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1. Introduction

Let X1, X2, . . . be independent identically distributed random points in Euclidean space Rd.
Geometric functionals such as volume, surface area, mean width, or the number of k-faces,
of the convex hull of such random points have been studied repeatedly in the literature. A
recent survey is provided in [12]. If the random points are chosen from a given compact
convex set K ⊂ Rd with non-empty interior, it is natural to consider the uniform distribution
on K. More generally, the distribution function may have a density with respect to Lebesgue
measure. In case the domain is Rd, the normal distribution is a canonical choice. Another
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method of generating n + 1 random points in Rd goes back to a suggestion by Goodman and
Pollack. Let R denote a random rotation of Rn, i.e. a stochastic choice from the orthogonal
group O(n) under normalized Haar measure, let Πd : Rn → Rd be the projection to the first d
components (d < n), put Π := Πd◦R, and let v1, . . . , vn+1 be the vertices of a regular simplex
T n in Rn. Then Π(v1), . . . , Π(vn+1) are n + 1 random points in Rd in the Goodman-Pollack
model. Clearly, as long as one considers rotation invariant functionals of such random points,
one can project to a random linear subspace, instead of first rotating randomly and then
projecting to a fixed subspace. For further information on this ‘Grassmann approach’ and
related work of Vershik and Sporyshev [15], we refer to [3].

In connection with the Goodman-Pollack model, Affentranger and Schneider [3] especially
found an expression for the expected value Efk(ΠT n) of the number of k-faces of the random
polytope ΠT n, for 0 ≤ k < d < n, in terms of external and internal angles of T n and its
faces. In addition, they showed that asymptotically

Efk(ΠT n) ∼ 2d

√
d

(
d

k + 1

)
β(T k, T d−1) (π log n)

d−1
2 (1.1)

as n →∞, where β(T k, T d−1) is the internal angle of a regular (d−1)-simplex at one of its k-
dimensional faces. It was also observed by these authors that the value Efd−1(ΠT n) coincides
with the expected number of facets of the convex hull of n + 1 independent and normally
distributed random points in Rd. An explanation for this relationship was subsequently
found by Baryshnikov and Vitale [4]. To describe an important consequence of their result,
and for later use, we call an i.i.d. sequence of (standard) Gaussian random points in Rd a
Gaussian sample in Rd. Let X1, . . . , Xn+1 be a Gaussian sample in Rd. Its convex hull will be
called a Gaussian polytope in Rd and denoted by [X1, . . . , Xn+1]. Let ϕ be an affine invariant
(measurable) functional on the convex polytopes. Then it is shown in [4] that

ϕ(ΠT n)
d
= ϕ([X1, . . . , Xn+1]), (1.2)

where
d
= means equality in distribution. Thus, if X1, . . . , Xn is a standard Gaussian sample

and fk denotes the number of k-faces, combining (1.1) and (1.2), we get

Efk([X1, . . . , Xn]) ∼ 2d

√
d

(
d

k + 1

)
β(T k, T d−1) (π log n)

d−1
2 (1.3)

as n →∞ (see [4, Theorem 3]).

A direct derivation of this asymptotic expansion has been given by Raynaud [11] in the
special case when k = d − 1. A main objective of the present work is to provide a direct
derivation of (1.3) for all k ∈ {0, . . . , d − 1}. Incidentally, the present approach leads to a
new expression for the internal angles of a regular simplex. A basic idea of the geometric part
of our method is to characterize a k-face of a polytope by considering the projection of the
vertices of the polytope to the orthogonal complement of that face. Another geometric tool,
which we will apply repeatedly, is the classical affine Blaschke-Petkantschin formula. Thus,
exploiting the fact that the projection to a subspace of a normally distributed point is again
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normally distributed, we can rewrite the expected value in terms of geometric probabilities
of the form

P(Y /∈ [Y1, . . . , Yn−k−1]), (1.4)

where Y, Y1, . . . , Yn−k−1 are independent normally distributed random points in Rd−k (with
different variances). Note that (1.4) is the probability that a normally distributed random
point is contained in a Gaussian polytope in Rd−k. In a second step, we then derive the
asymptotic behaviour of such geometric probabilities.

A major advantage of the present more direct treatment of normally distributed random
points is that it can be applied to functionals which are not necessarily affine invariant.
More explicitly, we are able to obtain results for a class of rotation invariant functionals
that has been introduced by Wieacker [17], and has further been studied by Affentranger
and Wieacker [2] and Affentranger [1]. Particular cases of such functionals are the total k-
dimensional volume Vk(skelk(P )) of the k-faces of a polytope P , and the number of k-faces
fk(P ). For these we obtain as a consequence a more general result:

Theorem 1.1. Let X1, . . . , Xn be i.i.d. random points in Rd with common standard normal
distribution. Then

EVk(skelk([X1, . . . , Xn])) ∼ c(k,d) (log n)
d−1
2 (1.5)

and

Efk([X1, . . . , Xn]) ∼ c̄(k,d) (log n)
d−1
2 (1.6)

as n →∞, where c(k,d) and c̄(k,d) are constants depending only on k and d.

