, n\right\}$ of submodules of M_{R} with $\cap_{i=1}^{n} A_{i}=0, S=\sum_{i=1}^{n} \mathbf{l}_{S}\left(A_{i}\right)$.
If M_{R} satisfies both (1) and (GC2), then M_{R} is continuous and S is semiperfect.
Proof. It is straightforward to verify the equivalences $(1) \Leftrightarrow(2) \Leftrightarrow(3)$.
Suppose that M_{R} satisfies both (1) and (GC2). By Theorem $8, M_{R}$ is π-injective. Thus, by [8, Lemma 3.14], M is continuous. To show that S is semilocal, let $\sigma: M \longrightarrow M$ be a monomorphism. Then $M=\sigma(M) \oplus N$ for some $N \subseteq M$ (by the GC2-condition). It must be that $N=0$ since M is finite dimensional (indeed, finitely cogenerated). So, σ is an isomorphism. Therefore, M satisfies the assumptions in Camps-Dicks [3, Thm.5], and so $\operatorname{End}(M)$ is semilocal. But, by [8, Prop.3.5 \& Lemma 3.7], idempotents of $S / J(S)$ lift to idempotents of S, and thus S is semiperfect.

A ring R is called right Kasch if every simple right R-module embeds in R_{R}, or equivalently if $\mathbf{l}(I) \neq 0$ for any maximal right ideal I of R.

Corollary 12. If R satisfies the condition that, for any set $\left\{A_{i}: i \in I\right\}$ of right ideals such that $\cap_{i \in I} A_{i}=0, R=\Sigma_{i \in I} \mathbf{l}_{R}\left(A_{i}\right)$ and R_{R} satisfies (GC2), then R is a semiperfect right continuous ring with a finitely generated essential right socle. In particular, R is left and right Kasch.

Proof. The first part follows from Theorem 11. The second part is by [9, Lemma 4.16].
A ring R is called strongly right $I N$ if, for any set $\left\{A_{i}: i \in I\right\}$ of right ideals, $\mathbf{l}_{R}\left(\cap_{i \in I} A_{i}\right)=$ $\Sigma_{i \in I} \mathbf{l}_{R}\left(A_{i}\right)$. The ring R is called right dual if every right ideal of R is a right annihilator. It is well-known that every two-sided dual ring is strongly left and right IN.

Corollary 13. The following are equivalent for a ring R :
(1) R is a two-sided dual ring.
(2) R is strongly left and right IN, and left (or right) GC2.
(3) R is left and right finitely cogenerated, left and right IN, and left (or right) GC2.

Proof. (1) $\Rightarrow(2)$: Obvious.
$(2) \Rightarrow(3)$: It is clear by Corollary 12 .
$(3) \Rightarrow(1)$: Suppose $\cap_{i \in I} A_{i}=0$ where all A_{i} are right ideals R. Since R is right finitely cogenerated, $\cap_{i \in F} A_{i}=0$ where F is a finite subset of I. Thus, $R=\mathbf{l}_{R}\left(\cap_{i \in F} A_{i}\right)=\Sigma_{i \in F} \mathbf{l}_{R}\left(A_{i}\right)$ because of the IN-condition, and hence $R=\Sigma_{i \in I} l_{R}\left(A_{i}\right)$. By Corollary $12, R$ is left and right Kasch. Since R is left and right IN, it follows from [2, Lemma 9$]$ that R is a two-sided dual ring.

The GC2-condition in Corollary 12 and in Corollary $13(3)$ can not be removed. To see this, let R be the trivial extension of \mathbb{Z} and the \mathbb{Z}-module $\mathbb{Z}_{2^{\infty}}$. Then R has an essential minimal ideal, so R is finitely cogenerated and, for any set $\left\{A_{i}: i \in I\right\}$ of right ideals of $R, R=\sum_{i \in I} \mathbf{l}_{R}\left(A_{i}\right)$. Moreover, R is IN. But R contains non-zero divisors which are not invertible, so R is not GC2. Clearly, R is not Kasch, so it is not semiperfect by Corollary 12. We do not know if the GC2-condition can be removed in Corollary 13(2).

Proposition 14. Suppose every finitely generated left ideal of R is a left annihilator. Then the following are equivalent:
(1) Every closed right ideal of R is a right annihilator of a finite subset of R.
(2) R_{R} satisfies (C1).
(3) R is right continuous.

Proof. (3) $\Rightarrow(2)$: Obvious.
(2) \Rightarrow (1): If I_{R} is closed in R_{R}, then $I=e R$ for some $e^{2}=e \in R$. Hence $I=\mathbf{r}(1-e)$.
(1) $\Rightarrow(2)$: Let I_{R} and K_{R} be complements of each other in R_{R}. Then, by (1), $I=$ $\mathbf{r}_{R}\left(a_{1}, \ldots, a_{n}\right)$ and $K=\mathbf{r}_{R}\left(b_{1}, \ldots, b_{m}\right)$ where $a_{i}, b_{j} \in R$. Thus,

$$
\begin{aligned}
R & =\mathbf{l}_{R}(I \cap K)=\mathbf{l}_{R}\left[\mathbf{r}_{R}\left(a_{1}, \ldots, a_{n}\right) \cap \mathbf{r}_{R}\left(b_{1}, \ldots, b_{m}\right)\right] \\
& =\mathbf{l}_{R}\left(\mathbf{r}_{R}\left(\sum_{i=1}^{n} R a_{i}+\sum_{j=1}^{m} R b_{j}\right)\right)=\sum_{i=1}^{n} R a_{i}+\sum_{j=1}^{m} R b_{j} \\
& =\mathbf{l}_{R}(I)+\mathbf{l}_{R}(K) .
\end{aligned}
$$

Thus, by Theorem $8, R_{R}$ is π-injective, and in particular R_{R} satisfies (C1).
$(2) \Rightarrow(3)$: Since $\mathbf{r}_{R}\left(\mathbf{l}_{R}(F)\right)=F$ for all finitely generated left ideals F of R, R is right P-injective, and hence satisfies the right C 2 -condition. Thus, R is right continuous.

A ring R is called a right $C F$-ring (resp. right FGF-ring) if every cyclic (resp. finitely generated) right R-module embeds in a free module. The ring R is called right $F P$-injective if every R-homomorphism from a finitely generated submodule of a free right R-module F into R extends to F. Note that every right self-injective ring is right $F P$-injective, but not conversely. Also every finitely generated left ideal of a right $F P$-injective ring is a left annihilator (see [7]). The well known FGF problem asks whether every right FGF-ring is QF. It is known that every right self-injective, right FGF-ring is QF. In fact, Björk [1] and Tolskaya [12] independently proved that every right self-injective, right CF-ring is QF. On the other hand, Nicholson-Yousif [10, Theorem 4.3] shows that every right FP-injective ring for which every 2 -generated right module embeds in a free module is QF. Our next corollary extends the two results.

Corollary 15. Suppose R is a right CF-ring such that every finitely generated left ideal is a left annihilator. Then R is a QF-ring.
Proof. Since R is right CF, every right ideal is a right annihilator of a finite subset of R. By Proposition 14, R_{R} is π-injective. Then, by [5, Corollary 2.9], R is right artinian. Clearly, R is two-sided mininjective. So, R is QF by [9, Cor.4.8].
Corollary 16. Every right $C F$, right $F P$-injective ring is $Q F$. In particular, every right $F G F$, right $F P$-injective ring is $Q F$.
A ring R is called right FPF-ring if every finitely generated faithful right R-module is a generator of Mod- R, the category of all right R-modules. A ring is left (resp. right) duo if every left (resp. right) ideal is two sided. We conclude by noticing that every right FPF-ring which is left or right duo is π-injective. The next corollary follows from Theorem 8 and the proof of [4, 3.1A2, p.3.2].
Corollary 17. Let R be a right FPF-ring. If R is a left or right duo ring, then R_{R} is π-injective. In particular, every commutative FPF-ring is π-injective.

References

[1] Björk, J. E.: Radical properties of perfect modules. J. Reine Angew. Math. 253 (1972), 78-86. Zbl 0228.16011
[2] Camillo, V.; Nicholson, W. K.; Yousif, M. F.: Ikeda-Nakayama rings. J. Algebra 226 (2000), 1001-1010. Zbl 0958.16002
[3] Camps, R.; Dicks, W.: On semi-local rings. Israel J. Math. 81 (1993), 203-211. Zbl 0802.16010
[4] Faith, C.; Page, S. S.: FPF Ring Theory: Faithful Modules and Generators of Mod-R. London Math. Soc. Lecture Note Series 88, Cambridge Univ. Press, 1984.

Zbl 0554.16007
[5] Gomez Pardo, J. L.; Guil Asensio, P. A.: Rings with finite essential socle. Proc. Amer. Math. Soc. 125(4) (1997), 971-977.

Zbl 0871.16012
[6] Ikeda, M.; Nakayama, T.: On some characteristic properties of quasi-Frobenius and regular rings. Proc. Amer. Math. Soc. 5 (1954), 15-19.

Zbl 0055.02602
[7] Jain, S.: Flat and FP-injectivity. Proc. Amer. Math. Soc. 41 (1973), 437-442.
Zbl 0268.16019
[8] Mohamed, S. H.; Müller, B. J.: Continuous and Discrete Modules. Cambridge University Press, Cambridge 1990. Zbl 0701.16001
[9] Nicholson, W. K.; Yousif, M. F.: Mininjective rings. J. Algebra 187 (1997), 548-578. Zbl 0879.16002
[10] Nicholson, W. K.; Yousif, M. F.: Weakly continuous and C2-rings. Comm. Alg., to appear.
[11] Smith, P. F.; Tercan, A.: Continuous and quasi-continuous modules. Houston J. Math. 18(3) (1992), 339-348.

Zbl 0762.16004
[12] Tolskaya, T. S.: When are all cyclic modules essentially embedded in free modules. Mat. Issled. 5 (1970), 187-192.
[13] Wisbauer, R.: Foundations of Module and Ring Theory. Gordon and Breach, 1991. Zbl 0746.16001
[14] Zhou, Y.: Decomposing modules into direct sums of submodules with types. J. Pure Appl. Algebra 138(1) (1999), 83-97.

Zbl 0955.16007

Received November 12, 2000

[^0]: *The research was supported in part by NSERC of Canada and a grant from Ohio State University
 0138-4821/93 \$ 2.50 © 2002 Heldermann Verlag