The constants c(k,d) and c̄(k,d) are given in Section 4. These results complement asymptotic ex-
pansions for the mean values of quermassintegrals of Gaussian polytopes, which were given by
Affentranger [1]. Important further contributions to convex hulls of normally distributed ran-
dom points are due to Hueter [7], who proved a Central Limit Theorem for Vd([X1, . . . , Xn])
and f0([X1, . . . , Xn]).

We also investigate functionals of the (centrally) symmetric convex hull [±X1, . . . ,±Xn],
where again X1, . . . , Xn is a (standard) Gaussian sample in Rd. It follows from [4] that
the symmetric convex hull of a Gaussian sample can be obtained by randomly rotating and
projecting to Rd a regular crosspolytope in Rn. This fact was used by Böröczky and Henk
[5], who thus found the surprising result that the asymptotic expansion does not change if
T n in (1.1) is replaced by a regular n-dimensional crosspolytope. Apart from admitting the
treatment of more general functionals also in the symmetric situation, our method leads to
an alternative and more direct explanation for this phenomenon.

2. Auxiliary results

In this section, we will fix our notation and provide some auxiliary results.
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We will work in Euclidean spaces Rn of varying dimensions n. The norm in these spaces
will always be denoted by ‖ · ‖. For points x1, . . . , xm ∈ Rn, the convex hull of these
points is denoted by [x1, . . . , xm]. If P ⊂ Rn is a (convex) polytope, then we write Fk(P )
for the set of its k-dimensional faces and fk(P ) for the number of these k-faces, where
k ∈ {0, . . . , n}. The k-dimensional volume of the convex hull of k + 1 points x0, . . . , xk is
denoted by ∆k(x0, . . . , xk). Finally, the k-dimensional Lebesgue measure in a k-dimensional
flat E ⊂ Rn is denoted by λE, or simply by λk, if the affine subspace E is clear from the
context.

The affine Blaschke-Petkantschin formula will be an important tool in our analysis. Let
En

k be the space of k-flats in Rn, and let Ln
k be the space of k-dimensional linear subspaces

of Rn, k ∈ {0, . . . , n}. Both spaces are endowed with the usual topologies. The rotation
invariant Haar probability measure on Ln

k is denoted by νk (the dimension n will always be
clear from the context). Moreover, a motion invariant Haar measure on En

k is defined by

µk :=

∫
Ln

k

∫
L⊥

1{L + y ∈ ·}λL⊥(dy) νk(dL),

where L⊥ is the orthogonal complement of L ∈ Ln
k in Rn. Then, for n ≥ 1, q ∈ {0, . . . , n}

and any non-negative measurable function f : (Rn)q+1 → R, the affine Blaschke-Petkantschin
formula (see [13, § 6.1]) states that∫

Rn

· · ·
∫
Rn

f(x0, . . . , xq) λn(dx0) . . . λn(dxq) (2.1)

= cnq(q!)
n−q

∫
En

q

∫
E

· · ·
∫
E

f(x0, . . . , xq)∆q(x0, . . . , xq)
n−q λE(dx0) . . . λE(dxq) µq(dE),

where

cnq :=
ωn−q+1 · · ·ωn

ω1 · · ·ωq

and ωr := 2π
r
2 /Γ

(
r
2

)
, r > 0; for r ∈ N, ωr is the volume of the (r − 1)-dimensional unit

sphere.
In addition to the Blaschke-Petkantschin formula, we will require more specific prepara-

tions related to the multidimensional normal distribution. As usual, we fix an underlying
probability space (Ω, A, P). A random point X in Rn, defined on Ω, is said to be normally
distributed with positive definite n × n-covariance matrix Σ (and mean 0) if X(P) has the
density

fΣ(x) = ((2π)n det Σ)−
1
2 exp

(
−1

2
xT Σ−1x

)
, x ∈ Rn;

then we write X
d
= N(0, Σ). For simplicity, we will exclusively consider the case Σ = σ · In,

σ > 0. The distribution function of the one-dimensional normal distribution N(0, 1
2
) is given
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by

φ(z) :=
1√
π

z∫
−∞

e−t2 dt, z ∈ R.

The Landau symbols o and O, which will be used several times in the following, are defined
as usual. Moreover, writing f(x) ∼ g(x) for real-valued functions f, g, defined on a suitable
subset of R, we mean that f(x)/g(x) → 1 as x →∞. The natural logarithm will be denoted
by log. Finally, all constants which are used subsequently, depend only on the parameters
that are indicated.

Lemma 2.1. For α, β > 0 and s ∈ R,

∞∫
1

φ(z)β−αzs exp
(
−αz2

)
dz = Γ(α)2α−1π

α
2 β−α (log β)

α+s−1
2 (1 + o(1))

and
∞∫

1

(2φ(z)− 1)β−αzs exp
(
−αz2

)
dz = Γ(α)2−1π

α
2 β−α (log β)

α+s−1
2 (1 + o(1))

as β →∞.

Proof. A complete proof can be given, for instance, by refining and extending an argument
of Affentranger (see [1, Appendix II]) or by generalizing an alternative approach indicated
in [8].

The asymptotic expansion provided in Lemma 2.1 will be used several times. A first appli-
cation is given in the proof of the next result, which will be needed in Section 4. There the
following expressions arise naturally. For a ≥ 0, p, q, r ∈ R with p > q > r > 0 and γ ∈ R,
we define

Ia(p, q, r; γ) :=

∞∫
1

∞∫
1

φ(z)p−qzsa+q−r−1
(
γ2 + z2

)a/2
exp

(
−rs2(γ2 + z2)− (q − r)z2

)
ds dz.

This quantity will be compared with

Ja(p, q, r; γ) :=
1

2r

∞∫
1

φ(z)p−qza−1 exp
(
−qz2 − rγ2

)
dz

as p →∞.

Lemma 2.2. Let a ≥ 0, and let p, q, r ∈ R satisfy q > r > 0. Then, uniformly in γ ∈ R,

|Ia(p, q, r; γ)− Ja(p, q, r; γ)| = O
(
p−q(log p)

q+a−3
2

)
as p →∞.
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Proof. By Fubini’s theorem,

Ia(p, q, r; γ) =

∞∫
1

φ(z)p−qz
√

γ2 + z2
a
exp

(
−(q − r)z2

)
×

∞∫
1

sa+q−r−1 exp
(
−r
(
γ2 + z2

)
s2
)

ds dz. (2.2)

Repeated partial integration yields that∣∣∣∣∣∣
∞∫

1

sa+q−r−1 exp
(
−r(γ2 + z2)s2

)
ds− 1

2r(γ2 + z2)
exp

(
−r(γ2 + z2)

)∣∣∣∣∣∣
≤ c1(a, q, r)

(γ2 + z2)2
exp

(
−r(γ2 + z2)

)
, (2.3)

where c1(a, q, r) is a constant. Hence, (2.2) and (2.3) imply that∣∣∣∣∣∣Ia(p, q, r; γ)− 1

2r

∞∫
1

φ(z)p−qz
√

γ2 + z2
a−2

exp
(
−qz2 − rγ2

)
dz

∣∣∣∣∣∣
≤ c1(a, q, r)

∞∫
1

φ(z)p−qz
√

γ2 + z2
a−4

exp
(
−qz2 − rγ2

)
dz.

Then, for z ≥ 1, r > 0, a ≥ 0 and γ ∈ R, we use the estimates∣∣∣z√γ2 + z2
a−2

− za−1
∣∣∣ exp

(
−rγ2

)
≤ c2(a, r)za−2

and

z
√

γ2 + z2
a−4

exp
(
−rγ2

)
≤ c2(a, r)za−3,

with a constant c2(a, r), to infer that

|Ia(p, q, r; γ)− Ja(p, q, r; γ)| ≤ c3(a, q, r)

∞∫
1

φ(z)p−qza−2 exp
(
−qz2

)
dz,

where c3(a, q, r) is a constant. Now an application of Lemma 2.1 completes the proof.

We remark that a similar result holds, with essentially the same proof, if in the definition of
Ia and Ja the function φ is replaced by 2φ− 1.
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3. Transition to probabilities

Throughout this paper, X1, . . . , Xn will be independent random points with Xi
d
= N

(
0, 1

2
Id

)
.

For n ≥ d + 1, k ∈ {0, . . . , d− 1} and I ⊂ {1, . . . , n} with |I| = k + 1, we define

hI(x1, . . . , xn) := 1{[xi : i ∈ I] ∈ Fk([x1, . . . , xn])},

x1, . . . , xn ∈ Rd, and put I0 := {1, . . . , k + 1}. By symmetry, we then obtain for the mean
number of k-faces of the P-almost surely simplicial Gaussian polytope [X1, . . . , Xn] that

Efk([X1, . . . , Xn]) =
∑

|I|=k+1

∫
hI(X1, . . . , Xn) dP

=

(
n

k + 1

)∫
hI0(X1, . . . , Xn) dP. (3.1)

In order to transform this mean value into a basic geometric probability, we define for d, k ∈ N
and q ≥ 0 the constant

M(d, k, q) := π−
d
2
(k+1)

∫
Rd

· · ·
∫
Rd

∆k(x0, . . . , xk)
qexp

(
−

k∑
i=0

‖xi‖2

)
λd(dx0) . . . λd(dxk).

In the case when q ∈ N, M(d, k, q) is the q-th moment of the random k-dimensional volume
of a random k-simplex [X0, . . . , Xk] with k+1 independent and normally distributed vertices

Xi
d
= N

(
0, 1

2
Id

)
, i = 0, . . . , k. The following lemma will be applied in the special case when

d = k.

Lemma 3.1. For d, k ∈ N, k ≤ d and q ≥ 0,

M(d, k, q) = π
k
2
q cdk

c(q+d)k

(√
k + 1

k!

)q

.

Proof. For q ∈ N0 this can be shown as in the proof of Satz 6.3.1 in [13]. The general case
follows by using the connection with the Wishart distribution (cf. [10], [9, p. 437, (4.5.3)] and
[6, pp. 303, 315]; see also [14]).

Theorem 3.2. Let X1, . . . , Xn be n ≥ d + 1 independent random points in Rd with Xi
d
=

N
(
0, 1

2
Id

)
. Then, for k ∈ {0, . . . , d− 1},

Efk([X1, . . . , Xn]) =

(
n

k + 1

)
P(Y /∈ [Y1, . . . , Yn−k−1]),

where Y, Y1, . . . , Yn−k−1 are independent random points in Rd−k with Y
d
= N

(
0, 1

2(k+1)
Id−k

)
and Yi

d
= N

(
0, 1

2
Id−k

)
for i = 1, . . . , n− k − 1.
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Proof. Using (3.1), the Blaschke-Petkantschin formula (2.1) and the definition of µk, we
obtain

Efk([X1, . . . , Xn])

=

(
n

k + 1

)
π−

d
2
n

∫
Rd

· · ·
∫
Rd

hI0(x1, . . . , xn) exp

(
−

n∑
i=1

‖xi‖2

)
λd(dx1) . . . λd(dxn)

= c4(n, k, d)

∫
Rd

· · ·
∫
Rd

∫
Ld

k

∫
L⊥

∫
L

· · ·
∫
L

hI0(z1 + y, . . . , zk+1 + y, xk+2, . . . , xn)

×∆k(z1, . . . , zk+1)
d−kexp

(
−

k+1∑
i=1

‖zi‖2 − (k + 1)‖y‖2 −
n∑

i=k+2

‖xi‖2

)
×λL(dz1) . . . λL(dzk+1)λL⊥(dy)νk(dL)λd(dxk+2) . . . λd(dxn),

where

c4(n, k, d) :=

(
n

k + 1

)
π−

d
2
ncdk(k!)d−k.

Assume that z1, . . . , zk+1 ∈ L are affinely independent, let zk+2, . . . , zn ∈ L and y ∈ L⊥.
Then, for λL⊥-almost all yk+2, . . . , yn ∈ L⊥,

[z1 + y, . . . , zk+1 + y] ∈ Fk([z1 + y, . . . , zk+1 + y, zk+2 + yk+2, . . . , zn + yn])

if and only if

y /∈ [yk+2, . . . , yn].

Hence, defining

g(y, yk+2, . . . , yn) := 1{y /∈ [yk+2, . . . , yn]},

for y, yk+2, . . . , yn ∈ Rd, we obtain

Efk([X1, . . . , Xn])

= c5(n, k, d)

∫
Ld

k

[∫
L

· · ·
∫
L

∆k(z1, . . . , zk+1)
d−kexp

(
−

k+1∑
i=1

‖zi‖2

)
λL(dz1) . . . λL(dzk+1)

]

×
∫

L⊥

· · ·
∫

L⊥

g(y, yk+2, . . . , yn)exp

(
−

n∑
i=k+2

‖yi‖2 − (k + 1)‖y‖2

)
×λL⊥(dyk+2) . . . λL⊥(dyn)λL⊥(dy)νk(dL),

where

c5(n, k, d) := c4(n, k, d)π
1
2
k(n−k−1).
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Thus, by Lemma 3.1 and the rotation invariance of the integrand, it follows that

Efk([X1, . . . , Xn])

= c5(n, k, d)π
k
2
(k+1)M(k, k, d− k)

×
∫
Rd−k

· · ·
∫
Rd−k

g(y, yk+2, . . . , yn)exp

(
−

n∑
i=k+2

‖yi‖2 − (k + 1)‖y‖2

)
×λd−k(dyk+2) . . . λd−k(dyn)λd−k(dy).

Applying Lemma 3.1 and simplifying the constants, we obtain the assertion of the theorem.

In the remainder of this section, we will explain how the preceding argument can be modified
to yield a similar relation in the centrally symmetric case. Moreover, the approach will be
extended to cover more general functionals.

3.1. The centrally symmetric case

Let X1, . . . , Xn be n ≥ d independent random points in Rd with Xi
d
= N

(
0, 1

2
Id

)
. We write

[x1, . . . , xn]c := [x1,−x1, . . . , xn,−xn]

for the (centrally) symmetric convex hull of x1, . . . , xn ∈ Rd. For subsets I, J ⊂ {1, . . . , n}
with |I|+ |J | = k + 1, we put

hIJ(x1, . . . , xn) := 1{[xi,−xj : i ∈ I, j ∈ J ] ∈ Fk([x1, . . . , xn]c)}

and set I0 := {1, . . . , k + 1}, J0 := ∅. Since [X1, . . . , Xn]c is P-almost surely a simplicial
polytope, by symmetry and by the reflection invariance of the normal distribution, we find
that

Efk([X1, . . . , Xn]c) =
k+1∑
r=0

∑
|I|=r

∑
|J |=k+1−r

∫
hIJ(X1, . . . , Xn) dP

=
k+1∑
r=0

(
n

r

)(
n− r

k + 1− r

)∫
hI0J0(X1, . . . , Xn) dP

= 2k+1

(
n

k + 1

)∫
hI0J0(X1, . . . , Xn) dP.

The integral thus obtained can be further simplified as shown in the next theorem.

Theorem 3.3. Let X1, . . . , Xn be n ≥ d independent random points in Rd with Xi
d
=

N
(
0, 1

2
Id

)
. Then, for k ∈ {0, . . . , d− 1},

Efk([X1, . . . , Xn]c) = 2k+1

(
n

k + 1

)
P(Y /∈ [Y1, . . . , Yn−k−1]c),

where Y, Y1, . . . , Yn−k−1 are independent random points in Rd−k with Y
d
= N

(
0, 1

2(k+1)
Id−k

)
and Yi

d
= N

(
0, 1

2
Id−k

)
for i = 1, . . . , n− k − 1.
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Proof. Repeat the proof of Theorem 3.2 with g replaced by

gc(y, yk+2, . . . , yn) := 1{y /∈ [yk+2, . . . , yn]c}

for y, yk+2, . . . , yn ∈ Rd.

3.2. A general functional

A class of functionals, which has first been introduced by Wieacker [17] and has further been
studied in [1], [2], depends on two parameters. For a polytope P ⊂ Rd, real numbers a, b ≥ 0
and k ∈ {0, . . . , d− 1}, we define

T d,k
a,b (P ) :=

∑
F∈Fk(P )

(η(F ))a (λk(F ))b ,

where λk(F ) denotes the k-dimensional Lebesgue measure of a k-dimensional face F ∈ Fk(P )
calculated in the affine hull aff(F ) of F , and η(F ) := dist(aff(F ), 0) is defined as the distance
of aff(F ) from the origin. For a = b = 0, we have T d,k

0,0 = fk. But already for a = 0, b = 1 we
get a functional which is not affine invariant, but merely rotation invariant; in that case,

T d,k
0,1 (P ) =

∑
F∈Fk(P )

λk(F )

is the total k-dimensional volume of the k-skeleton of P . In particular, T d,d−1
0,1 (P ) is the surface

area of a d-dimensional polytope P ⊂ Rd. Finally, we emphasize that T d,d−1
1,1 (P ) = dλd(P ) if

0 ∈ P .

If X1, . . . , Xn are n ≥ d + 1 independent random points in Rd with Xi
d
= N

(
0, 1

2
Id

)
, then

P-almost surely [Xi : i ∈ I] is a k-dimensional polytope whenever I ⊂ {1, . . . , n} with
|I| = k + 1, and we put

ηI := η([Xi : i ∈ I]), λk,I := λk([Xi : i ∈ I]), hI := hI(X1, . . . , Xn).

By symmetry we thus obtain

ET d,k
a,b ([X1, . . . , Xn]) =

(
n

k + 1

)∫
hI0 (ηI0)

a (λk,I0)
b dP,

where I0 := {1, . . . , k + 1}.

Theorem 3.4. Let X1, . . . , Xn be n ≥ d + 1 independent random points in Rd with Xi
d
=

N
(
0, 1

2
Id

)
. Then, for k ∈ {0, . . . , d− 1} and a, b ≥ 0,

ET d,k
a,b ([X1, . . . , Xn]) =

(
n

k + 1

)
C(b, k, d)

∫
1{Y /∈ [Y1, . . . , Yn−k−1]}‖Y ‖a dP,

where

C(b, k, d) :=

(√
k + 1

k!

)b k∏
j=1

Γ
(

d+b+1−j
2

)
Γ
(

d+1−j
2

)
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and Y, Y1, . . . , Yn−k−1 are independent random points in Rd−k with Y
d
= N

(
0, 1

2(k+1)
Id−k

)
and

Yi
d
= N

(
0, 1

2
Id−k

)
for i = 1, . . . , n− k − 1.

Proof. By the same arguments as in the proof of Theorem 3.2, we get

ET d,k
a,b ([X1, . . . , Xn])

= c5(n, k, d)

∫
Rk

· · ·
∫
Rk

∆k(z1, . . . , zk+1)
d−k+bexp

(
−

k+1∑
i=1

‖zi‖2

)
λ(dz1) . . . λ(dzk+1)

×
∫
Rd−k

· · ·
∫
Rd−k

g(y, yk+2, . . . , yn)‖y‖aexp

(
−

n∑
i=k+2

‖yi‖2 − (k + 1)‖y‖2

)
×λd−k(dyk+2) . . . λd−k(dyn)λd−k(dy).

The proof is completed by using Lemma 3.1 and by simplifying the constants.

Clearly, a centrally symmetric version of Theorem 3.4 could be stated and proved in a similar
way.

4. Asymptotic expansions

In Theorem 3.2 the mean number of k-faces Efk([X1, . . . , Xn]) of a Gaussian polytope in Rd

has been expressed in terms of a basic geometric probability. In this section, we will derive
the asymptotic expansion of probabilities of this type. For this purpose, let l,m ∈ N with
l ≥ m + 1 and k > −1, and let Y, Y1, . . . , Yl be independent random points in Rm with

Y
d
= N

(
0,

1

2(k + 1)
Im

)
and Yi

d
= N

(
0,

1

2
Im

)
.

The choice k ∈ {0, . . . , d− 1}, l = n− k− 1 and m = d− k then corresponds to the situation
of Theorem 3.2. In order to state our result, we define constants A(1, k) := 1,

A(m, k) :=

∫
Rm−1

· · ·
∫
Rm−1

∫
[u1,...,um]

∆m−1(u1, . . . , um)

× exp

(
−

m∑
i=1

‖ui‖2 − (k + 1)‖u‖2

)
λm−1(du)λm−1(du1) . . . λm−1(dum)

for m ≥ 2, and

C(m, k) := 2m+k(k + 1)
m
2
−1 Γ(m + k + 1)

mΓ
(

m
2

) π
1
2
(k+1+m−m2)

for m ∈ N. An interpretation of the numbers A(m, k) in terms of interior angles of regular
simplices will be given below in the case when k ∈ N.

We now consider the asymptotic behaviour of the probability that a normally distributed
random point is contained in a Gaussian polytope.
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Theorem 4.1. Let l,m ∈ N and k > −1. Let Y, Y1, . . . , Yl be independent random points in

Rm with Y
d
= N

(
0, 1

2(k+1)
Im

)
and Yi

d
= N

(
0, 1

2
Im

)
. Then

P(Y /∈ [Y1, . . . , Yl]) ∼ C(m, k)A(m, k) l−(k+1)(log l)
m+k−1

2

as l →∞.

Combining Theorem 3.2 and a special case of Theorem 4.1, we obtain the expansion (1.3),
though with a different form of the constant, i.e. for k ∈ {0, . . . , d− 1},

Efk([X1, . . . , Xn]) ∼ C(d− k, k)

(k + 1)!
A(d− k, k)(log n)

d−1
2 (4.1)

as n →∞, giving the constant c̄(k,d) in (1.6). By comparison, we thus conclude that

A(d− k, k) =
(d− k)Γ

(
d−k

2

)
π

(d−k)2

2
−1

(d− k − 1)!(k + 1)
d−k

2
−1
√

d
β(T k, T d−1), (4.2)

for k ∈ {0, . . . , d − 1}. Relation (4.2) can be interpreted as an apparently new integral
representation for the interior angles of a regular simplex. It would be nice to have a short
direct proof of (4.2), possibly extending to more general parameters, if the analytic expression
for β(T k, T d−1) obtained in [5, (2.3)] with α = 1/(d− k) and n = d− k is used.

Proof of Theorem 4.1. We can assume that l ≥ m+1 and put A := {Y /∈ [Y1, . . . , Yl]}. Then
Wendel’s theorem [16] yields that

P(A) = P(A ∩ {0 ∈ int [Y1, . . . , Yl]}) + O

(
lm

2l

)
.

For a set F ⊂ Rm, we define

pos1(F ) := {λx : x ∈ F, λ > 1};

hence, if F is an (m− 1)-dimensional convex set with 0 /∈ F , then pos1(F ) is the truncated
cone generated by F . Under the assumption that the origin is an interior point of [Y1, . . . , Yl],
we decompose the complement of [Y1, . . . , Yl] into the truncated cones generated by the facets
of [Y1, . . . , Yl]. Thus, again applying Wendel’s theorem and by symmetry, we get

P(A) =

(
l

m

)
P
(
Y ∈ pos1([Y1, . . . , Ym]), aff{Y1, . . . , Ym} ∩ [0, Ym+1, . . . , Yl] = ∅

)
+ O

(
lm

2l

)
.

Define indicator functions h0 and h1 by putting

h0(y1, . . . , yl) := 1{aff{y1, . . . , ym} ∩ [0, y1, . . . , yl] = ∅},

and

h1(y, y1, . . . , ym) := 1{y ∈ pos1([y1, . . . , ym])},
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where y, y1, . . . , yl ∈ Rm. Hence, P(A) can be rewritten as

P(A) =

(
l

m

)
(k + 1)

m
2

π
m
2

(l+1)

∫
Rm

· · ·
∫
Rm︸ ︷︷ ︸

l+1

h0(y1, . . . , yl)h1(y, y1, . . . , ym)

× exp

(
−

l∑
i=1

‖yi‖2 − (k + 1)‖y‖2

)
λm(dy)λm(dy1) . . . λm(dyl) + O

(
lm

2l

)
=

(
l

m

)
(k + 1)

m
2

π
m
2

(m+1)

∫
Rm

· · ·
∫
Rm︸ ︷︷ ︸

m+1

φ(dist(aff{y1, . . . , ym}, 0))l−mh1(y, y1, . . . , ym)

× exp

(
−

m∑
i=1

‖yi‖2 − (k + 1)‖y‖2

)
λm(dy)λm(dy1) . . . λm(dym) + O

(
lm

2l

)
,

where Fubini’s theorem has been used in the second step.
Now we first consider the case m ≥ 2. We apply the Blaschke-Petkantschin formula (2.1)

and use the rotation invariance of the integrand as in the proof of Theorem 3.2. Identifying
Rm−1 with the orthogonal complement e⊥m ⊂ Rm of the unit vector em, we finally get

P(A) = p(l,m, k) + O
(
φ(1)l

)
with

p(l,m, k) := 2

(
l

m

)
c6(m, k)

∞∫
1

∫
Rm−1

· · ·
∫
Rm−1

∫
Rm

φ(z)l−mh1(y, u1 + zem, . . . , um + zem)

×∆m−1(u1, . . . , um)exp

(
−

m∑
i=1

‖ui‖2 −mz2 − (k + 1)‖y‖2

)
×λm(dy)λm−1(du1) . . . λm−1(dum)λ1(dz)

and

c6(m, k) :=
(k + 1)

m
2 (m− 1)!

π
m2

2 Γ
(

m
2

) .

It remains to evaluate the asymptotic behaviour of p(l,m, k). The transformation formula
for multiple integrals yields that∫

Rm

h1(y, u1 + zem, . . . , um + zem)exp(−(k + 1)‖y‖2)λm(dy)

=

∞∫
1

∫
[u1,...,um]

zsm−1exp
(
−(k + 1)s2(‖u‖2 + z2)

)
λm−1(du)λ1(ds),
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and hence

p(l,m, k) = 2

(
l

m

)
c6(m, k)

∫
Rm−1

· · ·
∫
Rm−1

∫
[u1,...,um]

∆m−1(u1, . . . , um)

× exp

(
−

m∑
i=1

‖ui‖2

)
I0(l + k + 1, m + k + 1, k + 1; ‖u‖) (4.3)

×λm−1(du)λm−1(du1) . . . λm−1(dum),

where the functional Ia, for a ≥ 0, was introduced in Section 2. Define q(l,m, k) by the
right-hand side of (4.3), but with I0 replaced by J0. Then Lemma 2.2 implies that

P(A) = q(l,m, k) + O
(
l−(k+1)(log l)

m+k−2
2

)
.

By substituting the definition of A(m, k) and applying Lemma 2.1, we can complete the
proof in the case m ≥ 2. The case m = 1 follows easily by a direct argument specializing the
preceding one.

4.1. Again the centrally symmetric case

This subsection is devoted to the study of the asymptotic behaviour of the probabilities

P (Y /∈ [Y1, . . . , Yn−k−1]c)

arising in Theorem 3.3. More generally, we obtain the following result by a similar reasoning
as for Theorem 4.1.

Theorem 4.2. Let l,m ∈ N and k > −1. Let Y, Y1, . . . , Yl be independent random points in

Rm with Y
d
= N

(
0, 1

2(k+1)
Im

)
and Yi

d
= N

(
0, 1

2
Im

)
. Then

P (Y /∈ [Y1, . . . , Yl]c) ∼ 2−(k+1)C(m, k)A(m, k) l−(k+1)(log l)
m+k−1

2

as l →∞.

In particular, by combining Theorems 4.1 and 4.2 we deduce the following asymptotic relation
for which no direct proof seems to be known.

Corollary 4.3. Let l,m ∈ N and k > −1. Let Y, Y1, . . . , Yl be independent random points in

Rm with Y
d
= N

(
0, 1

2(k+1)
Im

)
and Yi

d
= N

(
0, 1

2
Im

)
. Then

P (Y /∈ [Y1, . . . , Yl]c) ∼ 2−(k+1)P (Y /∈ [Y1, . . . , Yl])

as l →∞.
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Proof of Theorem 4.2. Assume that l ≥ m. For y, y1, . . . , yl ∈ Rm, we define

gc(y, y1, . . . , yl) := 1{y /∈ [y1, . . . , yl]c}.
Abbreviating Ac := {Y /∈ [Y1, . . . , Yl]

c}, we get

P(Ac) = (k + 1)
m
2 π−

m
2

(l+1)

∫
Rm

· · ·
∫
Rm

gc(y, y1, . . . , yl)

× exp

(
−

l∑
i=1

‖yi‖2 − (k + 1)‖y‖2

)
λm(dy)λm(dy1) . . . λm(dyl).

Since 0 ∈ int ([Y1, . . . , Yl]c) holds P-almost surely, we can decompose Rm \ [Y1, . . . , Yl]c as
in the proof of Theorem 4.1. Recall that h1(y, y1, . . . , ym) = 1{y ∈ pos1([y1, . . . , ym])} and
define

h2(y1, . . . , yl) := 1 {[y1, . . . , ym] ∈ Fm−1 ([y1, . . . , yl]c)} ,

for y, y1, . . . , yl ∈ Rm. By symmetry and by the reflection invariance of the normal distribu-
tion, we get

P(Ac) =
m∑

r=0

(
l

r

)(
l − r

m− r

)
(k + 1)

m
2 π−

m
2

(l+1)

∫
Rm

· · ·
∫
Rm

h1(y, y1, . . . , ym)h2(y1, . . . , yl)

× exp

(
−

l∑
i=1

‖yi‖2 − (k + 1)‖y‖2

)
λm(dy)λm(dy1) . . . λm(dyl)

= 2m

(
l

m

)
(k + 1)

m
2 π−

m
2

(m+1)

∫
Rm

· · ·
∫
Rm

(2φ(dist(aff{y1, . . . , ym}, 0))− 1)l−m

×h1(y, y1, . . . , ym) exp

(
−

m∑
i=1

‖yi‖2 − (k + 1)‖y‖2

)
×λm(dy)λm(dy1) . . . λm(dym).

Here we used that [Y1, . . . , Ym] is a facet of [Y1, . . . , Yl]c if and only if the l−m random points
Ym+1, . . . , Yl lie between the hyperplane aff{Y1, . . . , Ym} and its reflection in the origin, P-
almost surely.

By the same arguments as in the proof of Theorem 4.1, we now obtain that

P(Ac) = 2m+1

(
l

m

)
c6(m, k)

2(k + 1)
A(m, k)

∞∫
1

(2φ(z)− 1)l−m z−1 exp
(
−(m + k + 1)z2

)
dz

+ O
(
l−(k+1)(log l)

m+k−2
2

)
.

An application of the second part of Lemma 2.1 then yields the result.

A combination of Theorems 3.3 and 4.2 and relation (4.1) show that

Efk ([X1, . . . , Xn]c) ∼
C(d− k, k)

(k + 1)!
A(d− k, k)(log n)

d−1
2 ∼ Efk ([X1, . . . , Xn]) ,

where X1, . . . , Xn is a Gaussian sample.
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4.2. The general functional

We now turn to the asymptotic expansion of the integral∫
1 {Y /∈ [Y1, . . . , Yn−k−1]} ‖Y ‖a dP,

which is related to the expected value ET d,k
a,b ([X1, . . . , Xn]) as shown in Theorem 3.4. Again

we consider a more general situation.

Theorem 4.4. Let l,m ∈ N and k > −1. Let Y, Y1, . . . , Yl be independent random points in

Rm with Y
d
= N

(
0, 1

2(k+1)
Im

)
and Yi

d
= N

(
0, 1

2
Im

)
. Then∫

1 {Y /∈ [Y1, . . . , Yl]} ‖Y ‖a dP ∼ C(m, k)A(m, k) l−(k+1)(log l)
m+k+a−1

2

as l →∞.

Proof. We may assume that l ≥ m + 1. Following the proof of Theorem 4.1, we deduce that

Ea(l,m, k) :=

∫
1 {Y /∈ [Y1, . . . , Yl]} ‖Y ‖a dP

= 2

(
l

m

)
c6(m, k)

∞∫
1

∫
Rm−1

· · ·
∫
Rm−1

∫
Rm

φ(z)l−mh1(y, u1 + zem, . . . , um + zem)

×∆m−1(u1, . . . , um)‖y‖aexp

(
−

m∑
i=1

‖ui‖2 −mz2 − (k + 1)‖y‖2

)
×λm(dy)λm−1(du1) . . . λm−1(dum)λ1(dz) + O

(
φ(1)l

)
.

By the transformation formula,∫
Rm

h1(y, u1 + zem, . . . , um + zem)‖y‖aexp
(
−(k + 1)‖y‖2

)
λm(dy)

=

∞∫
1

∫
[u1,...,um]

zsm+a−1
(
‖u‖2 + z2

)a/2
exp

(
−(k + 1)s2(‖u‖2 + z2)

)
λm−1(du)λ1(ds).

Thus, by an application of Lemma 2.2 we finally get

Ea(l,m, k) =

(
l

m

)
c6(m, k)

k + 1
A(m, k)

∞∫
1

φ(z)l−mza−1 exp
(
−(k + 1 + m)z2

)
dz

+ O
(
l−(k+1) (log l)

m+k+a−2
2

)
,

from which the assertion follows by another application of Lemma 2.1.
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For k ∈ {0, . . . , d−1}, we can combine Theorems 3.4 and 4.4 with (4.2) to find the asymptotic
expansion for the expected value of the general functional

ET d,k
a,b ([X1, . . . , Xn]) ∼ C(b, k, d)

(
d

k + 1

)
2d

√
d
β(T k, T d−1)π

d−1
2 (log n)

d+a−1
2 , (4.4)

where C(b, k, d) was defined in Theorem 3.4. The special case a = 0, b = 1 has already been
mentioned in the Introduction; the constant c(k,d) in (1.5) now follows from (4.4). Moreover,
we get

Eλd([X1, . . . , Xn]) ∼ κd (log n)
d
2

(here Wendel’s theorem is used again) and

EVd−1([X1, . . . , Xn]) ∼ ωd (log n)
d−1
2 ,

where κd = ωd/d is the volume of the d-dimensional unit ball. These two special relations
had previously been established in [1].
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